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Bound states in the continuum 
(BIC) protected by self‑sustained 
potential barriers in a flat band 
system
Yi‑Cai Zhang

In this work, we investigate the bound states in the continuum (BIC) of a one‑dimensional spin‑1 
flat band system. It is found that, when the potential is sufficiently strong, there exists an effective 
attractive potential well surrounded by infinitely high self‑sustained barriers. Consequently, there 
exist some BIC in the effective potential well. These bound states are protected by the infinitely high 
potential barriers, which could not decay into the continuum. Taking a long‑ranged Coulomb potential 
and a short‑ranged exponential potential as two examples, the bound state energies are obtained. 
For a Coulomb potential, there exists a series of critical potential strengths, near which the bound 
state energy can go to infinity. For a sufficiently strong exponential potential, there exist two different 
bound states with a same number of wave function nodes. The existence of BIC protected by the self‑
sustained potential barriers is quite a universal phenomenon in the flat band system under a strong 
potential. A necessary condition for the existence of BIC is that the maximum of potential is larger 
than two times band gap.

For usual potential wells, the bound states usually appear outside the continuous spectrum. However, Neumann 
and Wigner constructed a bound state which is embedded in the continuous spectrum of scattering  states1 (the 
so-called bound states in the continuum (BIC)2). Later, it is found that BIC can also appear due to the interfer-
ences of two resonances, where one of the resonance widths becomes zero with the variation of a continuous 
 parameter3,4. BIC can also appear in the optical  waveguides5–9, and condensed matter physics  system10–14. In 
addition, BIC can also exist in bottomless  potentials15,16.

A lot of novel physics, for example, existences of localized flat band  states17–19, the ferro-magnetism 
 transition20–22, super-Klein  tunneling23–26, preformed  pairs27, strange  metal28, high Tc superconductivity/super-
fluidity29–39, ect., can appear in a flat band system. Due to the existence of infinitely large density of states in a 
spin-1 flat band system, a short-ranged potential, e.g., square well potential, can result in infinite bound states, 
even a hydrogen atom-like energy spectrum, i.e., En ∝ 1/n2, n = 1, 2, 3, . . .40.

Furthermore, it is found that the existences of bound states also depend on the types of potentials. For 
example, a long-ranged Coulomb potential of type I (with three same diagonal elements in usual spin basis), an 
arbitrary weak Coulomb potential can destroy completely the flat  band41,42. In two-dimensional spin-1 systems, a 
strong Coulomb potential can result in a wave function collapse near the the  origin41,43. For one-dimensional case, 
an arbitrarily weak Coulomb potential also causes the wave function  collapse44. In addition, for a potential of type 
II, which has a unique non-vanishing potential matrix element in basis |2�40, a long-ranged Coulomb potential can 
cause a 1/n energy spectrum. For a Coulomb potential of type III, which has a unique non-vanishing potential 
matrix element in basis |3�45, there are also infinite bound states which are generated from the flat band. Near 
the the flat band, the energy is inversely proportional to the natural number, i.e., E ∝ 1/n . Differently from the 
ordinary one-dimensional bound state energy which is parabolic function of potential strength, the bound state 
energy is linearly dependent on the potential strength as the strength goes to zero. For a given quantum number 
n, the bound state energy grows up with the increasing of potential strength α . There is a critical potential strength 
αcr at which the bound state energy reaches the threshold of continuous spectrum. After crossing the threshold, 
these bound state may still exist and they would form the bound states in a continuous spectrum (BIC)45.

In this work, we propose a new mechanism of the existence of BIC in a spin-1 flat band system with a strong 
potential of type III. To be specific, we would extend the above investigations (see Ref.45) where the energy is in 
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the continuum. It is found that for sufficiently strong potential, there exist an effective potential well which are 
surrounded by infinitely high potential barriers. Within the potential well, there may exist some bound states 
which are embedded in the continuous spectrum, i.e., BIC. The infinitely high barriers protect the BIC from 
decaying into the continuous spectrum. Taking a long-ranged Coulomb potential and a shorted-ranged expo-
nential potential as two examples, we get the bound state (BIC) energies. Our results show that the existence of 
BIC is quite a universal phenomenon for a strong potential of type III in the spin-1 flat band system.

Results. The model Hamiltonian with a flat band. In this work, we consider a spin-1 Dirac-type 
 Hamiltonian40 in one dimension, i.e.,

where Vp(x) is potential energy, H0 is the free-particle Hamiltonian, vF > 0 is Fermi velocity, and m > 0 is energy 
gap parameter. Sx and Sz are spin operators for spin-1  particles46, i.e.,

in usual spin basis |i� with i = 1, 2, 3 . In the whole manuscript, we use the units of vF = � = 1 . When Vp(x) = 0 , 
the free particle Hamiltonian H0 has three energy bands. One of them is flat band with eigen-energy Ek,0 ≡ 0 , 
and the other two of them are dispersion  bands40. Among the three band, there are two band gaps, whose sizes 
are given by parameter m (see Fig. 1). Any possible BIC only exist in the two continuous spectrum, i.e., outside 
the gaps .

bound states in a potential of type III. In the following manuscript, we assume the potential energy Vp 
has following form in usual basis |i = 1, 2, 3� , namely,

In the whole manuscript, we would refer such a kind of potential as potential of type  III45. Such a spin-dependent 
potential is a bit similar to the magnetic impurity potential in Kondo model. The conventional bound states for 
potentials of type I and II have also been investigated in our previous  works40,44. Adopting a similar procedure 
as Ref.45, the spin-1 Dirac equation

(1)
H = H0 + Vp(x)

H0 = −ivF�Sx∂x +mSz ,
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Figure 1.  The energy spectrum of free particle Hamiltonian. The possible conventional bound states exist in the 
gaps (A) and (B). Any possible bound states in the continuum (BIC) only exist outside these gaps.
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can be transformed into an effective Schrödinger equation (a second-order differential equation), i.e.,

where the auxiliary wave function

The effective total energy Ẽ and effective potential Ṽ  are

In the following, we would solve the effective Schrödinger equation Eq. (5) to get the bound state (BIC) energies.

A long‑ranged Coulomb potential. In this subsection, we assume the V11 is a Coulomb potential, i.e.,

where α is the potential strength. The effective potential Ṽ  is

In the above equation, we introduce parameter A ≡ α(m+E)2

2E  and x0 ≡ α
2E . It is shown that the effective potential 

Ṽ  is a shifted Coulomb  potential47 with an effective potential strength A, which depends on energy E. The Eq. (5) 
becomes

Depending on the sign of α/E , there exists two kinds of effective potentials Ṽ45. When α/E < 0 , the effective 
potential Ṽ  has a lowest point at x = 0 . The bound state energies are in the the gaps, 0 < E < m . Hence there 
is no BIC for α/E < 0.

When α/E > 0 ( x0 > 0 ), the effective potential Ṽ  is negative in the interval (−x0, x0) (a potential well), and 
positive in intervals (−∞,−x0) and (x0,∞) (see Fig. 2). There are two infinitely high potential barriers near two 
ends x = ±x0 of the interval (−x0, x0) . We see that the potential well width w ≡ 2x0 = α/E , and the position 
of potential barriers x = ±x0 depend sensitively on the bound state energy E. So in the whole work, we call the 
potential barriers as self-sustained potential barriers. In addition, it is found that the bound state energy can 
be larger than zero for α > 0 or smaller than zero for α < 045. In the following, we mainly focus on the case of 
α/E > 0 , where the bound states in the continuous spectrum (BIC) may appear.

When x > 0 and |E| > m (for BIC), the equation Eq. (10) can be solved with some confluent hypergeometric 
functions. Its general solution is

w h e r e  1F1[a, b, z] =
∑∞

k=0
(a)kz

k

k!(b)k  i s  c o n f l u e n t  h y p e r g e o m e t r i c   f u n c t i o n 4 8 , 
(a)k = a× (a+ 1)× (a+ 2)× · · · × (a+ k − 1) , and c1(c2) are two arbitrary constants. a = 1+ A

2i
√

Ẽ
 , b = 2 . 

U[a, b, z] is a second linearly independent solution to the confluent hypergeometric equation (Tricomi 
 function49). When z → 0 , the two confluent hypergeometric functions behave as

When α/E > 0 , due to the existence of infinitely high potential barriers, the bound state in the continuum only 
exist in the interval (−x0, x0) (see Fig. 2). Outside the effective potential well, the wave function vanishes (see 
Fig. 5). At the two ends of the interval, the zero boundary conditions should be satisfied, i.e.,

Taking Eq. (12) into account, U[a, b, 2i
√

Ẽ(x − x0)] should be discarded. So the wave function is

(4)

− i∂xψ2(x)/
√
2 = [E −m− V11(x)]ψ1(x),

− i∂x[ψ1(x)+ ψ3(x)]/
√
2 = Eψ2(x),

− i∂xψ2(x)/
√
2 = [E +m]ψ3(x).

(5)−∂2xψ(x)+ Ṽ(x)ψ(x) = Ẽψ(x).

(6)ψ(x) ≡
E − V11(x)/2

E +m
ψ1(x).

(7)
Ẽ = E2 −m2 > 0, for bound states in Continuum,

Ṽ(x) =
V11(x)

2

(m+ E)2

E − V11(x)/2
.

(8)V11(x) =
α

|x|
,

(9)Ṽ(x) =
V11(x)

2

(m+ E)2

E − V11(x)/2
=

A

|x| − x0
.

(10)∂2xψ(x)+ [Ẽ −
A

|x| − α
2E

]ψ(x) = 0.

(11)ψ(x) = (x − x0)e
−i
√

Ẽ(x−x0){c1 × 1F1[a, b, 2i
√

Ẽ(x − x0)] + c2 × U[a, b, 2i
√

Ẽ(x − x0)]},

(12)
1F1[a, b, z] ≃ 1,

U[a, b, z] =
Ŵ(b− 1)

Ŵ(a)
z1−b + O(|logz|), (b = 2).

(13)ψ(±x0) = 0.
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Due to Ṽ(−x) = Ṽ(x) , the wave functions can be classified by parities. For odd parity states, the bound state 
energy equation is

For even parity states, the bound state energy equation is

The results are reported in Fig. 3.
When E2 > m2 for BIC, with quasi-classical approximation  method50, the eigen-energy is given by

where n = 1, 2, 3, . . . , and

From the Fig. 3, we see that the the bound state (BIC) energy can be well described by the quasi-classical 
approximation Eq. (17).

For α > 0 , there exists a critical potential  strength45, which is determined by

(14)ψ(x) = (x − x0)e
−i
√

Ẽ(x−x0)
1F1[a, b, 2i

√

Ẽ(x − x0)].

(15)1F1[1+
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4iE
√
E2 −m2

, 2,−
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E2 −m2

E
] = 0.
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√
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√
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Figure 2.  The effective potential wells surrounded by two infinitely high barriers (the red solid lines). (a): The 
effective potential for Coulomb potential ( α/E > 0 ). The value of effective potential at x = 0 , i.e., 
Ṽ(0) = −(m+ E)2 . (b): The effective potential for exponential potential. The value of effective potential at 
x = 0 , i.e., Ṽ(0) = (m+E)2

2E
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After crossing these critical values, the bound states still exist and they form the bound states in continuum 
(BIC). For a given n, there exist another critical value αcr2 , near which the bound state energy goes to infinity, 
i.e., E → ±∞ . When E → ±∞ , the value is can be determined approximately with Eq. (17), i.e.,

where sign +(−) for E > (<)0 . For α < 0 , when E < −m and |α| ≫ 1 , for a given n, the energy approach the 
threshold of lower band, i.e., E → −m.

The existence of the BIC can be understood qualitatively as follows. The width of effective potential well is 
w ≡ 2x0 = α/E . Based on the bound state energy formulas of infinitely deep square well potential, the bound 
state energy equation can be approximately written as

where wave vector can be approximated by

So we find that the potential strength

where E2 > m2 for BIC. Only when

BIC begin to appear. When E → ±∞ , the critical value

A more accurate formula Eq. (20) gives αcr2 ≃ ±0.6534(n+�)π.

Short‑ranged exponential potential. We should remark that the above mechanism of existence of BIC is quite 
a universal phenomenon for a sufficiently strong potential. As long as the self-sustained potential barriers can 

(20)αcr2 ≃ ±
2(n+�)π√
2+ arcsinh(1)

≃ ±0.6534(n+�)π ,

(21)kw = nπ ,

(22)k ∼
√

Ẽ − Ṽ(0) =
√

2E(m+ E).

(23)α =
nπE√

2E(m+ E)
,

(24)α > αcr1 ≃ π/2, for E > m,

(25)αcr2 ≃ ±nπ/
√
2 ≃ ±0.7071nπ .
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Figure 3.  The bound state (BIC) energy of Coulomb potential in the case of α/E > 0 . The solid lines are the the 
exact results of Eqs. (15) and (16). The black dashed lines are given by the quasi-classical approximation formula 
Eq. (17). In the gaps A and B, there also exist infinite (conventional) bound states whose energy satisfy |E| < m 
(see Fig. 4 of Ref. [45].).
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form, the BIC may exist. A critical condition for the existence of the infinitely high potential barriers is that the 
denominator of the effective potential has zero point [see Eq. (7)], i.e., the equation

has real solutions x. On the other hand, for BIC, the bound state energy should satisfy

Taking the Eqs. (26) and (27) into account, we conclude that when the maximum value of potential is larger 
than two times gap parameter m, i.e.,

there may exist BIC. We should emphasize that the above condition Eq. (28) just is a necessary condition for 
the existence of BIC. So when the potential is sufficiently strong, there may exist BIC in the flat band system.

In this subsection, we assume the potential have an exponential function form, i.e.,

where V0 is the potential strength, 1/β describes decaying distance of exponential function. For the above suf-
ficiently strong exponential potential, it is found that there exist BIC. The effective potential Ṽ  is

where we introduce dimensionless parameter γ ≡ 2E
V0

 . When γ ≡ 2E
V0

< 1 , γ − e−β|x| = 0 , i.e., 
x = ±x0 ≡ ∓ 1

β
log(γ ) , then the denominator of effective potential is zero. In the interval (−x0, x0) , the effective 

potential is negative, while outside the interval, the effective potential is positive. Near the two end of interval, 
i.e., x = x0 , there are also two infinitely high potential barriers (see Fig. 2). So the bound states in continuum 
may exist in the interval.

The Eq. (5) becomes

where Ẽ = E2 −m2 , ε = (m+ E)2 . The general solution of Eq. (31) is

where 2F1[a, b; c, z] =
∑∞

k=0
(a)k(b)kz

k

k!(c)k  is hypergeometric function, (a)k = a× (a+ 1)× (a+ 2)× · · ·×

(a+ k − 1) , and c1(c2) are two arbitrary constants. A∓ = ∓
√

−(Ẽ+ε)

β
−

√
−Ẽ
β

 , B∓ = ∓
√

−(Ẽ+ε)

β
+

√
−Ẽ
β

 , 

C∓ = 1∓ 2
√

−(Ẽ+ε)

β
 . At two ends of interval (−x0, x0) , the wave function should vanish, i.e.,

Similarly, the bound state energy equation are given by

To be specific, for odd parity states, the bound state energy equation is

For even parity states, the bound state energy equation is

The results are reported in Fig. 4.
With quasi-classical approximation method, the eigen-energy is given by

(26)E − V11(x)/2 = 0

(27)|E| > m.

(28)|V11(x)|max > 2m,

(29)V11(x) = V0e
−β|x|

,

(30)Ṽ =
V11(x)

2

(m+ E)2

E − V11(x)/2
=

(m+ E)2e−β|x|

γ − e−β|x| ,

(31)∂2xψ(x)+ [Ẽ −
εe−β|x|

γ − e−β|x| ]ψ(x) = 0.

(32)ψ(x) = c1(γ e
βx)

−
√

−(Ẽ+ε)
β

2F1[A−,B−;C−, γ e
βx] + c2(γ e

βx)

√
−(Ẽ+ε)
β

2F1[A+,B+;C+, γ e
βx],

(33)
ψ(x = x0) = c1(γ e

βx0)
−
√

−(Ẽ+ε)
β × 2F1[A−,B−;C−, γ e

βx0 ] + c2(γ e
βx0)

√
−(Ẽ+ε)
β × 2F1[A+,B+;C+, γ e

βx0 ] = 0.

(34)
ψ(x = 0) = 0, for odd parity states,

ψ ′(x = 0) = 0, for even parity states.

(35)c1γ
−
√

−(Ẽ+ε)
β × 2F1[A−,B−;C−, γ ] + c2γ

√
−(Ẽ+ε)
β × 2F1[A+,B+;C+, γ ] = 0.

(36)

γ
−
√

−Ẽ−ε
β c1

−β + 2
√

−(Ẽ + ε)
{[2(Ẽ + ε)+ β

√

−ε − Ẽ] × 2F1[A−,B−;C−, γ ] + εγ × 2F1[1+ A−, 1+ B−; 1+ C−, γ ]}

−
γ

√
−Ẽ−ε
β c2

β + 2
√

−(Ẽ + ε)
{[2(Ẽ + ε)− β

√

−ε − Ẽ] × 2F1[A+,B+;C+, γ ] + εγ × 2F1[1+ A+, 1+ B+; 1+ C+, γ ]} = 0
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where n = 1, 2, 3, . . . , and

From Fig. 4, it shows that for a given V0 there exists two bound states with same quantum number n. The two wave 
functions of n = 3 with same number nodes are reported in panel (b) of Fig. 5. When potential is very strong, 
i.e., V0 → ±∞ , one of bound state energy E → V0/2 (see Fig. 4). The other bound state energy

Similarly, the above behaviors of bound state energy can be explained as follows. Based on the existence condi-
tions of bound states of infinitely deep square well potential, when

where effective well width w ≡ 2x0 = −2 1
β
log(γ ) , the bound states would exist. The wave vector can be approxi-

mated by

Therefore, the bound state energy equation can be approximately by

(37)

−2
√
E2 −m2

β
log[
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(V0/2− E)(E −m)

V0(E +m)/2
+

√

mE + V0E − E2

V0(E +m)/2
] +

√
2E(E +m)

β
log[
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√
(m+ V0 − E)/(V0 − 2E)

−1+
√
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= (n+�)π ,
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� = +
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4
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� = −
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E → 0, for E > 0

E → −m, for E < 0.
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Figure 4.  The bound state (BIC) energy of exponential potential. The solid lines are the the exact results of Eqs. 
(33), (35), and (36) . The black dashed lines are given by the quasi-classical approximation formula Eq. (37). 
Here we take β = m . We note that there also exist some conventional bound states in the gaps.
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where V0/(2E) > 1 . When the potential is very strong, e.g., V0 → ±∞ , for a given n, the asymptotic behaviors 
of bound state energy can be obtained with Eq. (42).

Finally, we note that for power-law decaying potential, i.e., V11(x) = α/|x|δ with δ > 0 , if α > 0 , only when 
1 < δ < 2 , the system can have two bound states with same number wave function nodes. While for α < 0 , only 
when 0 < δ < 1 , the system has two bound states with same number nodes.

Summary
In conclusion, we investigate the bound states in the continuum (BIC) of a one-dimensional spin-1 flat band 
system. It is found that BIC can exist for sufficiently strong potentials of type III. We get the bound state energies 
for a Coulomb potential and an exponential potential. For a Coulomb potential and a given quantum number 
n, when the potential strength reaches a critical value αcr1 , the BIC begin to appear. When the potential strength 
reaches αcr2 , the bound state energy goes to infinite. For exponential potential, there are two bound states with 
same number of wave function nodes. When the exponential potential is very strong, one of bound state energy 
approaches one half of the potential strength. For repulsive potential (positive V0 ), the other bound state energy 
goes to zero. For attractive case, the other bound state energy approaches to the threshold of lower continu-
ous spectrum. In addition, it is found that the bound state energies can be well described by the quasi-classical 
approximation.

A necessary condition for existence of BIC is that the maximum value of of potential is larger than two times 
band gap. Our results shows that the existence of BIC is quite a universal phenomenon for a strong potential of 
type III in the flat band system.
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