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Ayao OKIJI

Institute for Solid State Physics
University of Tokyo, Azabu, Tokyo

(Received June 9, 1966)

Higher order corrections to the binding energy of the singlet bound state obtained by
Yosida for the case of an antiferromagnetic s5-d exchange interaction are calculated. Tt is
found that higher order terms up to the sixth order in J increase the binding energy and
consequently that the stability of singlet bound state is increased

§ 1. Introduction

The system considered in this paper consists of the conduction electrons
which couple with a localized spin by the s-d exchange interaction. In this
system it has been shown that when the interaction is antiferromagnetic, the
usual perturbation expansion for physical quantities such as the scattering am-
plitude® and the magnitude of the localized spin® loses its meaning below a
critical temperature, Many investigations have been made to explain the origin
of these anomalies.n"? .

In view of this situation, Yosida has recently shown that a singlet bound
state is realized for the case of an antiferromagnetic exchange interaction,” and
concluded that the usual perturbation method breaks down for this reason. In
his theory he starts with the state of a free electron gas in which one electron
is excited above the Fermi sea and treats the effect of the s-d exchange inter-
action of the conduction electrons with a localized spin whose magnitude is one
half by a generalized perturbation method. In the zeroth approximation of this
theory the localized spin couples with an electron excited above the Fermi level
by the s-d exchange interaction and makes a singlet bound state. In the first
approximation which takes into account the effect of an excited electron-hole
pair, this singlet bound state still survives for the case of antiferromagnetic
interaction, From this calculation he concluded that the unphysical results
obtained by the usual perturbation method which starts from the degenerate
localized spin states originate in the fact that it disregards the existence of the
singlet bound state.

However, it is not clear whether the singlet bound state obtained in the
first approximation remains unchanged even when the approximation proceeds
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Bound State due to the s-d Exchange Interaction 713

up to higher order. The purpose of this paper is to calculate the higher-order
effects and to confirm the above conclusion obtained by Yosida.

)

§ 2. The method

The Hamiltonian of the system consisting of the conduction electrons and
a localized spin situated at the origin is given by

J E{(aﬁ‘fTaH ”‘(l+\ (l/ci)S7+Cl,'j§¢Cl/c1 S_‘f‘d,éii aerr}; (1)

H=> ¢, ai a,—
%EJ TR 2 N ki7

where a;f and a,, are creation and annihilation operators of a conduction elec-
tron with wave vector % and spin 0, g is its band energy measured from the
Fermi energy, S, and S, are the components of the localized spin and .J is the
coupling constant.

We expand the ground state wave function in the following’ series according
to Yosida:
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where ¢, denotes the wave function for the Fermi sea and « and f# mean up
and down spin states for the localized spin, respectively, Henceforth we re-
present the indexes %; by 7.

Then, the Schrédinger equation can be written as follows :

[Zl](el"“E) {Flaal*l “‘Frlﬂal*r B}

+2(81+52_53“‘E) {rllzg aj*i Cli as, a-+1I%; dﬁ? aé} asy B

123

P k % sk 3
‘I—]—‘fzg ayy Ay (lg'raf—"rﬁg 611‘1 ang aslﬁ}

+ Z (81+82+53°‘€4_€5—E) {]—'fgh% al*l G,SKL Cl,fi aua“a

12345

+ 354 CZI*J, Cl_;kl asty Ay, Az K

220z Isnbny g1 uo Jasn aoysnr Jo Juswpedad "S'N Aq Zy66061/2 1 L/F/9€/e10ne/d)d/wod dnooiwepese)/:sdjy woly papeojumod



714 A, Okiji
* %
+r1dfz§4g duélﬂa::kr Ay A5y X
+Fg§4g ayy axr Agy duas'rﬁ
Jfrmu, an(lﬂauauaalﬁ

_I_]—'g‘]iié a]*T Ay Ag| Ay A5 .8}’

U%{;rﬂa;la 231 aua}er Cahfah =221 ak B

ZIN g{rlﬂ awa I aﬁa—ri‘zg a;klaf+2rie~z% a;kl at
Z

Z{rms azTB 123 Clmﬁ 12‘; 61273‘*“2[’121 amﬁ}
4N 123

J 1 "
*Z—I_Zm{rl“afﬁ (@) asr —aif, as,) a -+ 2I'Y° afy af, as, af

72{ Fl am (a”am—a§¢a3¢)3+2r1“af¢a§<?as¢ B}

AN
. d el g F * ib ¥ * 1] % %
“Z’\’ﬁg{“‘ 125 A5, Az Ay, X+ war, as,an, a+'bar, alag
* *
—2I'% auéluaua}
J ']WT * '* ]"JT * >I< t % *
ZIZ_V;*{ 193 A2, Azr Agr O — mamauaua+r123dmasra4¢a
3
* ¥ * x %
+2]—,fz§ azT(lgTCL;la'_'Zr]ﬂQ; (11*T agTa”CK—er’g% cl”ama”a}
J

N1§{ r123 (lzTlemamB‘*‘rug amaﬂaﬂﬁ-krm alTaZTaMB

%k *
— 215 alrdsTauB} o

Z{rma (11¢615¢614TB ]_'123 auanau .8+F113 awauau.g

4N1234
. % x ® %
+2]—']‘2§ Cli asz | amﬁ"'zrﬁg (11*¢ (lslauﬁ_grﬁ; ai, Cluauﬁ}
J I * * % * %
7]?1;{ 1234.;(a1¢a3ia5i+a1ialla4l Ay Az, Ay — A1y Ay A
345

+a;¢ az, Ay, —a arﬁ abl)a——r‘lzﬂzg afk¢ a, a;, &

+ 244 (d;:i a:;ki as, —day, as, au)a}

muzm{rnm (au a:m sy — Clz*J, aiy asy) &

+ ' (@, @it agy +ai, ads asy — alfy &3y ay —alf ady asp) @

220z Isnbny g1 uo Jasn aoysnr Jo Juswipedad "S'N Aq Zy66061/2 1 L/F/9€/o10Me/d)d/wod dnooiwepese)/:sdiy woly papeojumod



Bound State due to the s-d Exchange Interaction - 715
+2]—'11345 (cl” agi a41‘ "“'azT a,_;l (l”)af}

* %
4#2{]112340 (Cl11 daT as ¢ +d1T aQT Ay —le azT aﬂ ayr gy gy

4N 1235

‘Fdfy a3*1‘ 447*61;{? a:;k'r 457)8“[’@;4% 611*1 aéﬁ 4413
+ 20550 (afs a3 as, — a3 aiy au‘)@}

J

N1§O{FJz34o (Clu au as, "ler au Clu)ﬁ

. +vr182§45i‘(611*1 613*¢ ay | +41*T a;ki as _Cl1*7 a;(l ay, ’“afkr dgkl aﬁj,)ﬁ

+ 21 s (al*l a:;km as, ”‘ai aé"T au){a’}

J

. Z{[’usdwduau(anam aiyas,)a

AN i
+ '35 al'y af, asy (afy asy —aif, as)) @
+2Fﬁ§ ai'} aé‘b} asy d;fayr a+2]—'ﬁ% aﬁ aS"T as, aﬁ 6151@}

J
AN 1§5

{~Fﬁ§ 611*¢ d;FT aszs (afT st ——a:ﬂ aN)B

*rﬁ»% ai Cl;kr as, (a:ﬁf 423 _a;‘z au)B
+2F(117§ au awau a47a5¢3+2rf2$ d;k'r az*i a“af} a5¢8}'.
T =0. 3

Here, the terms of the expansion needed up to the third approximation have
been written down. From this expression, we can easily obtain the following
simultaneous equations which determine the energy eigenvalue and I, Iy -,
etc.:
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In the above expressions, we use abbreviation symbols such that [}y
means [, 5— 145 The suffixes attached to I, 1 and 2 on the left side of the
comma and 3 on the right side of the comma represent, respectively, the wave
vector of the electron and the hole.

§ 3. The solution to the secular equation

First we shall explain the process of solving the somewhat complicated
secular equation given by the ‘series Egs. (4) to (15). For simplicity, we
represent /', , or the sum of I, , by 7, and (e,+¢&+ - —¢e,—E) by (n). Then
we can write down Egs. (4) to (15) symbolically as follows :

(L) I=JI+JT, (16)
(3) [y=Jl+Jls+ I, 17)
(5) T=dJI3+JI5+JI7, \ (18)
(V) I;=- -etc.

Putting Egs. (17), (18), etc., into Eq. (16) successively, we can climinate 7,
[, ete., from Eq. (16) and obtain the {ollowing expression :

W neanes oo D w (AL )
3) 3) 3 GGG GGG
J5< M 27 ) I >+J6(_“).
) (5) 3) (3) 5) 3) ¥ (3) (3) (3)(3) 3 (19)

As is seen in Eq. (19), there are two kinds of processes in fourth order in J
and three kinds of processes in fifth order in J, etc. The calculations are
carricd out up to fifth order in J. However, in order to avoid lengthy expres-
sions, we write down here only the expression up to fourth order in J:
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. , ,
S —7rx—-8rf—er”
(pt+e—e—E) (71 ! €

1 |
] — 42T 1% + 407 ] 20

(ertei—e—E) ( ! ' ' )f | (20)
The terms proportional to /7 on the right-hand side of Eq. (20) can be regarded
as the energy shift of the band energy ¢, and this gives no essential effect on
the result, as has been discussed in reference 3).

For the singlet state (I*= —1I37), we write Eq. (20) in the form

J 1
re=-3? L (Gt : 21
=80t GHE) (21)
| Whvebre
it
The higher order terms in J are included in /(). Then we insert Eq. 21

into Eq. (20). Neglecting the energy shift, we can write down Eq. (20) up
to fourth order in J as follows :

D D Do .
J 1 oJ\? —3 '
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00

D
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DDDo :
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+SSSS » deyde,de,de
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DD o )
15
+SSS S o BN (AN e s e o dede dezdg] )
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(22)
There is no contribution to Eq. (22) from f(¢) in Eq. (21) up to fourth order
in J but the contribution of £(e) (i.e. the contribution of the second iteration)
appears at the fifth order in J. Here we assume a constant state density p,
and take 2D as the band width. Considering the above equation up to third
order in J, we obtain Yosida’s result® The integrals for the fourth order in
J are evaluated in the Appendix. In Eq. (22) the second integral of the fourth
order in J gives a logarithmic term of lower order and a regular term. Thus,
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720 A. Okiji

by retaining the logarithmic terms of the highest order, Eq. (22) is reduced
to :

1=3x+32*+ 62,
where x means (pJ/4N) log|E/D|. The solution to this equation is
2, =0.295.

The calculation for the fifth order in J becomes somewhat complicated but
is similar to that for the fourth order in J. In this order there appear many
terms which do not contribute to the logarithmic terms in the highest order.
The result reduces to '

5 5

The first and second terms in the above expression correspond to 17/ (5) (3) (3)
and I3/(3) (3) (8) in the symbolical equation (19), respectively. 1t should be
noted here that there is another contribution to this order in J, which arises
from the second iteration. This contribution which has been calculated by
Yosida (see Eq. (31) of reference 3)), amounts to + (18/5)4°. Thus the total
contribution to the terms of fifth order in J is obtained as --18%°. Taking
into account this term, we obtain the root of .the polynomial with respect to
x, &, as follows:

Ty = 0.286.

For the terms of sixth order in J the calculations become complicated but
in principle they are similar to those of lower order in J. Therefore, we show
only the final result,

+ <f4~+—29.+168+ s >x6: + 545",
5 5 5 5
The first, second and third terms in this expression correspond to I/ (5) (5)
3) @3, I/ (B) (3)(3) (B) and I1/(3) (3) (3) (8) in Eq. (19), respectively and the
last term comes from the second iteration in Eq. (20).
Thus, the secular equation for the singlet state up to sixth order in J

becomes
1=3x+32"+ 6"+ 18"+ 542°, (23)
the solution to which is obtained as
, pJ | E | .
=0.280 or “log = [=1.12. 24
g N gﬁ ) (24)

It should be noted that since each coefficient of x" has a plus sign, the value

of x, decreases as one goes to higher approximations. This means that the singlet
bound state becomes more stable as a result of the higher order corrections.
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Therefore, we may consider that the excited electron-hole pairs give an effect
favorable to the singlet bound state which has been obtained in the zero-
approximation,

For the case of a ferromagnetic interaction (/7,*=173?), the calculations are
similar to those for the antiferromagnetic interaction. Omitting details of the
calculations, we give the final result below. ‘

5 10 ., 14

l=—x+ T2+ a2+ -——z°+ 62 (25)
3 3 3 9
In the zeroth approximation, the solution x,= —1 is obtained. However, up to

x° there is no solution for negative values of x.® This situation is repeated
up to z° That is, il we take into account thc x*! term, there is a solution
for negative values of z but there is no solution when we take into account
the z° term, In this situation it is natural to conclude that there is no bound
state for the case of a ferromagnetic interaction.

In the above calculations we omitted the self-energy parts. These are the
terms proportional to I} on the righthand side of Eq. (20). They can be
written up to third order in J as

J N\ 6 «
(N Bera ™

J N —12 —12
+ <4~> { +— — m»}r“
4N 128] (otei—e—E) (g te—e—E) (et e—e—FK) (gete—e—E)) ©

As can be easily seen, the parts, 4E, which are independent of ¢, and E, namely
the expression obtained by putting ¢,=0 and E=0 in the above expression,
can be included in E on the left-hand side of Eq. (20). (The parts dependent
on ¢, may be renormalizable in ¢, itself.) The expressions for 4E are obviously
equal to the free energy shift obtained by the usual perturbation method for
the normal state. Similarly, we can show that the expression for 4E obtained
for the [ourth order term in J is the same as that {or the fourth order energy
shift calculated by the normal perturbation approach,” as far as the energy shift
which should be included in £ on the left-hand side of Eq. (20) is concerned.

Finally we add one result obtained {or the case of a localized spin S which
is greater than one half, although we do not enter into details. The calculation
for the case in which one conduction electron spin is trapped by the localized
spin S, can be carried out by a simple extension of the present calculation. The
result obtained up to the ffth order in J for the case of antifenromagn&ic in-
teraction is

1=(+1D)22—-1/3(S+1) (S*—1) Cx)’—-1/3(S+1) (S*—1) Cx)*
+(1/30)(S+1) (25*—3) (25*—5) (Lx)’.
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In the limiting case where S—>00, J—0 and J-S=constant, the equation becomes
C 1=2Sz— (1/3) (2S2)°+ (2/15) (2Sz) —

If we notice that the right-hand side of this expression coincides with the ex-
pansion of tanh(2Sz) with respect to 2S5z, it may be written

1 =tanh (252) .

Therefore in this limiting case no bound state appears, as we should expect.
This result can be considered as a partial justification of our treatment of the
present problem.

§ 4. Summary and conclusion

As the zeroth approximation, we have considered the state in which an
electron excited above the Fermi sea couples with a localized spin (of magnitude
one half) by the s-d exchange interaction. Then, we take into account the
effect of excited electron-hole pairs by a generalized perturbation method. These
calculations have been carried out up to the fourth’ approximation. The results
are as follows: o

1) For the case of an antiferromagnetic exchange interaction there appears
a singlet bound state which is formed by the localized spin and the conduction
electrons. Its binding energy is given by D exp(—1.12:- N/p|J|) in the h1ghest
approximation made in this paper.

2)  For the case of a ferromagnetic interaction, ‘the bound state which
appeared in the zeroth approximation vanishes in approximations up to odd
powers of x but reappears in approximations up to even powers of x. In this
sense, the bound state is unstable and it seems to be plausible that there is no
bound state for the ferromagnetic interaction.

The results obtained here strongly support the conclusion derived by
Yosida that for the case of antiferromagnetic interaction the ground state of
the system is a singlet bound state and that the unphysical results obtained by
the usual perturbation method which starts from degenerate localized spin states
originate in the fact that it disregards the existence of the singlet bound state.
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Appendix

For the fourth order in J, we must calculate the following three kinds of
integrals. The first is
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Do 0

i

In the above integral we can easily integrate the factors (8k+€1*‘82 E)™! and
(ex+ei—es—E) ™ with respect to ¢ and &:

S : - 1 dekd€1d€2d€3 . (Al)
J (= E) (&—E) (gtea—a—E) (gptea—e—E)

D

0
ekf&el E (AZ)
e,c+al+D E

[ J._ﬁ derm—log
(e,ﬂrs1 —F)

‘This can be approximated by

_ log' %tl%:ﬁ ’ _ - (A3)

The difference between (A2) and (A3) gives logarithmic terms of lower order
and regular terms in the result. Thus, the essential part of (Al) becomes

DD

Nermam 5"

— | dey, d€1 (A4)

00

In the next step we write the integrand as follows :
1 log ! 1 -
( E) (51 E) (81c E) (Ek—l_el ZE)
_ 2 - E" } 2
=1q- +— —lo
{(Ek F) (5/.:"'51 E) (IG_E)E (epte—E) &

2

e,c—l-e1

e,c+€1_) \

Gpte— K ’

Neglecting the second term in the curly brackets for the same reason as stated
above, we can integrate (A4) as

D

_—S 777277 1 logs
g 3 (Ek—E)

Er—

) dey,.

Thus, we get % log*|E/D| as the essential term. Here we have used the fact
that E is negative. _
The second integral is calculated in a similar way :

DD DO

Sggg (ei—E) (es—E) (Ek+€1i82 E) O —" dekd€1d52d€3

000—-D

i bt O I de,de,de,
D

;_Sogg (e —E) (&— E)1(8k+83—e2—E) o

2 (—E) (e E) & D

S 1. I o Gte—E /dekdesgilogJ £
12 % D |
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The last one is

Do

YDD
1
N deyde,de,de, .
ogogog (o~E) (&—E) (s +6—6,—E) (sl—i— TRy

This integral has no log*/E/D| term.
For the fifth order in J, there are many types of integral. We choose
the following two integrals as examples :

DDD
\ 1 .
§§§§ng(ek—E) (bl—E) (€k+81—ug—F) (u/c“*‘&‘c - E) (Vk+b1+83 _‘EdiE)
’ X dedede,de.de,

D

-

0 0 1
gg(k E)(Ex E)(5k+€1_5) E)(v/c‘Fw‘“& E)

00 ~-D—-D
x log Geta—g—e—k | depdede,de,
D |
D Do
Sgg 1 i { 1 1ng\ €k+81~84 E ~
0, 6B @B (ere—e~E) L2 0 D |

DD
1 1 gt —E | 1 E |
=\ T _og® P de,de, = — - log® H
gg 3 () -E) 5 D ? WETT 5 % D
DDDO ¢
1) | l
i6dZpip (Ek E) (83 E) <8k+51*89 F) (55:‘{‘83 F) (8k+83 E)
X dey, de, dey dey de,
D Do 2 ‘ | '
;SSS b oy &8 klog etk |
J97 (e E) (es—E) (Ee+—er—E) 1 D D 1
. X dey de, des
D D .
;—SS L1 logt| Geta—E dedei= - L Bl
2 (es—E) (es—E) i D 20 D

Other terms of this order and sixth-order terms can be calculated in a
similar way but the calculations are somewhat complicated.
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