
Bound-Oriented Parallel Pruning
Approaches for Efficient Resource

Constrained Scheduling of
High-Level Synthesis

Mingsong Chen, Lei Zhou, Geguang Pu and Jifeng HE

Shanghai Key Lab of Trustworthy Computing

East China Normal University, China

October 1, 2013

2

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

3

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

4

SoC Design Cost Model

Rising cost of IC design and effect of CAD tools

(Courtesy: Andrew Kahng, UCSD and SRC)

T
o
ta

l
D

es
ig

n
 C

o
st

Big Savings by using ESL Methodology

5

High Level Synthesis

 Convert ESL specifications to RTL implementations,
and satisfy the design constraints.

 Input: Behavior specifications (C, SystemC, etc.), and design
constraints (delay, power, area, etc.)

 Output: RTL implementations (datapath, controller)

Frontend

Compilation

CDFG,

DFG

Behavior

Spec.

RTL

Generation

VHDL,

Verilog

int Sample(){

int A,B,C,D,E,F,G ;

Read(A, B, C, D, E);

F = E * (A + B);

G = (A + B) * (C + D);

……

}

Synthesis

Optimization

Schedules,

Binding

+ +

*

F G

*

E A D C B

+ +

*

F G

*

E A D C B

Cycle 1

Cycle 2

Cycle 3

+1,+2 *1,*2

B,D E, t1 A,C t1, t2

6

Resource Constrained Scheduling

 Various resource constraints (e.g., functional units, power, …).

 Scheduling is a mapping of operations to control steps

 Given a DFG and a set of resource constraints, RCS tries to find a

(optimal) schedule with minimum overall control steps.

+ * *

+

+

Constraints:

Delay(+)=1, Delay(*)=2,

 functional units: 1+, 1*

Control Step

1

2

3

4

5

6

+

+

*

*

+

RCS is NP-Complete. RCS should take care of
 1) Operation precedence. 2) Resource sharing constraints

S
ch

ed
u

le len
g

th
 =

 6

v1 v2 v3

v4

v5

v1 v2

v3

v4

v5

7

Basic Solutions

 Non-optimal heuristics

 Force Directed Scheduling

 List scheduling

 Pros: Fast to get near-optimal results

 Cons: schedules may not be tight

 Optimal approaches

 Integer linear programming (sequential, parallel)

 Pros: easy modeling

 Cons: scalability, cannot handle non-integer time

 Branch-and-bound

 Pros: can prune the fruitless search space efficiently

 Cons: few of them support parallel HLS specifically

8

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

9

Graph-Based Notations

 [ASAP, ALAP] intervals indicate the earliest and latest
start time of operations

 ASAP assumes unlimited resources

 ASAP(opi) = CP(Gpre(opi)) – delay(opi) + 1

 ALAP needs to find a feasible schedule S first

 ALAP(opi) = length(S) - CP(G(opi)) + 1

 Update ALAP when obtaining a new better schedule

* + *

+

+

[1,5] [1,5]

[3,6]

[1,6]

[4,7]

v1 v2 v3

v4

v5

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[4,6]

v1 v2 v3

v4

v5

length(S) = 6 length(S) = 7

10

Scheduling Using [ASAP, ALAP]

 A schedule is a binary relation of operations and
corresponding dispatching control steps

 E.g., {(v1, 1), (v2, 1), (v3, 3), (v4, 5), (v5, 6)}

 Based on [ASAP, ALAP], naively enumerating all
the possibilities can be extremely time consuming

 The operations are enumerated in a specific order

 Each operation is enumerated from ASAP to ALAP

Control Step

1

2

3

4

5

6

+

+

*

*

+

Constraints:

Delay(+)=1,

Delay(*)=2,

1+, 1*

(v2,1)

(v5,6)

(v1,1)

(v3,3)

(v4,5)

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[4,6]

v1 v2 v3

v4

v5

11

Branch and Bound Style RCS (BULB)

 BULB tries to prune fruitless enumerations.

 B&B approach keeps two data structure regarding
bound information.

Sbsf , best complete schedule searched so far

S, current incomplete schedule

 Sbsf

1

2

3

4

5

6 +

+ *

*

+

1

2

3

4

5

6

7

+

+

*

G
L

ω

S

u
p

p
er

lo
w

er

*

+

(v1,1)

(v2,1)

(v3,3)

(v4,5)

(v5,6)

(v1,2)

(v2,1)

12

Pruning in BULB

Sbsf

S

upper

lower

 GL ω optimal

 Pruning [lower > ω]

 Termination [GL== ω or fully explored]

 Substitution [if(upper < ω) ω = upper]

ω plays an important role in B&B approaches. A wise use of ω can

- enable the fast pruning of inferior schedules during RCS;

- tighten the [ASAP, ALAP] intervals, i.e., search space.

13

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

14

Search Space Partitioning
 The search space can be calculated using the

cartesian product of [ASAP, ALAP] intervals.

 If no better schedule is found, RCS can be easily
stuck-at-local-search, i.e., be trapped in the deep
recursive search.

15

Search Space Partitioning

* + *

+

+

[1,4] [1,2]

[3,5]

[1,2]

[4,6]

v1 v2 v3

v4

v5

* + *

+

+

[1,4] [3,4]

[3,5]

[1,2]

[4,6]

v1 v2 v3

v4

v5

* + *

+

+

[1,4] [1,2]

[3,5]

[3,5]

[4,6]

v1 v2 v3

v4

v5

* + *

+

+

[1,4] [3,4]

[3,5]

[3,5]

[4,6]

v1 v2 v3

v4

v5

Termination condition:

1) ω = GL; or 2) all the sub-search finishes.

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[4,6]

v1 v2 v3

v4

v5

16

Static Upper Bound Speculation
 In BULB approach, the tightest initial ω can achieve the

best RCS time.

 However, it is hard to achieve such a tightest estimation
on a single-core platform .

 If there are k cores, the upper bound will be speculated
with lengths U1, U2, …, Uk where GL=U1<U2<…< Uk= ω

17

Static Upper Bound Speculation

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[4,6]

v1 v2 v3

v4

v5

Termination condition:

1) ω = GL; or

2) Some sub-task finishes and finds one feasible schedule.

* + *

+

+

[1,3] [1,3]

[3,4]

[1,4]

[4,5]

v1 v2 v3

v4

v5

* + *

+

+

[1,2] [1,2]

[3,3]

[1,3]

[4,4]

v1 v2 v3

v4

v5

ω = U3 = 6

U2 = 5 GL = U1 = 4

GL = U1≤ U2 ≤ U3 = ω

18

Dynamic Upper Bound Speculation

 Assume that GL=U1<U2< ... <Uk=ω are k upper-
bound speculations.

 When a sub-search task find a new ω’ such that
Ui-1<ω’<Ui (k>i>1). The speculation on Uj (j>i)
becomes useless.

 The speculation of the jth sub-task (j>i) can be
Uj’=max(globalLow, ω’- |i-j|).

U1=GL Opt Ui

U1=GL Opt Ui-1 Uj Ui

ω’

ω’

Uj’

|i-j|

Ui-1

19

Hybrid Approach

 Search space partitioning and static upper-bound
speculation approaches can be combined to further
reduce the searching time.

 Assume that GL=U1<U2<...<Uk=ω are k upper-bound
speculations. The hybrid approach has k iterations
with increasing upper-bound sizes.

Partitioning Apply ω, GL
i=1, ω = U1 i++

Update [ALAP , ASAP]

i>k or termination

condition is satisfied

yes
Stop

ω = Ui , GL = Ui-1

no

Termination condition: find a schedule in the ith iteration (i≤k) and

1) ω=globalLow; or 2) all the sub-tasks in the iteration finish.

20

Minimum ω Synchronization

 During RCS, the search progress information (i.e.,
ω) of each sub-task can be different.

 If one sub-task finds a new shorter schedule (i.e.,
shorter ω) and such information can be propagate
to other sub-tasks, the search space can be
reduced drastically.

Cooperation

(minimum ω)

ST 1

ω1

ST 2

ω2

ST n

ωn

query

update update update

query query

21

Cooperative Sub-task Implementation

 Each sub-task is modeled using an EFSM.

 Three states: changed means find a better schedule
with length ω’; !changed indicates no new better
schedule since last update of ω; done denotes the
termindation.

done

changed !changed
/ updateALAP()

 query() < ω
/ ω = max(query() – spec, globalLow),

 updateALAP()

complete / ω = globalLow /

ω >globalLow/ ω = max(ω-1, globalLow),

2

3

4

5

6

1

ω' ≤query() / ω = ω‘, update(i, ω)

22

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

23

Benchmarks & Settings
 Using benchmarks from MediaBench.

 BULB & our approach are implemented using
C++ and OpenMP.

 Experiments were conducted on a Linux server
with 96 Intel Xeon 2.4GHz cores and 1T RAM.

 Setting of functional units:

Functional

Unit

Operation

class

Delay

(unit)

Power

(unit)

Energy

(unit)

Area

 (unit)

ADD/SUB +/- 1 10 10 10

MUL/DIV */ 2 20 40 40

MEM LD/STR 1 15 15 20

Shift <</>> 1 10 10 5

Others … 1 10 10 10

24

Results under Functional Constraints

RCS efforts are significantly improved with 8 cores:
 - Our parallel approaches outperform both ILP and BULB approaches

 - Hybrid approach can achieve the best overall performance

25

Using Different Number of Partitions

- Significant improvement using hybrid approach with 8 cores.

- When each core is assigned with ≥8 partitions, the performance

will not change drastically.

26

Using Different Number of Cores

- The search space is divided into 128 parts.

- When the number of cores is larger than 4, increasing the core

number will not reduce the search time significantly.

27

- FDCT design with different power and area constraints

-The hybrid approach can achieve a speedup of several orders

of magnitude.

Scheduling Using Area of 100 Units

28

Conclusions

 RCS is a major bottleneck in HLS

 Branch-and-bound approaches are promising for
optimal resource-constrained scheduling

 Proposed various parallel pruning heuristic

 Search space partitioning approach

 Static /dynamic upper bound speculation approaches

 Parallel sub-task cooperation framework

 Successfully applied on various benchmark with
different resource constraints

 Significant reduction in overall RCS efforts

29

Thank you !

