
Bound-Oriented Parallel Pruning
Approaches for Efficient Resource

Constrained Scheduling of
High-Level Synthesis

Mingsong Chen, Lei Zhou, Geguang Pu and Jifeng HE

Shanghai Key Lab of Trustworthy Computing

East China Normal University, China

October 1, 2013

2

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

3

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

4

SoC Design Cost Model

Rising cost of IC design and effect of CAD tools

(Courtesy: Andrew Kahng, UCSD and SRC)

T
o
ta

l
D

es
ig

n
 C

o
st

Big Savings by using ESL Methodology

5

High Level Synthesis

 Convert ESL specifications to RTL implementations,
and satisfy the design constraints.

 Input: Behavior specifications (C, SystemC, etc.), and design
constraints (delay, power, area, etc.)

 Output: RTL implementations (datapath, controller)

Frontend

Compilation

CDFG,

DFG

Behavior

Spec.

RTL

Generation

VHDL,

Verilog

int Sample(){

int A,B,C,D,E,F,G ;

Read(A, B, C, D, E);

F = E * (A + B);

G = (A + B) * (C + D);

……

}

Synthesis

Optimization

Schedules,

Binding

+ +

*

F G

*

E A D C B

+ +

*

F G

*

E A D C B

Cycle 1

Cycle 2

Cycle 3

+1,+2 *1,*2

B,D E, t1 A,C t1, t2

6

Resource Constrained Scheduling

 Various resource constraints (e.g., functional units, power, …).

 Scheduling is a mapping of operations to control steps

 Given a DFG and a set of resource constraints, RCS tries to find a

(optimal) schedule with minimum overall control steps.

+ * *

+

+

Constraints:

Delay(+)=1, Delay(*)=2,

 functional units: 1+, 1*

Control Step

1

2

3

4

5

6

+

+

*

*

+

RCS is NP-Complete. RCS should take care of
 1) Operation precedence. 2) Resource sharing constraints

S
ch

ed
u

le len
g

th
 =

 6

v1 v2 v3

v4

v5

v1 v2

v3

v4

v5

7

Basic Solutions

 Non-optimal heuristics

 Force Directed Scheduling

 List scheduling

 Pros: Fast to get near-optimal results

 Cons: schedules may not be tight

 Optimal approaches

 Integer linear programming (sequential, parallel)

 Pros: easy modeling

 Cons: scalability, cannot handle non-integer time

 Branch-and-bound

 Pros: can prune the fruitless search space efficiently

 Cons: few of them support parallel HLS specifically

8

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

9

Graph-Based Notations

 [ASAP, ALAP] intervals indicate the earliest and latest
start time of operations

 ASAP assumes unlimited resources

 ASAP(opi) = CP(Gpre(opi)) – delay(opi) + 1

 ALAP needs to find a feasible schedule S first

 ALAP(opi) = length(S) - CP(G(opi)) + 1

 Update ALAP when obtaining a new better schedule

* + *

+

+

[1,5] [1,5]

[3,6]

[1,6]

[4,7]

v1 v2 v3

v4

v5

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[4,6]

v1 v2 v3

v4

v5

length(S) = 6 length(S) = 7

10

Scheduling Using [ASAP, ALAP]

 A schedule is a binary relation of operations and
corresponding dispatching control steps

 E.g., {(v1, 1), (v2, 1), (v3, 3), (v4, 5), (v5, 6)}

 Based on [ASAP, ALAP], naively enumerating all
the possibilities can be extremely time consuming

 The operations are enumerated in a specific order

 Each operation is enumerated from ASAP to ALAP

Control Step

1

2

3

4

5

6

+

+

*

*

+

Constraints:

Delay(+)=1,

Delay(*)=2,

1+, 1*

(v2,1)

(v5,6)

(v1,1)

(v3,3)

(v4,5)

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[4,6]

v1 v2 v3

v4

v5

11

Branch and Bound Style RCS (BULB)

 BULB tries to prune fruitless enumerations.

 B&B approach keeps two data structure regarding
bound information.

Sbsf , best complete schedule searched so far

S, current incomplete schedule

 Sbsf

1

2

3

4

5

6 +

+ *

*

+

1

2

3

4

5

6

7

+

+

*

G
L

ω

S

u
p

p
er

lo
w

er

*

+

(v1,1)

(v2,1)

(v3,3)

(v4,5)

(v5,6)

(v1,2)

(v2,1)

12

Pruning in BULB

Sbsf

S

upper

lower

 GL ω optimal

 Pruning [lower > ω]

 Termination [GL== ω or fully explored]

 Substitution [if(upper < ω) ω = upper]

ω plays an important role in B&B approaches. A wise use of ω can

- enable the fast pruning of inferior schedules during RCS;

- tighten the [ASAP, ALAP] intervals, i.e., search space.

13

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

14

Search Space Partitioning
 The search space can be calculated using the

cartesian product of [ASAP, ALAP] intervals.

 If no better schedule is found, RCS can be easily
stuck-at-local-search, i.e., be trapped in the deep
recursive search.

15

Search Space Partitioning

* + *

+

+

[1,4] [1,2]

[3,5]

[1,2]

[4,6]

v1 v2 v3

v4

v5

* + *

+

+

[1,4] [3,4]

[3,5]

[1,2]

[4,6]

v1 v2 v3

v4

v5

* + *

+

+

[1,4] [1,2]

[3,5]

[3,5]

[4,6]

v1 v2 v3

v4

v5

* + *

+

+

[1,4] [3,4]

[3,5]

[3,5]

[4,6]

v1 v2 v3

v4

v5

Termination condition:

1) ω = GL; or 2) all the sub-search finishes.

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[4,6]

v1 v2 v3

v4

v5

16

Static Upper Bound Speculation
 In BULB approach, the tightest initial ω can achieve the

best RCS time.

 However, it is hard to achieve such a tightest estimation
on a single-core platform .

 If there are k cores, the upper bound will be speculated
with lengths U1, U2, …, Uk where GL=U1<U2<…< Uk= ω

17

Static Upper Bound Speculation

* + *

+

+

[1,4] [1,4]

[3,5]

[1,5]

[4,6]

v1 v2 v3

v4

v5

Termination condition:

1) ω = GL; or

2) Some sub-task finishes and finds one feasible schedule.

* + *

+

+

[1,3] [1,3]

[3,4]

[1,4]

[4,5]

v1 v2 v3

v4

v5

* + *

+

+

[1,2] [1,2]

[3,3]

[1,3]

[4,4]

v1 v2 v3

v4

v5

ω = U3 = 6

U2 = 5 GL = U1 = 4

GL = U1≤ U2 ≤ U3 = ω

18

Dynamic Upper Bound Speculation

 Assume that GL=U1<U2< ... <Uk=ω are k upper-
bound speculations.

 When a sub-search task find a new ω’ such that
Ui-1<ω’<Ui (k>i>1). The speculation on Uj (j>i)
becomes useless.

 The speculation of the jth sub-task (j>i) can be
Uj’=max(globalLow, ω’- |i-j|).

U1=GL Opt Ui

U1=GL Opt Ui-1 Uj Ui

ω’

ω’

Uj’

|i-j|

Ui-1

19

Hybrid Approach

 Search space partitioning and static upper-bound
speculation approaches can be combined to further
reduce the searching time.

 Assume that GL=U1<U2<...<Uk=ω are k upper-bound
speculations. The hybrid approach has k iterations
with increasing upper-bound sizes.

Partitioning Apply ω, GL
i=1, ω = U1 i++

Update [ALAP , ASAP]

i>k or termination

condition is satisfied

yes
Stop

ω = Ui , GL = Ui-1

no

Termination condition: find a schedule in the ith iteration (i≤k) and

1) ω=globalLow; or 2) all the sub-tasks in the iteration finish.

20

Minimum ω Synchronization

 During RCS, the search progress information (i.e.,
ω) of each sub-task can be different.

 If one sub-task finds a new shorter schedule (i.e.,
shorter ω) and such information can be propagate
to other sub-tasks, the search space can be
reduced drastically.

Cooperation

(minimum ω)

ST 1

ω1

ST 2

ω2

ST n

ωn

query

update update update

query query

21

Cooperative Sub-task Implementation

 Each sub-task is modeled using an EFSM.

 Three states: changed means find a better schedule
with length ω’; !changed indicates no new better
schedule since last update of ω; done denotes the
termindation.

done

changed !changed
/ updateALAP()

 query() < ω
/ ω = max(query() – spec, globalLow),

 updateALAP()

complete / ω = globalLow /

ω >globalLow/ ω = max(ω-1, globalLow),

2

3

4

5

6

1

ω' ≤query() / ω = ω‘, update(i, ω)

22

Outline

 Introduction

 RCS using Branch-and-Bound Approaches

 Graph–based Notations

 BULB Approach

 Our Parallel Pruning Approach

 Search Task Decomposition

 Parallel Search Task Cooperation

 Experiments

 Conclusion

23

Benchmarks & Settings
 Using benchmarks from MediaBench.

 BULB & our approach are implemented using
C++ and OpenMP.

 Experiments were conducted on a Linux server
with 96 Intel Xeon 2.4GHz cores and 1T RAM.

 Setting of functional units:

Functional

Unit

Operation

class

Delay

(unit)

Power

(unit)

Energy

(unit)

Area

 (unit)

ADD/SUB +/- 1 10 10 10

MUL/DIV */ 2 20 40 40

MEM LD/STR 1 15 15 20

Shift <</>> 1 10 10 5

Others … 1 10 10 10

24

Results under Functional Constraints

RCS efforts are significantly improved with 8 cores:
 - Our parallel approaches outperform both ILP and BULB approaches

 - Hybrid approach can achieve the best overall performance

25

Using Different Number of Partitions

- Significant improvement using hybrid approach with 8 cores.

- When each core is assigned with ≥8 partitions, the performance

will not change drastically.

26

Using Different Number of Cores

- The search space is divided into 128 parts.

- When the number of cores is larger than 4, increasing the core

number will not reduce the search time significantly.

27

- FDCT design with different power and area constraints

-The hybrid approach can achieve a speedup of several orders

of magnitude.

Scheduling Using Area of 100 Units

28

Conclusions

 RCS is a major bottleneck in HLS

 Branch-and-bound approaches are promising for
optimal resource-constrained scheduling

 Proposed various parallel pruning heuristic

 Search space partitioning approach

 Static /dynamic upper bound speculation approaches

 Parallel sub-task cooperation framework

 Successfully applied on various benchmark with
different resource constraints

 Significant reduction in overall RCS efforts

29

Thank you !

