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SoC Design Cost Model  

Rising cost of IC design and effect of CAD tools 

(Courtesy: Andrew Kahng, UCSD and SRC)  
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Big Savings by using ESL Methodology 
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High Level Synthesis 

 Convert ESL specifications to RTL implementations, 
and satisfy the design constraints. 

 Input: Behavior specifications (C, SystemC, etc.),  and design 
constraints (delay, power, area, etc.) 

 Output: RTL implementations (datapath, controller) 
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int Sample(){ 

int A,B,C,D,E,F,G ; 

Read(A, B, C, D, E); 

F = E * (A + B); 

G = (A + B) * (C + D); 
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Resource Constrained Scheduling 
 

 Various resource constraints (e.g., functional units, power, …). 

 Scheduling is a mapping of operations to control steps 

 Given a DFG and a set of  resource constraints, RCS tries to find a 

(optimal) schedule with minimum overall control steps. 
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Basic Solutions 

 Non-optimal heuristics 

 Force Directed Scheduling 

 List scheduling 

 Pros: Fast to get near-optimal results 

 Cons: schedules may not be tight 

 Optimal approaches 

 Integer linear programming (sequential, parallel) 

 Pros: easy modeling 

 Cons: scalability,  cannot handle non-integer time 

 Branch-and-bound 

 Pros: can prune the fruitless search space efficiently 

 Cons: few of them support parallel HLS specifically  
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Graph-Based Notations 

 [ASAP, ALAP] intervals indicate the earliest and latest 
start time of operations 

 ASAP assumes unlimited resources 

 ASAP(opi) = CP(Gpre(opi)) – delay(opi) + 1 

 ALAP needs to find a feasible schedule S first 

 ALAP(opi) = length(S) - CP(G(opi)) + 1 

 Update ALAP when obtaining a new better schedule 
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Scheduling Using [ASAP, ALAP] 

 A schedule is a binary relation of operations and 
corresponding dispatching control steps 

 E.g., {(v1, 1), (v2, 1), (v3, 3), (v4, 5), (v5, 6)} 

 

 

 

 

 

 

 Based on [ASAP, ALAP], naively enumerating all 
the possibilities can be extremely time consuming 

 The operations are enumerated in a specific order 

 Each operation is enumerated from ASAP to ALAP 
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Branch and Bound Style RCS (BULB) 

 BULB tries to prune fruitless enumerations.  

 B&B approach keeps two data structure regarding 
bound information. 

Sbsf , best complete schedule searched so far 

S, current incomplete schedule 
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Pruning in BULB 

Sbsf 

S 

upper 

lower 

        GL ω optimal 

 Pruning  [lower > ω] 

 Termination  [GL== ω or fully explored] 

 Substitution  [ if(upper < ω) ω = upper] 

 

ω  plays an important role in B&B approaches. A wise use of ω can  

- enable the fast pruning of inferior schedules during RCS; 

- tighten the [ASAP, ALAP] intervals, i.e., search space. 
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Search Space Partitioning 
 The search space can be calculated using the  

cartesian product of [ASAP, ALAP] intervals. 

 If no better schedule is found, RCS can be easily 
stuck-at-local-search, i.e., be trapped in the deep 
recursive search.  
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Search Space Partitioning 
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Static Upper Bound Speculation 
 In BULB approach, the tightest initial ω can achieve the 

best RCS time. 

 However, it is hard to achieve such a tightest estimation 
on a single-core platform .  

 

 

 

 

 

 

 

 

 If there are k cores, the upper bound will be speculated 
with lengths U1, U2, …, Uk where GL=U1<U2<…< Uk= ω 
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Static Upper Bound Speculation 
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Dynamic Upper Bound Speculation 

 Assume that GL=U1<U2< ... <Uk=ω are k upper-
bound speculations. 

 When a sub-search task find a new ω’ such that 
Ui-1<ω’<Ui (k>i>1). The speculation on  Uj (j>i) 
becomes useless.  

 

 

 

 The speculation of the jth sub-task (j>i) can be 
Uj’=max(globalLow, ω’- |i-j|). 

U1=GL Opt Ui 
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Hybrid Approach 

 Search space partitioning and static upper-bound 
speculation approaches can be combined to further 
reduce the searching time. 

 Assume that GL=U1<U2<...<Uk=ω are k upper-bound 
speculations. The hybrid approach has k iterations 
with increasing upper-bound sizes. 

Partitioning Apply ω, GL 
i=1, ω = U1   i++ 

Update [ALAP , ASAP] 

 

i>k  or  termination 

condition is satisfied 

yes 
Stop 

ω = Ui ,  GL = Ui-1 

 

no 

Termination condition: find a schedule in the ith iteration (i≤k) and  

1) ω=globalLow;  or 2) all the sub-tasks in the iteration finish. 
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Minimum ω Synchronization 

 During RCS, the search progress information (i.e., 
ω) of each sub-task can be different. 

 If one sub-task finds a new shorter schedule (i.e., 
shorter ω) and such information can be propagate 
to other sub-tasks, the search space can be 
reduced drastically.  
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Cooperative Sub-task Implementation 

 Each sub-task is modeled using an EFSM. 

 Three states: changed means find a better schedule 
with length ω’; !changed indicates no new better 
schedule since last update of ω; done denotes the 
termindation. 
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Benchmarks & Settings 
 Using benchmarks from MediaBench. 

 BULB & our approach are implemented using 
C++ and OpenMP.  

 Experiments were conducted on a Linux server 
with 96 Intel Xeon 2.4GHz cores and 1T RAM. 

 Setting of functional units: 
 

 

 

 

 

 

 

 

Functional 

Unit 

Operation 

class 

Delay 

(unit) 

Power 

(unit) 

Energy 

(unit) 

Area 

 (unit) 

ADD/SUB +/- 1 10 10 10 

MUL/DIV */ 2 20 40 40 

MEM LD/STR 1 15 15 20 

Shift <</>> 1 10 10 5 

Others … 1 10 10 10 
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Results under Functional Constraints  

RCS efforts are significantly improved with 8 cores: 
 - Our parallel approaches outperform both ILP and BULB approaches 

 - Hybrid approach can achieve the best overall performance 
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Using Different Number of Partitions 

- Significant improvement using hybrid approach with 8 cores.  

- When each core is assigned with ≥8 partitions, the performance 

will not change drastically. 
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Using Different Number of Cores 

- The search space is divided into 128 parts.  

- When the number of cores is larger than 4, increasing the core 

number will not reduce the search time significantly. 
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- FDCT design with different power and area constraints 

-The hybrid approach can achieve a speedup of several orders 

of magnitude.  

Scheduling  Using Area of 100 Units 
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Conclusions 

 RCS is a major bottleneck in HLS 

 Branch-and-bound approaches are promising for 
optimal resource-constrained scheduling 

 Proposed various parallel pruning heuristic 

 Search space partitioning approach 

 Static /dynamic upper bound speculation approaches 

 Parallel sub-task cooperation framework 

 Successfully applied on various benchmark with 
different resource constraints 

 Significant reduction in overall RCS efforts 
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Thank you ! 


