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Bound Performance Models of
Heterogeneous Parallel Processing Systems

Simonetta Balsamo, Member, IEEE, Lorenzo Donatiello, and Nico M. Van Dijk

Abstract—Systems of heterogeneous parallel processing are studied such as arising in parallel programs executed on distributed
systems. A lower and an upper bound model are suggested to obtain secure lower and upper bounds on the performance of these
systems. The bounding models are solved by using a matrix-geometric algorithmic approach. Formal proofs of the bounds are
provided along with error bounds on the accuracy of the bounds. These error bounds in turn are reduced to simple computational
expressions. Numerical results are included. The results are of interest for application to arbitrary fork-join models with parallel
heterogeneous processors and synchronization.

Index Terms—Parallel systems, queuing networks, system performance evaluation.
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1 INTRODUCTION

HE design of parallel processing systems requires the
development of performance models for the quantita-

tive evaluation of such systems. Performance models can be
used in the design of parallel processing systems such as
the evaluation of scheduling and resource allocation poli-
cies, speedup, and efficiency evaluation of parallel pro-
grams and applications. Queuing networks represent a
natural way to model parallel processing systems; system
structure can be modeled as a queuing system while pro-
grams or applications, consisting of tasks with some prece-
dence constraints, can be modeled as precedence graphs
whose nodes are the tasks and edges correspond to prece-
dence constraints. In a precedence graph, we identify fork
nodes when more than one edge leaves the node, and join
nodes when more than one edge enters the node. Fork and
join nodes represent, respectively, the starting point of par-
allel execution of tasks and the synchronization of tasks. A
program is completely executed when all of its tasks have
been completed. Fig. 1 shows a simple example of prece-
dence graph consisting of a single fork node, N parallel
tasks, and a single join node. Parallel programs including
fork and join, or parbegin/parend constructs, and parallel
operations of write requests in a distributed database sys-
tem can be represented by such queuing models.

Models of parallel processing systems can be homogeneous
or heterogeneous. The latter represent the more general class
of parallel processing systems composed by different process-
ing units and different parallel tasks. The performance indices
of interest include job and task response time, synchronization
delay, queue length distribution, and throughput.

Concurrency and synchronization make the solution of
such performance models more complex with respect to the
classical queuing network analysis [12]. Exact analysis has
been carried out by Flatto and Hahn [7], who consider pro-
grams with a fork node, two parallel tasks, and a join node,
and a system with two heterogeneous processing units, each
having its own queue. Each incoming job is split into two
tasks which are allocated to the processing units. A task, after
it has been processed, waits for its siblings in a join queue
before leaving the system. Under exponential assumption for
the interarrival and service time distribution, they obtain the
generating function of the system state probabilities. Some
limit results on the conditioned queue length are shown by
Flatto [8]. Brun and Fajolle [4] obtain the Laplace transform
of the response time distribution for the same model, and an
approximate solution has been proposed by Rao and Posner
[17]. When the system consists of N ≥ 2 homogeneous expo-
nential processing units and incoming jobs are formed by N
parallel tasks, Nelson and Tantawi [14] present approximate
solutions for the mean job and task response time. Bounds on
the average job response time for a system with general
service time and interarrival time distributions have been
proposed by Varma and Makowski [18]. A comparison be-
tween different parallel processing models in terms of mean
response time is presented by Nelson et al. in [15]. A more
general model with N ≥ 2 heterogeneous servers and general
arrival service time distribution is considered by Baccelli and
Makowski [1], who provide bounds for the job mean re-
sponse time, while Kim and Agrawala [9] obtain the tran-
sient and steady-state solution of the virtual waiting time.
More complex systems, where processing units are con-
nected in series and parallel, have been analyzed by Baccelli
et al. [2], deriving bounds on response time, while Duda and
Czachórski [5], [6] present approximate solutions for per-
formance indices. Bounds on response time for systems with
parallel dependent task have been derived by Kumar and
Shorey [13]. Heidelberger and Trivedi [10], [11] propose dif-
ferent approximate solution methods for models both with
and without synchronization.
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Fig. 1. Example of precedence graph.

Unfortunately, the main drawback of approximate but
not bound methods proposed is the lack of information on
the introduced error, while bound methods do not allow an
iterative process to improve the bound accuracy, i.e., to re-
duce the spread of bounds. The main contribution of this
paper is the proposal of a method for the performance
analysis of a class of fork and join queuing networks. The
method has two main characteristics: First, it provides an
algorithm for the approximate solution of the steady-state
probability distribution of the joint queue length for het-
erogeneous systems. The other feature of the proposed
method is the following: Unlike other bound methods pre-
sented in the literature [1], [2], [13], [18], it allows us to pro-
vide bounds on the queue length distribution beside other
performance indices and to control the spread of bounds to
meet a given accuracy.

We consider a fork and join queuing system with N ≥ 2
heterogeneous processing units and N parallel tasks. We
present two models which provide, respectively, upper and
lower bounds on performance indices and whose solution
is obtained by applying an algorithm approach, both in
terms of stationary state probability distribution (i.e., the
number of tasks in each queue) and other performance in-
dices, such as job and task mean response time, synchroni-
zation delay, and speed up. The two proposed models are
defined by considering appropriate state space partitions
and reductions which enable us to apply a matrix-
geometric approach [16]. We prove that the two models
provide upper and lower bounds on a set of performance
indices of the original fork and join model, respectively.
Moreover, we derive an expression of the bound width for
the average performance indices. By comparing the results
obtained by the proposed method with both the exact nu-
merical solution and other approximate and bound solu-
tions, we observe a good accuracy of the proposed bounds.
Moreover we show the improvement of the approximation
accuracy, i.e., the spread of bounds, by choosing the appro-
priate value of the modified model parameters.

The paper is organized as follows: In Section 2, the
model is introduced. Sections 3 and 4 present the upper and
lower bound models, respectively, defined by considering

two different state space reductions. The algorithmic ap-
proach, its computational complexity, and the bound com-
putation are presented in Section 5. In Section 6, numerical
examples are presented to compare the proposed bound
solution with other solution methods. Finally, Section 7
summarizes the results and future research.

2 THE MODEL

Consider an open fork and join queuing system with N ≥ 2
heterogeneous service centers, as shown in Fig. 2. A service
center consists of a single server and an infinite capacity
queue with FCFS discipline. Arrival times of jobs at the
systems are assumed to be statistically independent ran-
dom variable having the same probability distribution A(t).
Upon arrival a job splits into N tasks denoted by T1, T2, ...,
TN. Each server is dedicated to execute specific tasks, i.e.,
task Ti is always executed by service center i, 1 ≤ i ≤ N;
service times of task Ti are independent random variable
with probability distribution Bi(t). Tasks wait for their sib-
lings in the join queue until the whole job is completed. We
assume that probability distributions A(t) and Bi(t), 1 ≤ i ≤
N, have a Coxian or a phase-type representation [12]. Here-
after, for the sake of simplicity, we consider exponential
distributions. However, the same approach can be used to
analyze systems with more general interarrival and service
time distributions. A more detailed study of the method for
the case of more general distribution is out of the scope of
the paper. Arrival rate is denoted by λ and service rate of
center i is denoted by µi, 1 ≤ i ≤ N. Without loss of general-
ity let  µ1 ≤ µ2 ≤ ... ≤ µN. By assuming that the stability con-
dition holds, i.e., λ < mini µi , we analyze the system in
steady-state condition.

System state is defined as n = (n1, ..., nN), where ni de-
notes the number of tasks in service center i, 1 ≤ i ≤ N. The
number of tasks waiting in the join queue can be computed

as (n* n )i1 i N
−

≤ ≤∑ , where n* = max1≤i≤N ni. It is easy to

verify that n* also represents the number of jobs in the sys-
tem. The system evolution can be modeled by an homoge-
neous discrete-space continuous-time Markov process with
infinite state space

E = {n = (n1, ..., nN), ni ≥ 0, 1 ≤ i ≤ N}

and transition rate matrix  Q = �qn,n′�, n, n′ ∈ E, defined as
follows :

qn,n′ = λ     if n′ = (n1 + 1, n2 + 1, ..., nN + 1)         (1.1)

Fig. 2. Fork and join N-server queuing system.
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qn,n′ = µi   if n′ = (n1, ..., ni−1, ni − 1, ni+1, ..., nN)

and ni > 0, 1 ≤ i ≤ N                    (1.2)

qn,n′ = 0   otherwise       (1.3)

for n ≠ n′ and

q q, ,n n n n
n n

= − ′
′≠
∑ .

Formula (1.1) corresponds to the arrival of a job at the
system, while (1.2) corresponds to a completion of a task by
server i.

Under irreducibility assumption, there exists the station-
ary probability distribution of system state, denoted by
vector π, whose component π(n) is the probability of state n,
and π( )n

n∈∑ =
E

1. Probability distribution π can be com-

puted as the solution of the following linear system:

πQ = 0 , with π 1 = 1, (2)

where 0 and 1 are the column vector with all zeros and all
ones, respectively.

From vector π, the following performance indices can
also be evaluated:

•� mean job response time
•� mean response time of task Ti,1 ≤ i ≤ N
•� join queue length distribution
•� mean synchronization delay
•� speedup, defined as the mean job response time using

N processors divided by the mean job response time
using one processor.

In order to solve linear system (2), a numerical technique
cannot be applied because of the infinite state space E and it
is not trivial to extend to N > 2 the derivation of the generat-
ing function of the state probability proposed for N = 2 in [7].
On the other hand, classical closed form solutions [3] do not
hold for such models, because of the presence of fork and
join constructs. We shall now propose a bound solution.

In the next two sections, we introduce two modified
models based on two different state space reductions of the
original model, which lead to an upper bound and a lower
bound model. For both the models, an algorithmic ap-
proach is applied to evaluate the stationary state distribu-
tion and average performance indices.

The proposed solutions are based on the matrix-
geometric algorithmic method for solving Markov proc-
esses having a special structure known as quasi-birth-death
processes (QBD) [16]. We shall now recall the matrix-
geometric algorithm for a Markov process with state space
E* and transition rate matrix Q*. By defining an appropriate
partition of the state space E*, we assume that process ma-
trix Q* can be rewritten as shown in Fig. 3, where submatri-
ces B and Ai, i = 0, 1, 2, are square matrices of order a, with
a > 0. If stability conditions are verified, then it is possible
to efficiently compute steady-state probability vector π*
through the following algorithmic approach [16].

Let vector π* be partitioned as π* = (π*0, π*1, π*2, ...)
where subvectors π*i, i ≥ 0, have dimension a. Let A = A0 +
A1 + A2 be the infinitesimal generator of a finite Markov
process which is assumed to be irreducible. Therefore, there

exists the steady-state probability vector x defined by x A = 0,
with x 1 = 1. Neuts proved the following theorem [16,
chapter 1]:

THEOREM 1. The Markov process with infinitesimal generator Q*
is positive recurrent if and only if x A2 1 > x A0 1. In this
case, there exists a nonnegative matrix R, with spectral ra-
dius less than 1, which is the unique nonnegative solution
of the matrix quadratic equation

A0 + R A1 + R2 A2 = Ø.

Steady-state probability π* is given by

π*i = π*0 R
i i ≥ 1     (3.1)

and

π*0 (B + R A2) = Ø (3.2)

with

π*0 (I − R)−1 1 = 1.

An iterative approach can be used to compute R as follows:

R(0) = Ø

R(n+1) =  −A0 A1
−1 + R2(n) A0 A1

−1   n ≥ 0    (4)

and it can be shown that R(n) monotonically converges to
R, as n goes to infinity [16].

3 THE UPPER BOUND MODEL

In this section, we construct a new model whose solution
provides an upper bound on the performance of the origi-
nal fork and join queuing system. To this end, in order to
apply the matrix geometric method, we inspect the struc-
ture of process matrix Q defined by (1). State space E can be
partitioned as follows:

E E

E n , n , , n E, i : n k, n k,

j i, 1 i, j N, k 0

k
k 0

k 1 2 N i j

=

= = ∈ ∃ = ≤

≠ ≤ ≤ ≥

≥
U

Kn 2 7J
A,

where Ek contains all the states with k jobs in the system.
For the simple case of the fork and join system with N = 2,
the state transition diagram and the corresponding parti-
tion is shown in Fig. 4.

By reordering system states according to this partition,
matrix Q can be rewritten as follows:

Fig. 3. Quasi-Birth-Death Markov process matrix.
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  (5)

The block tridiagonal structure of matrix Q derives from
transition rates definition (1) and from the space state par-
tition. In other words, the only nonzero transitions from a
state n ∈ Ek, for k ≥ 0, are to states belonging either to sub-

set Ek+1 or Ek−1 (if k > 0) or to Ek itself. Unfortunately, Q
does not show a QBD structure (as the matrix in Fig. 3) be-
cause subset Ek cardinality increases with k, which also im-

plies that submatrices Qkj dimensions, k − 1 ≤ j ≤ k + 1, grow
with k. However, by choosing an appropriate ordering of
system’s states, it is possible to show that matrix Qkj is also

submatrix of Qk+1j+1, k − 1 ≤ j ≤ k + 1. In this case, we can

define a reduced state space EU and a partition into subsets

E Ek
U

k⊆ , k ≥ 0, to obtain a new process matrix which has a
QBD structure.

However, we can consider various possible definitions of
a new reduced process with a QBD structure and whose
state space partition does not necessarily satisfy condition
E Ek

U
k⊆ , k ≥ 0. Then, we choose a different and simpler

definition of the reduced state space EU and of its partition,
which leads to a simple QBD structure of the associated
Markov process.

The reduced state space EU is defined as follows:

E E : U n n U ,1 i, j NU
ji i j ij= ∈ − ≤ − ≤ ≤ ≤nJ L ,     (6)

where Uij are positive constant, 1 ≤ i, j ≤ N, and

E E ,

E n E : min n k ,

E k k 0.

U
k
U

k 0

k
U U

1 i N i

k
U

U

=

= ∈ =

= ∀ ≥

≥

≤ ≤

U

J L

Therefore, the corresponding new transition rate matrix
QU has the QBD structure shown in Fig. 3, where

A Q A Q , A Q0
U

01 k 1
U

11 2
U

10
U

= = = =λ I , ,

where each QU
kj is derived by (1.1) through (1.3) from the

corresponding submatrix of Q by considering only the rows
related to states of EU

k and the columns related to states of

EU
j, for k, j ≥ 0, except for the diagonal elements in the di-

agonal submatrices QU
kk, k ≥ 0, which are given by

q qU U

E E Ek 1
U

k
U

k 1
U

n n n n
n

, ,= − ′
′∈ − +

∑
U U

.

Fig. 5 shows the reduced state space diagram EU of a sys-

tem with N = 2, U12 = 2, and U21 = 1. By applying reduction

(6), we define the reduced state space EU by discarding an
appropriate subset of system states, so obtaining an ap-
proximate model for the fork and join system.

This reduced model can be exactly evaluated in terms of
steady-state probability distribution πU by using the matrix-

geometric technique. Vector πU is the solution of the linear

system πUQU = 0 with πU1 = 1 and is computed by applying
the theorem if the stability condition is verified.

3.1 Performance Indices
By using the matrix-geoetric solution of the upper bound
model, we can directly compute other average performance
indices such as the average number of jobs in the system

Fig. 4. State transition diagram of a two-node heterogeneous fork and join system: first state space partition.

Fig. 5. State transition diagram for reduction (6) with N = 2, U12 = 2,
U21 = 1, and kU = 4.
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and the average job response time, respectively denoted by
LU and WU. One can derive the following expression:

L I R R I RU
U,0

1
U,0

2= − + −− −π α π0 5 0 5 1 ,    (7)

where πU,0 denotes the probability subvector of πU corre-

sponding to subset EU
0, R is the matrix derived from the

algorithm by (4) and vector α has the same number of com-
ponents as vector πU,0 and is defined as follows:

α n0 5 =
≤ ≤

max n
1 i k i

for each n ∈ EU
0.

The derivation of formula (7) is given in Appendix A.
Note that if the stability condition holds, the through-

puts of the new model and the original one are identical
and equal to the arrival rate λ. Hence, we can immediately
derive the mean job response time as follows:

WU = LU/λ.           (8)

The proposed reduction of state space E defined by (6)
discards all those states for which the difference between
queue lengths i and j is greater than Uij, 1 ≤ i, j ≤ N. Thresh-

olds Uij are the minimum values such that, for a given ε > 0,

Prob{ni − nj > Uij} < ε , 1 ≤ i, j ≤ N. The value of ε represents
an upper bound to the probabilities of the discarded states
by the state space reduction. From the system’s viewpoint,
the new model represents the following behavior: When ni

= nj + Uij server j is blocked until a service is completed by
node i. As soon as a departure occurs from node i, the
server of node j starts again, servicing the tasks. Therefore,
roughly speaking, the mean number of jobs and the mean
job response time of the new model are upper bounds on
those obtained by the original fork and join model because
of the blocking of the servers.

We shall now formally prove that the new model pro-
vides upper bounds on a set of performance measures of
the original model by following the approach in [19], [20].

3.2 Proof of Upper Bound
In order to provide the proof of the bound, we first transform
the continuous-time Markov processes in corresponding dis-
crete-time Markov process by uniformization [19].

Let M ii

N
= +�

! 
"
$#=∑λ µ

1
 and denote by P and PU the cor-

responding uniformized Markov one-step transition matri-
ces with

p(n, n′)= λ M−1 (9.1)

if n′ = (n1 + 1, n2 + 1, ..., nN + 1)

p Mi n 0
1

i
n n, ′ = >

−0 5 < Aµ 1           (9.2)

if n′ = (n1, ..., ni−1, ni − 1, ni+1, ..., nN) 1 ≤ i ≤ N

p(n, n′) = 0 otherwise            (9.3)

if n′ ≠ n

p , p ,n n n n
n n

′ = − ′
′≠
∑0 5 0 51           (9.4)

and

pU(n, n′) = λ M−1 (10.1)

if n′ = (n1 + 1, n2 + 1, ..., nN + 1)

p MU i ni
n n, ′ = >

−0 5 < Aµ 1
0

1           (10.2)

if n′ = (n1, ..., ni−1, ni − 1, ni+1, ..., nN) 1 ≤ i ≤ N

pU(n, n′) = 0 otherwise        (10.3)

if n′ ≠ n

p pU Un n n n
n n

, ,′ = − ′
′≠
∑0 5 0 51 .         (10.4)

For a given reward rate function r(.) at E, let the function
Vt(.) for t = 0, 1, 2, … be defined by:

V M p rt

k=0

t
kn n n n

n

0 5 0 5 0 5= ′ ′−
−

′
∑ ∑1

1

,

= + ′ ′− −

′
∑r M p , Vtn n n n
n

0 5 0 5 0 51 1     (11)

and, similarly, define Vt
U(.) with P replaced by PU. Then, by

standard Tauberian theorems, the following limit is well de-
fined and independent of the initial distribution π0(n) at E.

G = lim
M
t V

t

t

→∞ ∑π 0 n n
n

0 5 0 5.       (12)

This value represents the expected average reward per
unit of time of the original model when using the reward
rate r(.). Similarly, we define GU for the new model.

The following Lemmas 1 and 2 will relate the perform-
ance measures G and GU. These lemmas are a direct appli-
cation of results in [19], [20] tailored to the above models.

LEMMA 1. Let f(.) be a function such that for any n ∈ EU and t ≥ 0:

µ i n E

t
i

t

i=1

N

i i
U V V f1 1

0> − ∉
− − =∑ < A J L 2 7 0 5 0 5

n e
n e n n .    (13)

Then,

G G fU
U− ≤ ∑π n n

n

0 5 0 5 .     (14)

PROOF. The proof is given in Appendix B. o

LEMMA 2. G ≤ (≥) GU when

µ i n E

t t
i

i=1

N

i i
U V V1 1 0

0> − ∉
− − ≥ ≤∑ < A J L

0 5 2 7 0 5
n e

n n e . (15)

PROOF. The proof is given in Appendix B. o

The following Lemma 3 will enable us to apply the
above two lemmas for a general class of performance
measures G by appropriate choice of a reward rate r. Most
notably, it will apply, for instance, to the following steady-
state performance measures:
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Case Measure Reward rate
1 total number of jobs

n* = maxi ni

r(n) = n* = maxi ni

2 total number of tasks n= n1 +
n2 + … + nN

r(n) = n=
= n1 + n2 + … +
nN

3 tail probability for number of
jobs
Prob{n* > t}

r(n) = 1{n*>t}

4 arbitrary probability of joint
task vector, provided that

n ∈ E
U

 ⇒  n + ei ∈ E ∀i

 π(n)

r(n) = 1{n∈E}

(16)

LEMMA 3. With C = maxi M/(µi − λ) and arbitrary r(n) such
that

0 1≤ + − ≤r n e ni r2 7 0 5        (17)

for any n ∈ EU and t ≥ 0:

0 1≤ + − ≤ +V V n Ct
i

t
in e n2 7 0 5 2 7 . (18)

PROOF. The proof is given in Appendix B. o

By combination of Lemmas 1, 2, and 3 the following re-
sult can be established.

RESULT 1. With C = maxi M/(µi − λ) and r(n) satisfying (17):

0 ≤ − ≤ =
∈
∑ ∑G G C nU

U
E

i i
i

U
U

π µn
n

0 5
~

∆ ,           (19)

where
~
E E E   for some iU U

i
U= ∈ − ∈n n e> C .

Particularly, it applies to any of the measures form (16) and
with the average response time of a job we obtain by Little’s
law:

0 ≤ − ≤W WU U∆
λ . (20)

REMARK. Note that the condition in Case 4 of (16) includes,
as a special case, any set E of the form E = {n|ni > ti
for 1 ≤ i ≤ N}. In other words, the error bound ∆U also
applies to arbitrary tail probabilities of the joint
population vector and, thus, also the detailed joint
probability distribution.

4 THE LOWER BOUND MODEL

Though relations (19) and (20) are of some practical interest,
as one can recursively solve the upper bound model, they
still contain the complication that this upper bound model
is infinite. In this section, we therefore also consider a third
but finite model. This model will not only provide lower
performance bounds on the performance of the original
fork and join queuing system, but also provide, in addition,
computational error bounds.

Similarly to the previous section, we define a new ap-
propriate state space partition for the original model as
follows:

E = E E E : n k k 0k
k 0

k 1
≥

= ∈ = ≥U n< A, ,

where Ek includes all the states with k jobs in the first
queue. Fig. 6 shows the state space partition on the state
transition diagram for the fork and join system with N = 2.

By rewriting the transition rate matrix Q according to
this new state space partition and by considering an appro-
priate state ordering, we obtain the structure shown in (5)
where Qk+1k = µ1I, for k ≥ 0, I denotes the identity matrix,

Q    for k 0kk+1 =

�

!

   

"

$

###
≥λ

0 1
0 1

L L
,

Qkk are identical for k ≥ 1 and Q00 = Q10 + Q11.
In order to define a new process having a QBD structure,

we define the following state space reduction EL of state
space E:

E E :  n U i NL
i i= ∈ ≤ ≤ ≤n , 2< A (21)

E E

E E    for k max U

and E k    for k 0

E E E    for k max U

L
k
L

k 0

k
L

k 2 i N i

k
L

L

k
L L

k 2 i N i

=

⊆ ≥

= ≥

= ∈ ∈ ≥

≥

≤ ≤

≤ ≤

U ,

: ,n n> C
where Ui are positive constant, 2 ≤ i ≤ N, and all the subsets

EL
k have identical cardinality .

Fig. 6. State transition diagram of a two-node heterogeneous fork and join system: second stage space partition.
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Therefore, the corresponding new transition rate matrix
QL has the QBD structure shown in Fig. 3, where A0 = QL

01,

A1 = QL
11, A Q2

L
kL

= =10 1µ I , for k ≥ 0, where each QL
kj is

derived by (1.1) through (1.3) from the corresponding sub-
matrix of Q by considering only the rows of states of EL

k

and the columns of states of EL
j, for k, j ≥ 0 except for the

diagonal elements in the diagonal submatrices QL
kk, k ≥ 0,

which are given by

q q,
L

,
L

E E Ek
L

k
L

k+1
L

n n n n
n

= − ′
′∈ −

∑
1 U U

.

The stationary solution of the new model, denoted by πL

is derived by the solution of linear system πLQL = 0 with

πL1 = 1 and is computed by applying the theorem. Note
that if the original system is stable, this also guarantees that
the stability condition of the new model is always verified.

4.1 Performance Indices
By using the matrix-geometric solution, we derive, as given
in Appendix A, the following expression for the average
number of jobs in the systems, denoted by LL:

L k UL

k=0

max U

L i i
E

L
E

n U
j 1;n U

i i

L
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1 i i
j i i

= +
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∈ ∈
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∃ ∝ =
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1

π πn n
n n

0 5 0 5max

max
max

+ − + −
�
��

�
��ρ

ρ
ρ ρ1

max U
i i

i i U1

1
11 1max 2 7 ,        (22)

where πL,0 denotes the probability subvector of πL corre-
sponding to subset  EL

0. Note that probabilities πL(n) in the
first summation of (22) belong to subvectors πL,k for 0 ≤ k ≤
(maxi Ui) − 1, and those in the second summation belong to
subvector πL,k with k = maxi Ui.

The throughputs of the new model, denoted by XL, can
be immediately computed by the job arrival rate λ and the
probability that a job is lost, denoted by Ploss, as follows:

XL = λ (1 − Ploss) (23)

where
P I Rloss L,0= − −π γ0 5 1 1 ,         (24)

where vector γ is defined as follows: γ(n) = 1 if ∃i : ni = Ui,
2 ≤ i ≤ N, γ(n) = 0 otherwise, for each n ∈ EU

0.

The derivation of (24) is given in Appendix A.
The mean job response time, WL, is given by the Little’s

theorem again as:
WL = LL/XL.             (25)

The new model is defined by the state space reduction
(21) by assuming a limited capacity Ui of queue length i, for
2 ≤ i ≤ N. The first service center, which has the slowest
service rate, has infinite queue length. Threshold Ui can be
defined as the maximum value such that Prob{ni > Ui} < ε,
1 ≤ i ≤ N, given ε > 0. From the system’s viewpoint, the new
model represents the following behavior: When any of the
queue lengths i, for 2 ≤ i ≤ N, reaches its maximum capacity,
i.e., ni = Ui , the job arrival process is “turned off” (or
blocked) until a departure occurs from server i. Because of
the exponential interarrival time distribution, we can also
assume that an arriving job that finds the system in a state
n with at least one full queue (2 ≤ i ≤ N), is not accepted by
the system and is lost.

Fig. 7 shows an example state diagram for this state
space reduction of a system with N = 2, U2 = 2.

Informally, since the new model has a lower effective arri-
val rate than the original system, due to the loss of jobs when
one of the queues is full, it provides a lower bound on the
average response time of a job in the fork and join system.

As in the previous section, we will again prove that the
proposed model provides performance bounds, in this case,
lower bounds, on a set of performance measures of the
original system. Moreover, we obtain an expression of the
bound width for the average performance indices.

4.2 Proof of Lower Bound
As before, first consider the discrete-time Markov process
obtained by uniformization of the continuous-time Markov
process.

For the reduction (21), Lemma 3 can still be applied and
leads to the following result in place of result 1 given by
(19), as derived in Appendix B.

RESULT 2. With C = maxi M/(µi - λ) and r(n) satisfying (17):

0 ≤ − ≤ + =
∈
∑G G C n C N EL

L L
L

E
L

L

π πn
n

0 5 4 9~
~

∆ ,    (26)

where
~
E E i :  2 i N,  n UL L

i i= ∈ ∃ ≤ ≤ =n> C
and π(

~
)EL  is the probability of subset 

~
EL .

Fig. 7. State transition diagram for reduction (21) with N = 2 and U2 = 2.
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In particular, it applies to any of the measures from (16)
and with the average response time of a job:

0 ≤ − ≤W WL L∆
λ .    (27)

Bound ∆L from (26) can be expressed as follows:
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for a given constant U1 > 0. The evaluation of this bound ∆L
can be performed by direct computation of the first sum-
mation and by using the following a priori bound for the
second summation:
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1 1
U

1
U

1
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1
U1 1 1 1 1U 1 1 11J L .  (28)

The derivation of (28) is given in Appendix C.

REMARK. (COMPUTATION OF BOUND). Note that the lower
bound solution with the explicit computation of
bound ∆L as per (28) can be used to derive both an
upper and a lower bound on the performance of the
fork and join model as by:

G   G  G  L L
L ≤ ≤ + ∆ .     (29)

As ∆L can be computed by a finite summation of terms
πL(n) up to the explicit error bound (28), the form (29) is
most appropriate for computational purposes.

5 SOLUTION ALGORITHM

The algorithm to evaluate the stationary joint queue length
probability and average performance indices of the fork
and join model can be summarized as follows, given the
approximation bound ε.

1)�Choose thresholds Uij and Ui in definitions (6) and
(21), 1 ≤ i, j ≤ N, as function of ε.

In case of definition (6), bounds Uij require the
computation of probabilities  Prob{ni − nj > Uij}, i.e.,
the joint distribution of queue lengths i and j, 1 ≤ i,
j ≤ N. This can be obtained by considering the isolated
fork and join system with only two service centers (i
and j) and by using the result by [7].

In case of definition (21), bounds Ui require the

computation of probabilities Prob{ni > Ui} which can
be easily calculated by considering the isolated serv-
ice center i which is an M/M/1 system with arrival
rate l and service rate µi, 2 ≤ i ≤ N. Therefore, one can

write U  where i i ii
= =logρ ε ρ λ µ .

2)�Define the reduced matrices QU and QL as given in
Section 3 and 4, respectively.

3)�Apply the matrix-geometric method ((3) and (4)) to
the QBD matrices QU and QL to compute steady-state
probability vectors πU and πL, respectively.

4)�Derive the average performance indices from (7), (8),
and (22)-(25), respectively.

The simple case of the two node fork and join system
shall serve as example of model solution. Let us apply the
state space reduction defined by (21) to the original state
space. Matrix QL has the QBD structure shown in Fig. 3
with kL = U2 and where submatrices are defined as de-
scribed in Section 4 as A2 = µ1 I3, and

A1

2

2

2

 =  

u
v

v
w

     
µ

… …
µ

µ

�

!

     

"

$

#####

A0 =  

0
0

0
0

   λ

1
1

1
… …

�

!

     

"

$

#####
with u = −(λ + µ1), v = −(λ + µ1 + µ2), w = −(µ1 + µ2), k ≥ 0.
All the submatrices are square of order U2 + 1.

Note that matrix A = A0 + A1 + A2 is the infinitesimal
generator of the M/M/1/U2 queue with parameters λ and
µ2, for which the steady-state solution x can be immediately
obtained under the stability condition, as observed in [17].
However, note that it is not even necessary to check the
stability condition, since this model has been proven to be a
lower bound for the original model and, hence, it is stable if
the original model is stable.

Moreover, bound ∆L on the difference between the lower
bound and the original model can be evaluated by using
(28), so also providing an upper bound on the original fork-
join model.

5.1 Computational Complexity
The computational complexity of the proposed method is
strictly related to the dimension of submatrices Ai (0 ≤ i ≤ 2)
and B which are square matrices of order a, where a =
kU and a = kL for the upper and lower bound model,
respectively.

In order to compute steady-state probability π, we have
to compute matrix R through the iterative approach (4)
with a computational cost estimated as O(m a3), where m is
the number of required iterations. Once matrix R has been
obtained, probability subvectors π0  is computed by solving
linear system (3), which requires a computational cost of
O(a3). Finally, probability subvector πi, i > 1, can be recur-

sively computed as πi = πi−1 R, whose complexity is O(a2).
Therefore, the overall computational cost can be estimated
as O(m a3).

In conclusion, the computational cost of the method is
related to the dimension a of the submatrices, which can be
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determined as a function of system parameters as the num-
ber of service centers N and the required approximation
bound ε. For instance, in the case of N = 2 service centers
for the upper and lower state space reduction, respectively,
we find a = U12 + U21 + 1, b ≤ (kU)2, and a = U2 + 1. For the
general fork and join system with N > 2, it can be proven
that the computational complexity is low polynomial with
Ui and Uij for the two models, but combinatorial in the
number of servers.

6 NUMERICAL RESULTS

In this section, we present some numerical examples to
show the effectiveness of the proposed method in the
evaluation of the bounds on the stationary probability dis-
tribution of system state and average performance indices.

We consider both homogeneous and heterogeneous fork
and join systems. We assume for each numerical example
the arrival rate λ = 1.

The first example is a homogeneous fork and join model
with two servers. Since both the joint queue length prob-
ability distribution and the mean response time of this
model can be exactly computed [7], [15], then it is possible
to test the accuracy of the proposed method.

We consider the system utilization ρ varying from 0.1 to
0.9, which corresponds to various values of the service rates
of the two servers. Table 1 shows the average job response
time for various values of thresholds U1, U12, and U21. The

table contains the exact values, the lower bound (LB), and
the upper (UB) bound on the average job response time.
The first two thresholds U12 and U21 for the upper bound
model have been calculated by assuming ε = 0.5 10−2, while
threshold U1 for the lower bound model is obtained by  ε =
10−2. Note that for this homogeneous model U12 = U21. Ta-
ble 1 shows the difference between the upper and the lower
bounds and the percentage error, which is defined as follows:

max
Exact LB

Exact
,

UB Exact
Exact

  100%
− −%&'

()*
We observe that the bounds are very tight.

To test the accuracy of the method in the evaluation of
joint queues length probability distribution, we calculated
for the upper, lower, and exact model, and, for each value
of ρ, the steady-state probability on a subset Z of state space
such that it guarantees that the following conditions hold:

π L 1 2
n n Z

n n
1 2

, .
,

2 7
2 7∈

∑ ≥ 0 99                            (30)

π U 1 2
n n Z

n n
1 2

, .
,

2 7
2 7∈

∑ ≥ 0 99            (31)

π n n1 2
n n Z1 2

, .
,

2 7
2 7∈

∑ ≥ 0 99 .            (32)

Experimental results can be summarized as follows:

TABLE 1
HOMOGENEOUS TWO SERVERS MODEL: FIRST SET OF EXPERIMENTS

TABLE 2
HOMOGENEOUS TWO SERVERS MODEL, FIRST SET OF EXPERIMENTS:

LOWER BOUND APPROXIMATION FOR STATE (0, 0)
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The maximum discrepancy between exact and approxi-
mate results has been observed for state (0, 0) for the lower
bound model and for each value of ρ. For the upper bound
model, the maximum difference between exact and ap-
proximate results has been observed for states (0, U12 ) and
(U21, 0). These results are perfectly consistent with respect
to the definition of the two approximate models. The most
significant approximation errors have been observed for
state (0, 0) and are presented in Table 2 for various values of
system utilization.

In order to illustrate the trade-off between computational
cost and accuracy of the proposed method to obtain the two
bounds, we have solved the homogeneous fork and join
model by varying thresholds U1, U12, and U21. Threshold U1
has been calculated by assuming ε = 10−3, while U12 and U21
have been calculated by assuming ε = 0.5 10−3. Numerical
results for the joint queue length distribution are shown in
Table 3, for various values of system utilization ρ, by consid-
ering conditions (30), (31), and (32). Similar to the first set of
experiments, the maximum percentage error has been ob-
served for state (0, 0) for the lower bound model and for
states (0, U12) and (U21, 0) for the upper bound model. The
maximum percentage error has been observed for state (0,
U12) and (U21, 0). Numerical results are shown in Table 4.

By comparing Tables 1 and 2 with Tables 3 and 4, re-
spectively, we observe how the improvement of the ap-
proximation accuracy affects both the computational cost,

which is related to thresholds U1 and U12, and the percent-
age error. Like the previous case, we observe the most sig-
nificant approximation error for state (0, 0).

The second example is a fork and join model with two het-
erogeneous servers. We consider system utilization ρ = λ/µ1
varying from 0.1 to 0.9. For this model, the joint queue length
distribution can be exactly computed [7], while there are no
exact results for the mean job response time. The presented
numerical examples allow us to make the following observa-
tions: First, we compare the bounds obtained by the proposed
method with those obtained by applying the bounding tech-
nique proposed in [1] in terms of spread of bounds of the job
mean response time. Then, we study how the service rate of
the second server affects the spread of bounds (note that by
assumption µ1 ≤ µ2). To this end, we have performed, for each
different value of ρ, three experiments varying the service
rate of the second server as follows: µ2 = 1.5µ1, µ2 = 2.0µ1,
and µ2 = 3.0µ1. Table 5 shows the numerical results for the
combination of service rate values. For each utilization ρ, we
consider the thresholds already determined for the first set of
experiments of the homogeneous model.

Table 5 shows the results obtained by the lower (LB) and
upper bound (UB) of the proposed method and the bounds
proposed by Baccelli and Makowski in [1], which are
shown in column 6 (BM-LB) and 7 (BM-UB).

We observe that the proposed method provides tighter
bounds than those obtained with the technique proposed in

TABLE 3
HOMOGENEOUS TWO SERVERS MODEL: SECOND SET OF EXPERIMENTS

TABLE 4
HOMOGENEOUS TWO SERVERS MODEL, SECOND SET OF EXPERIMENTS:

LOWER BOUND APPROXIMATION FOR STATE (0, 0)
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[1]. In particular, the approximation accuracy of the ap-
proach proposed in this paper is very good, even for high
system utilization (i.e., ρ → 1). On the other hand, the com-
putational cost of the method proposed in [1] is negligible
with respect to that characterizing the method proposed in
this paper. However, note that the proposed method pro-
vides both the average job response time and the joint
queue length distribution.

In order to illustrate the trade-off between computa-
tional cost and accuracy of the bounds, we analyze the het-
erogeneous fork and join model by varying thresholds U1,

U12, and U21. U1 has been calculated by assuming ε = 10−3,

while U12 and U21 with ε = 0.5 10−3. Table 6 shows the nu-
merical results of the proposed bounds for various combi-
nations of service rates.

The joint queue length probability distribution has been
evaluated for this heterogeneous model and the experi-
mental results confirm the behavior observed for the ho-
mogeneous model.

Finally, the third set of experiments is a fork and join
model with three homogeneous servers. System utilization
ρ = λ/µ1 varies from 0.1 to 0.8. To the best of our knowledge,
no exact method has been proposed for this model to
evaluate the stationary state probability distribution, while
there are several methods to calculate approximate job
mean response time. We compare our bounds on the mean
job response time with those obtained by the recently pro-
posed method by Varma and Makowski [18].

Table 7 shows the numerical results for various values of
system utilization. The table includes the average job re-
sponse time obtained by the lower (LB), the upper bound
(UB), and the approximation proposed in [18] (VM-APP),

TABLE 5
HETEROGENEOUS TWO SERVERS MODEL: BOUND COMPARISON
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and the spread of bounds. Note that the bounds proposed
in [18] provide results at a negligible computational cost,
but only for homogeneous systems and the method does
not provide the joint queue length probability distribution.
For this set of experiments, we observe a very good accu-
racy of the proposed method. Note that, for high utilization,
the results can be improved by choosing larger values of
parameters Ui and Uij in order to obtain higher accuracy.

7 CONCLUSIONS

An algorithmic approach for the performance evaluation of
a fork and join system with synchronization has been pre-
sented based on two models which provide upper and
lower bounds on the system performance. The solution
model is given in terms of steady-state joint queue length
probability distributions from which other performance
indices, such as synchronization delay, job, and task re-
sponse time, can be derived. The proposed algorithm
shows a low polynomial computational complexity. The
two models have been proved to provide lower and upper
bounds on the system performance. Moreover, computation
error bounds have been derived.

A number of extensions seem possible, such as to job and
task response time probability distributions and other syn-
chronization conditions for parallel processors.

APPENDIX A
Performance Indices of the Upper Bound Model
The average number of jobs in the upper bound model is
defined as follows:
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where vector α has the same number of components as
vector πU,0 and is defined as follows:

α n n0 5 = ∈
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0
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Un       for each E .

We assume the same state ordering within each subset
EU

k, k ≥ 0. Note that subvector πU,0 is obtained by the solu-
tion of linear system (3.2) for the upper bound model.

Performance Indices of the Lower Bound Model
The average number of jobs in the lower bound model is
defined as follows:
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The first and the second summations include only ele-
ments of the subvectors πL,k for k = 0, …, maxi Ui − 1, each
corresponding to a subset EL

k. The fourth summation in
expression (A.1) can be rewritten as follows:

k
k>max U

L
E

n k
i i k

L

1

∑ ∑
∈

=

π n
n

0 5 ,              (A.2)

where the internal summation is the marginal probabil-
ity of k tasks in node 1 and it can be easily computed by

TABLE 6
HETEROGENEOUS TWO SERVERS MODEL:

SECOND SET OF EXPERIMENTS
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the M/M/1 queue length distribution with arrival rate
λ(1 − Ploss), where Ploss denotes the probability that a job is lost,
and service rate µ1. Let ρ1 = λ(1 − Ploss)/µ1. Hence, the third
and fourth summations in (A.1) can be rewritten as follows:

ρ
ρ

ρ ρ1
1

1
11 1max maxi iU

i iU− + −
�
��

�
��2 7

which, by substitution in (A.1), leads to (22).
Therefore the computation of LL only requires the first

maxi Ui  subvectors πL,k from πL,0.
The probability Ploss that a job is lost is defined as follows:

P

R I R

loss L
E

i : 2 i N, n U

L
E

n k, i : 2 i N, n U
k=0

L i : 2 i N, n U
Ek=0

L,k
k=0

L,0
k

k=0
L,0

L

i i

L

i i

i i
k
L

=

=

=

=

=
�
��

�
�� = −

∈
∃ ≤ ≤ =

∈
= ∃ ≤ ≤ =

∞

∃ ≤ ≤ =
∈

∞

∞

∞
−

∑

∑∑

∑∑

∑

∑

π

π

π

π γ

π γ π γ

n

n

n

1 1

n

n

n

0 5

0 5

0 5

0 5

< A

1

1

1 ,

where vector γ is defined as follows:

γ (n) = 1 {∃i : ni = Ui , 2 ≤ i ≤ N}

for each n ∈ EU
0, which is the indicator function that at least

one queue i, 2 ≤ i ≤ N, is full. We assume the same state order-
ing within each subset EL

k, k ≥ 0. And this completes the proof.

APPENDIX B
Proof of Lemma 1
PROOF. By using the second relation from (11) and the fact

that PU remains restricted to EU which is a subset of E,

for arbitrary state n ∈ EU we can write:

V V P V P V

P P V P V V

U
t t

U U
t t

U
t

U U
t t

− = −

= − + −

=

− −

− − −

4 90 5 4 90 5
2 7 0 5 4 90 5

n n

n n

1 1

1 1 1

K

= − − −
−

∑ P P P VU
k

U
t k

k=0

t

2 7 0 51
1

n       (A.3)

where the latter equality follows by iteration and
the fact that V0(.) = VU

0(.) = 0.
Further, by substituting (9) and (10) and h = M−1,

for any s, we have for n ∈ EU:
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Now, by choosing π0(.) = πU
0(.) = πU(.), the steady

state distribution of the reduced model, in order to
apply (12). Then, by substituting (13) and (A.4) and
since the transition matrix PU leaves its steady state
distribution unchanged, we obtain from (A.3):
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Substituting h = M−1 and employing (12) completes
the proof. o

Proof of Lemma 2
PROOF. Directly, by substituting (A.4) in (A.3) and observing

that the matrix PU is nonnegative so that PU g ≥ 0 if
g ≥ 0 componentwise. o

TABLE 7
HOMOGENEOUS THREE SERVERS MODEL
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Proof of Lemma 3
PROOF. The proof will follow by induction in t. Clearly, (18)

holds for t = 0 as V0(.) = 0. Suppose that (18) holds for
t = k. Then, for t = k + 1, we obtain by applying (14) in
state n + ei and n:
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Here, it is noted that the term with coefficient
1 0{ }ni =  is indeed equal to 0. This term, however, is kept

in for clarification of an argument below. First, by
substitution of the lower limit r(n + ei) − r(n) ≥ 0 in

addition to the induction hypothesis Vk(n + ei) − Vk(n)

≥ 0 for all i, one directly verifies Vk+1(n + ei) − Vk+1(n)

≥ 0. Next, by substituting the upper limit r(n + ei) −
r(n) ≥ 1 in addition to the induction hypothesis Vk(n +

ei) − Vk(n) ≤ (ni +1) C, by noting that all coefficients
sum up to 1 (recall that they represent transition
probabilities) and by substituting C ≥ 1/h(µi − λ), we
obtain:
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o

Proof of Result 2
PROOF. For reduction (21), all the steps performed for the

upper bound model remain identical. In particular, let
PL denote the uniformized Markov one-step transition
matrices corresponding to the continuous time proc-
ess matrix QL. Lemma 3 can be applied up to relation
(A.4). In this case, the reduction (PL matrix) would
lead to
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By (18), we can conclude:
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so that (19) here becomes:
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where 
~

{ |E E U  for some i}L L
i= ∈ =n n . This proves

(26). o

Proof of (27)

PROOF. To prove (27), first note that, clearly, λL ≤ λ. Τhis can
be proven either similarly to Lemma 2 and a lower
estimate or as in (18) of Lemma 3 by using
r( ) = 1{n U  for some i}i i

n ≥  or by using sample path argu-

ments. By Little’s law, furthermore ,we have

WL = LL/λL W = L/λ.
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Hence, by applying (26) with GL = LL and G= L, we
obtain

WL = LL/λL ≤ LL/λ ≤ L/λ = W

and

WL = LL/λL ≥ [L − ∆L]/λL ≥ [L − ∆L]/λ ≥ W − ∆/λ

from which (27) follows. o

APPENDIX C
Derivation of (28)
In order to derive (28), we consider bounds on the probabil-
ity πL based on a system which is obtained by the original
system by considering batch arrivals and without the fork
and join nodes. Let π2 denote the probability of this batch
arrival system on state space E2

 superset of EL and let P2
denote the uniformized Markov one-step transition matri-
ces corresponding to the continuous time process matrix
Q2. We prove the following lemma.

LEMMA A.1. For any g ∈ M = {g : E2 → R|g(n + ei) − g(n) ≥ 0
for all i = 1, …, N}:

π πL g gn n n n
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In order to prove Lemma A.1, we prove some preliminary
results.

LEMMA A.2. For any g P g( ) P g( )L
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PROOF. By induction in k. For k = 0, it holds as
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Assume it holds for k = t. Then,
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Further, for any f ∈ M, we have:
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The proof is thus completed by induction to t and
Lemma A.3 below. o

LEMMA A.3. For any

f P f2
t∈ ∈M M: .          (A.7)

PROOF. Let f ∈ M. Then,
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Here, the latter inequality follows by using that
f ∈ M. Hence, we have shown (A.7) for t = 1 by

P  f2 ∈ M . (A.8)

for any f ∈ M. Now, for t > 1, we proceed by induction
as follows: Suppose that (A.7) holds for t = k. Then,
for t = k + 1, we have: P f = P P f)2

t+1
2 2

t( ∈ M  as per in-
duction hypothesis and (A.8). The induction com-
pletes the proof. o

COROLLARY A.1. With ρ λ µ1 1 1= < :
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PROOF. First, by taking n = (0, …, 0) and k → ∞ in Lemma A.1,
we get

π πL g gn n n n
n n

0 5 0 5 0 5 0 5∑ ∑≤ 2 (A.11)

for any g ∈ M. Now, take
g for A.9

g n for A.10
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to prove the first inequalities. To prove the second
inequalities in (A.9) and (A.10), note that the sum-
mation in (A.11) is over all states n, while the func-
tion g as per (A.12) only concerns component ni. We
are thus calculating the expected values of the func-
tion g for just the first queue. This is clearly equal to
just that of an isolated M/M/1 queue, as there is no
other dependence between the queues than by a
common arrival. o
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