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Bound states at impurities as a probe of topological superconductivity in nanowires
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Spin-orbit coupled superconductors are interesting candidates for realizing topological and potentially non-
Abelian states with Majorana fermions. We argue that time-reversal broken spin-orbit coupled superconductors
generically can be characterized as having subgap states that are bound to localized nonmagnetic impurities.
Such bound states, which are referred to as the Shiba states, can be detected as sharp resonances in the tunneling
spectrum of the spin-orbit coupled superconductors. The Shiba state resonance can be tuned using a gate voltage
or a magnetic field from being at the edge of the gap at zero magnetic fields to crossing zero energy when the
Zeeman splitting is tuned into the topological superconducting regime. The zero-crossing signifies a fermion
parity changing first-order quantum phase transition, which is characterized by a Pfaffian topological invariant.
These zero crossings of the impurity level can be used to locally characterize the topological superconducting
state in topological nanowires from tunneling experiments.

DOI: 10.1103/PhysRevB.88.205402 PACS number(s): 74.78.Na, 73.20.Hb, 73.21.Hb, 74.25.fc

I. INTRODUCTION

Majorana fermions (MF) have been the subject of intense
recent studies, both due to their fundamental interest as a new
type of particle with non-Abelian statistics and their potential
application in topological quantum computation (TQC).1–5

Topological superconductors6 are promising candidates for
the practical solid-state realization of MFs.7–15 A simple topo-
logical superconducting (TS) system supporting MFs, which
has attracted considerable experimental attention,2 consists of
a spin-orbit coupled semiconductor in a magnetic field placed
in contact with an ordinary superconductor.11–15 In particular,
the one-dimensional semiconducting nanowire, can be driven
from a conventional or nontopological superconducting (NTS)
phase into a TS phase by increasing the magnetic field
parallel to the wire above the critical value VZ > VZ,c =√

�2 + μ2.14,15 Here, μ is the chemical potential μ with
respect to the bottom of an electron subband of the nanowire
and � is the superconducting pairing potential induced from a
nearby s-wave superconductor.16 In fact, recent experimental
results17–20 on these systems have already shown promising
evidence for the existence of MFs.

While experiments such as tunneling and the fractional
Josephson effect to detect the presence of end MFs8,11,14,15,21,22

and edge MFs23–25 have been proposed and demonstrated,17,26

local probes that characterize the TS state of the wire, away
from the physical ends are still missing. Such probes of
the TS state of the entire wire segment can provide more
reliable characterization of MFs than zero-bias conductance
peaks17 measured in tunneling, which can also arise from
local impurities. In the presence of realistic disorder-induced
potential fluctuations, only certain segments of the wire can
be expected to be in the TS phase. In this case, local probes of
the TS state can allow us to locally determine which segments
of a given nanowire are in the TS phase. The zero modes at
the end of such segments can be expected to be non-Abelian
Majorana modes. The physical ends of the wire, because of
the presence of disorder and external potentials might be in
a nontopological superconducting phase and therefore might
not necessarily support Majorana modes even though some
segment in the middle of the wire does.

Scanning tunneling microscopy (STM) of superconductors
has provided one route to locally characterizing the supercon-
ducting state of unconventional superconductors.27 Specifi-
cally, superconductors can be characterized by their response
to impurities, which can be probed by STM spectroscopy.28,29

Magnetic impurities in spin-singlet superconductors lead to
Shiba states, which appear as sharp features in tunneling
spectra.30 Tuning the strength of the impurity has been
predicted, in principle, to lead to a local quantum phase
transition (QPT).31,32 Therefore it is natural to expect that
studying the tunneling spectra around impurities in wires
might provide a local probe of the superconductivity in the
semiconductor nanowire. It has already been argued that
the topological superconductivity of d + id superconductors
can be extracted by studying the low-energy bound states
associated with magnetic and nonmagnetic impurities.33

In this paper, we show that the semiconductor nanowire
systems that have been proposed to realize MFs are also ideal
for generating subgap Shiba states bound to nonmagnetic
impurities. Such Shiba states in semiconductor nanowires
in proximity to a superconductor can be probed either by
STM or tunnel probe configurations17,34 shown in Figs. 1(a)
and 2(b). In general, we find that strongly bound Shiba
states only occur for large magnetic fields with VZ � �.
Such low-energy impurity bound states are indicative of a
cross-over of the superconducting order parameter from an
s-wave-like state to a p-wave-like superconducting state.
More specifically, we find that the energy associated with
the Shiba state can be tuned to cross zero energy as the
impurity strength is increased [see Fig. 1(c)], providing a
realization of the fermion-parity changing transition.32 Such
a zero crossing will be shown to be associated with a local
version of the Pfaffian topological invariant that may be used
to characterize the TS phase. In practice, the impurity strength
might be tuned in the configuration in Fig. 1(b) by varying
the gate voltage of a gate which is placed at a distance shorter
than the Fermi wavelength (can be ∼60 nm for low-density
semiconductors). Gate potentials on length-scales shorter than
the Fermi wavelength would effectively induce point-potential
scattering in the wire.
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FIG. 1. (Color online) (a) Subgap impurity bound states in a
nanowire (NW), in a magnetic field B, and in proximity to a
superconductor (SC) are localized near a gate-tunable local potential
G2 and can be detected in tunneling experiments. (b) The gate
potential produced by G2 can be replaced by a local impurity.
(c) Bound-state energy as a function of inverse impurity strength
or impurity transparency g−1 (in units of meV−1/2) in the topological
phase [i.e., Zeeman potential VZ = 0.6 meV (pink), VZ = 0.8 meV
(gray curve)] shows a characteristic zero-energy crossing. The
nontopological phase [i.e., for VZ = 0.4 meV (black curve)] shows
weakly bound Shiba states.

II. LOCAL IMPURITY (SHIBA) BOUND STATES
IN SUPERCONDUCTORS

Following the derivation of the spectrum of magnetic
impurities in conventional superconductors,30 we consider
the Green function Gτσ ;τ ′σ ′(x; x ′; E) of the superconducting
nanowire in the Nambu spinor notation. Here, x,x ′ represent
spatial coordinates on the nanowire, σ,σ ′ refer to the spin
indices and τ,τ ′ = 0,1 represent the particle-hole index, which
is needed to describe both the normal and anomalous parts
of the Green function of the superconducting nanowire. The
Green function G matrix for an impurity in a superconductor
can be calculated using the Dyson equation

G(xx ′; E) = G0(xx ′; E) +
∫

dx1G
(0)(xx1; E)

×V (x1)G(x1x
′; E), (1)

where V (x) ∝ gδ(x)τz is the localized impurity potential
(V (x) ∝ gσzδ(x) for magnetic impurities in conventional
superconductors) and G

(0)
τσ ;τ ′σ ′(x; x ′; E) is the Green function

of a clean superconducting nanowire with a Bogoliubov

de-Gennes (BdG) Hamiltonian

H0(k) = (k2 − μ + ασyk)τz + VZσz + �τx, (2)

where k = i∂x is the wave vector along the wire and α is the
strength of Rashba spin-orbit coupling.11,14 The matrices σz,
τx , and τz are Pauli matrices associated with the indices σ

and τ , respectively. Since gδ(x) has dimensions of energy, g

has dimensions of energy-length. In this work, we are using
in units where h̄2/2m∗ = 1 (with m∗ being the effective mass
in the semiconductor nanowire), so that the unit of length is
meV−1/2. Therefore in our work, g has units of meV1/2. The
BdG Hamiltonian H0 can also be used to represent multiband
wires35–37 if μ, VZ , �, and g are taken to be matrices indexed
by the channel index. For local impurity potentials, the energy
levels of bound states are determined from the x = x ′ = 0 part
of the Dyson equation (1), which is written as

G(00; E) = [1 − G(0)(00; E)V (0)]−1G(0)(00; E). (3)

The original Shiba state problem of a magnetic impurity
with V (0) = gσz in an s-wave superconductor30 is solved by
studying the poles of Eq. (3), which are given by

Det[g−1 − G(0)(00; E)σz] = 0. (4)

For the conventional s-wave superconductor, VZ = α = 0,
so that [H0,σz] = 0 and one can solve for states with
definite spin σz = ±1. Using Eq. (2) for the conventional
s-wave superconductor (i.e., VZ = α = 0, μ � �), the local
Green function is calculated to be G(0)(00; E) = ∫

dk[H0(k) −
E]−1 = (E+�τx )ρ√

�2−E2 , where ρ is the density of states at the Fermi
level. Substituting into Eq. (4), we find that the bound-state
energy must satisfy g−1 = σzρ

E±�√
�2−E2 . The above equation

has subgap, i.e., |E| < � solutions for all magnetic impurity
strengths g, which can even go through E ∼ 0.

For nonmagnetic impurities for VZ,α �= 0, the Shiba bound
state appears as a pole in the Green function G and therefore
satisfies the equation

Det[g−1 − G(0)(00; E)τz] = 0. (5)

Consistent with Anderson’s theorem,36,38 Eq. (5) describing
subgap states bound to nonmagnetic impurities, is found to
have no solutions for VZ = 0. This continues to hold, even in
the presence of a spatially uniform Zeeman potential VZ �= 0,
if the spin-orbit coupling α vanishes. Therefore nonmagnetic
impurities may lead to localized Shiba bound states in wires
only in the presence of a combination of Zeeman splitting and
spin-orbit coupling, which are also the ingredients to realize a
TS phase.

Numerical solutions of Eq. (5) plotted in Fig. 1 for finite
spin-orbit coupling α, Zeeman potential VZ , show subgap
Shiba states bound to even nonmagnetic impurities. While
bound Shiba states are found to exist whenever VZ > 0,
one observes that the deeply bound Shiba states with energy
significantly below the gap energy (i.e., say 50% of the gap for
definiteness) occur only when VZ � �. Following Gorkov and
Rashba,39 the superconducting order parameter that is induced
in the nanowire to a combination of s-wave and p-wave
pairings. The s-wave pairing component is expected to be
destroyed by the Zeeman potential VZ via the Chandrashekhar-
Clogston mechanism.40 Thus the existence of low-energy

205402-2



BOUND STATES AT IMPURITIES AS A PROBE OF . . . PHYSICAL REVIEW B 88, 205402 (2013)

(b)  

(a)  

FIG. 2. (Color online) (a) Impurity bound state energy and bulk
gap vs Zeeman splitting shows that the topological phase supports
deep impurity states significantly (i.e., by a factor of 2) below the
gap. (b) For high densities (i.e., μ > �), we find similar states even in
the nontopological phase for VZ > �. Such Shiba bound states might
contribute to nearly magnetic field independent low-bias conductance
peaks seen in recent experiments.17 Here, � = 0.5 meV and the spin-
orbit coupling α = 0.6 corresponding to a spin-orbit energy ESO ≈
50 μeV.17 The impurity strength g is in units of meV1/2.

Shiba states bound to impurities demonstrates a qualitative
modification of the superconducting state by the Zeeman field
into a p-wave pairing phase, which is strongly sensitive to
impurities. However, since there is no transition between an
s-wave dominated superconducting phase and the p-wave
phase, the effect of the Zeeman field shows up as a crossover
between weakly bound and deeply bound Shiba states, which
occurs rather sharply near VZ ∼ �.

III. SHIBA STATES IN THE TS PHASE

In contrast to the above crossover, the TS phase is
demarcated from the NTS phase by a sharp topological phase
transition that can be identified in Fig. 2 by the vanishing of
the bulk gap in the wire at VZ = VZ,c. The evolution of the
Shiba bound state energy as a function of the strength of the
impurity g (or magnetic field or density; see discussion below)
may be used to precisely distinguish the TS phase from the
NTS phase. As seen from Fig. 1, the Shiba bound state energy
in the TS phase, in contrast to that in the NTS phase, shows
a characteristic pair of crossings of E = 0 at both zero and
nonzero values of the impurity transparency g−1. The crossing
of the pair of states at E = 0 is protected by particle-hole

symmetry similar to that obtained in the fractional Josephson
effect in the TS state.8,9,14

One of the E = 0 crossings in Fig. 1 that occurs at
g−1 = 0 can be interpreted as a pair of MFs resulting from
splitting the nanowire into two parts. Both strongly attractive
or repulsive impurities (i.e., g−1 → 0) split the nanowire,
since the boundary condition on the wave function ψ(0) ∼
g−1[ψ ′(0+) − ψ ′(0−)] causes ψ(0) → 0 whenever |g| → ∞.
In the vicitnity of the points g → ±∞, the pair of zero-energy
MF split linearly by tunneling as the impurity is tuned away
from vanishing transparency in such a way so as to generate a
zero-energy crossing of Shiba states at g−1 = 0.

A. Parity-changing QPT

The zero crossing of the energy of a nondegenerate Shiba-
state as a function of a parameter such as transparency g−1 is
accompanied by a change of the fermion-parity of the ground
state. To understand this, let us consider the creation operator
d† = ∫

dxuσ (x)ψ†
σ (x) + vσ (x)ψσ (x) of a quasiparticle whose

BdG energy eigenvalue is positive for g−1 < g−1
0 and then

becomes negative for g−1 > g−1
0 . If we define the ground

state of the wire to be |0〉 for g−1 < g−1
0 , then d†|0〉 is an

excited state with a higher energy and different fermion parity.
As g−1 is tuned across the transition so that g−1 > g−1

0 , the
creation operator d† has a negative energy, which in particular,
means that the state d†|0〉 has a lower energy than the state
|0〉. Therefore the state d†|0〉, which has a different parity
from |0〉 is the ground state for g−1 > g−1

0 , establishing a
change in the fermion parity of the ground state at g−1 = g−1

0 .
The absence of degeneracy such as spin-degeneracy (which
is absent because of the large Zeeman potential VZ) at the
crossing at g−1 = g−1

0 is critical to our argument. Technically,
when the quasiparticle operator d† approaches zero-energy
at g−1 = g−1

0 , it is degenerate with the annhilation operator d,
which has an energy equal in magnitude but opposite in sign to
the operator d†. However, since the physical states associated
with these operators, i.e., |0〉 and d†|0〉 have different fermion
parities, they cannot hybridize and result in an avoided
crossing. The transition discussed here is analogous to the
QPT proposed for tunable magnetic impurities in conventional
superconductors.32 The spin-orbit coupled nanowire provides
a realization of this interesting transition using a nonmagnetic
impurity, which can be tuned by a local gate voltage. These
phase transitions are also analogous to the phase-tuned
fermion parity changing transitions in Josephson junctions
with magnetic impurities41 and also Josephson junctions in
topological superconducting systems.8

The fermion parity change associated with zero-energy
crossings of Shiba states at vanishing impurity transparency
g−1 ∼ 0 in the TS phase requires the existence of an odd num-
ber of zero-energy crossings at finite impurity transparency
g−1 �= 0. This follows from the fact that the total number of
zero-energy crossings going from g−1 = −∞ to g−1 = ∞
must be even, since both these points are associated with the
ground-state Hamiltonian of the nanowire with no impurity,
i.e., at g ∼ 0. Thus the TS phase is characterized by the Shiba
bound state energy crossing zero an odd number of times as the
limit of infinite impurity strength g → ∞ is approached from
at least one of the sides of either strong repulsive impurities or
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strong attractive impurities. Conversely, since the total number
of zero-energy crossings must be even, observing an odd
number of zero-energy crossings away from the vanishing
transparency point (i.e., g−1 = 0) would imply a topologically
nontrivial state.

B. Pfaffian associated with local impurity states

To strengthen the argument that the zero-energy crossing
is a topological QPT, we compute the fermion parity using
the Pfaffian of the BdG Hamiltonian.8,42 The Pfaffian for a
particle-hole symmetric BdG Hamiltonian HBdG is given by

Q(HBdG) = sgn (Pf [HBdG
]) , (6)

where the particle-hole matrix 
 = σyτy transforms creation
operators into annihilation operators and vice versa and HBdG

satisfies HBdG
 = −
H ∗
BdG. Topological superconducting

systems are characterized by a topological invariant, which
is defined in terms of the Pfaffian as

F = Q(HBdG(0))Q(HBdG(π )), (7)

where HBdG(0) and HBdG(π ) are the BdG Hamiltonians
with periodic and antiperiodic boundary conditions for the
electrons. Such a definition of the topological invariant, which
is related to the change in ground-state fermion parity with
boundary conditions, requires the superconductor to be gapped
in the bulk. The boundary conditions for the fermions can
effectively be changed by introducing a gauge potential along
a cut in the system, which for a topological superconducting
system will result in the ejection of a fermion along the cut
in the system.7 For a one-dimensional system, such a cut is
a local point defect and therefore the topological invariant
for a one-dimensional superconductor can be extracted from
the response at a point, as is proposed using the fractional
Josephson effect in one dimensional wires.8,9,14

The present proposal provides an alternative way to change
the boundary condition of fermions by changing the strength of
a point impurity. Thus a fermion parity changing QPT, which
may result from varying the transmitted π phase shift, i.e.,
impurity strength would be a local measure of the topological
invariant associated with the superconductor. The assumption
of a gapped nature in the bulk allows one to locally determine
whether the system is in a topological phase. Despite the
fermion parity and the corresponding topological invariant
being a global quantity, it is possible to keep track of changes
to the fermion parity locally by keeping track of the spectrum
at points, such as defects, where fermion energy levels might
cross zero energy. As mentioned in the previous section, such
zero-energy level crossings are associated with changes in the
fermion parity. While the present argument strictly speaking
applies to one-dimensional systems, the same argument would
apply to rotationally symmetric two-dimensional systems
which can be reduced to one-dimensional systems.11

Similar to the topological superconductor, the fermion-
parity changing QPT, can be characterized by a change in
the Pfaffian of the BdG Hamiltonian. Since, in an otherwise
gapped superconductor, changes to the fermion parity due
to a local impurity must be determined locally, it must be
possible to characterize the fermion parity change locally. To
obtain such a local characterization, we note that zero-energy

crossings at an impurity also imply zero-energy crossings
of the Green function U = G(0)(0,0; E = 0) − g−1τz [see
Eq. (5)]. For a gapped superconductor G(0) and the relevant
matrix for determining zero modes U = G(0)(0,0; E = 0) −
g−1τz is both Hermitean and particle-hole symmetric (i.e.,
anticommutes with 
). Therefore the local Pfaffian invariant
is defined as

Q(g−1) = sgn{Pf [(G(0)(0,0; E = 0) − g−1τz)
]}. (8)

The above Pfaffian invariant can only change sign when
the determinant of U = G(0)(0,0; E = 0) − g−1τz vanishes,
which corresponds to a zero crossing of a Shiba bound-state
energy since such a crossing is a solution of Eq. (5) at E = 0.
The fermion parity changing transition of the ground state
as a function of impurity strength g is characterized by the
topological invariant Q(g−1) changing sign. Therefore the
local fermion parity at the impurity can be calculated directly
from computing the local fermion parity Q(g−1) without
computing the Shiba bound states.

C. Variation of impurity states with Zeeman potential

In addition to varying the strength of electrostatically
induced impurities in a wire, which can, in principle, be tuned
in a simpler way than magnetic impurities required for s-wave
superconductors,32 one can also tune the chemical potential or
the magnetic field towards the gap-closing topological phase
transition to vary the effective impurity strength. A typical
impurity can be expected to have a stronger effect as one
approaches the phase transition where the quasiparticle gap
closes effectively varying the impurity strength. However, this
cannot directly be used to characterize the TS phase, since it
is difficult to ensure that the effective impurity strength can
be varied over the entire range. The evolution of the Shiba
states across the phase transition for a fixed impurity strength,
which is plotted in Fig. 3, shows a zero-energy crossing of a

FIG. 3. (Color online) The evolution of the tunneling DOS
associated with Shiba bound states with the Zeeman potential VZ

also shows zero-energy crossings in the topological superconducting
phase (i.e., right of the dashed yellow line) of the nanowire. Here,
μ = 0.2 meV, � = 0.5 meV, and g = 2.0 meV1/2. The apparent
zero-energy crossing near the phase transition (dashed yellow line)
separating the topological and nontopological phases is excluded
from the count because the localized Shiba state does not exist at this
gapless point.
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state in the TS phase, similar to the zero-energy crossings as
a function of impurity strength plotted in Fig. 1. The result is
expected to hold for an impurity that is sufficiently weak away
from the phase transition. As the Zeeman splitting from the
magnetic field approaches VZ,c, the effective strength of the
impurity increases relative to the gap leading to an odd number
of crossings.

IV. CONCLUSION

Similar to magnetic impurities, s-wave superconductors,28

and nonmagnetic impurities in unconventional supercon-
ductors,27 the Shiba bound states can be used to characterize
the superconducting phases of the nanowire. Specifically, we
find that in the nanowire the Shiba bound states crossover
from weakly bound states to deeply bound states as the
magnetic field is increased, indicating a crossover from an
s-wave-like state for VZ � � to a p-wave-like phase for VZ �
�. Such low-energy Shiba states for VZ � � would appear
as low-energy conductance features above a critical Zeeman
potential VZ > �, which would be qualitatively similar to the

magnetic field dependence measured in recent experiments17

and might provide a possible alternative explanation for these
experiments. More importantly, we find that the TS phase is
sharply characterized by the presence of an odd number of
zero-energy crossings of the impurity bound state both as a
function of impurity strength of Zeeman energy. Therefore the
tunneling characterization of impurities in the middle of the
semiconductor nanowire should provide convincing evidence
for the existence of a topological phase in these wires.

Note added. Recently, we became aware of a related work43

that predicts low-energy states in the limit of strong impurities.
In the context of our work, this corresponds to one of the zero
crossings at g−1 = 0 in Fig. 1(c).

ACKNOWLEDGMENTS

We acknowledge valuable discussions with Anton
Akhmerov, Shou-Cheng Zhang, and Ali Yazdani in the course
of this work. J.S. thanks the Harvard Quantum Optics Center
for support. E.D. acknowledges support from Harvard-MIT
CUA, NSF Grant No. DMR-07-05472.

1C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma,
Rev. Mod. Phys. 80, 1083 (2008).

2F. Wilczek, Nat. Phys. 5, 614 (2009); B. Goss-Levi, Phys. Today
64, 20 (2011); A. Stern, Nature (London) 464, 187 (2010).

3A. Kitaev, Ann. Phys. 303, 2 (2003).
4G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
5F. Wilczek, Fractional Statistics and Anyon Superconductivity
(World Scientific, Singapore, 1990).

6A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys.
Rev. B 78, 195125 (2008).

7N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
8A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
9L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

10C. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma, Phys. Rev.
Lett. 101, 160401 (2008); M. Sato, Y. Takahashi, and S. Fujimoto,
ibid. 103, 020401 (2009).

11J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev.
Lett. 104, 040502 (2010).

12J. Alicea, Phys. Rev. B 81, 125318 (2010).
13J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and S. Das

Sarma, Phys. Rev. B 82, 214509 (2010).
14R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105,

077001 (2010).
15Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002

(2010).
16J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev.

B 82, 094522 (2010).
17V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers,

and L. P. Kouwenhoven, Science 336, 1003 (2012).
18M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q.

Xu, Nano Lett. 12, 6414 (2012).
19A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman,

Nat. Phys. 8, 887 (2012).
20C. M. Marcus (private communication).

21K. Sengupta, I. Zutic, H.-J. Kwon, V. M. Yakovenko, and S. Das
Sarma, Phys. Rev. B 63, 144531 (2001).

22H. Kwon, K. Sengupta, and V. M. Yakovenko, Low Temp. Phys.
30, 613 (2004).

23K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001
(2009).

24P. A. Ioselevich and M. V. Feigelman, Phys. Rev. Lett. 106, 077003
(2011).

25A. L. Rakhmanov, A. V. Rozhkov, and Franco Nori, Phys. Rev. B
84, 075141 (2011).

26L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795
(2012).

27A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78, 373
(2006); D. Podolsky, E. Demler, K. Damle, and B. I. Halperin,
Phys. Rev. B 67, 094514 (2003); J. M. Byers, M. E. Flatté, and
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