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1 Introduction
Recently, in the community of machine learning, con-
siderably attention has been paid for regularized ker-
nel machine learning due to its great success in �elds
such as signal processing, feature selection and so on
(see e.g. [6, 11, 13]). In the present paper, we shall
conduct error analysis for the coef�cient regularized
regression associated with l2-regularization and Lips-
chitz loss.

Let X be a compact metric space, W = <.
ρ(x,w) is a �xed but unknown Borel probability dis-
tribution on Z := X×W which describes the relation
between variables x ∈ X and w ∈ W . It can be fac-
torized into the marginal probability ρX(x) and the
conditional probability ρ(w|x) of w given x.

Let V (t) : < → <+ be a convex loss function.
Denoted by Eρ,V (f) =

∫
Z V (|w − f(x)|) dρ the

generalization error. The minimizerf∗V de�ned by

f∗V (x) := argmin
f
Eρ,V (f)

over all measurable functions is the target which we
want to learn. In particular, if V (t) = t2 is the
least square loss, f∗V is exactly the regression function
fρ(x) = E(w|x) =

∫
W w dρ(w|x) (see [11]). For the

pinball loss and the ε-insensitive loss the existence of
f∗V is studied in [20] and [29] respectively. Therefore,
throughout this paper we assume that f∗V always exists
and is uniqueness. A task of learning theory is to �nd,
from the sample z = (zi)mi=1 = ((xi, wi))mi=1 ∈ Zm
drawn from independent and identically distributed
(i.i.d.) random variable (Xi,Wi) each with the un-
known probability distribution ρ(x,w) on Z with 1 ≤

i ≤ m, a function fz(x) : X → W such that it is a
good approximation of f∗V .

Usually, the function fz is chosen from the re-
producing kernel Hilbert space(RKHS) generated by
a Mercer kernel.

Let K(x, y) : X ×X → < be continuous, sym-
metric and positive semi-de�nite, i.e., for any �nite
set of distinct points Y = {x1, x2, · · · , xl} ⊂ X , the
matrices (K(xi, xj))li,j=1 are positive semi-de�nite.
Such functions are called Mercer kernels.

The reproducing kernel Hilbert space
(RKHS)(see [2]) HK associating with a Mercer
kernelK is de�ned to be the closure of the linear span
of the set of functions {Kx : = K(x, ·) : x ∈ X}
with the inner product 〈·, ·〉HK satisfying

〈Kx,Ky〉HK = K(x, y), x, y ∈ X.

One way to learn fz is the following Tikhonov
regularization regression (see e.g. [17])

fz,λ,V = arg min
f∈HK

{
1
m

m∑

i=1

V

(
|wi − f(xi)|

)

+λ ‖f‖HK
}
, (1)

where λ is a positive constant which is called the reg-
ularization parameter. Different penalty functions in-
duce various algorithms. So far many theoretical anal-
ysis has been done for scheme (1). The capacity de-
pendent (see e.g. [3, 4, 5, 12, 32, 33]) and the capacity
independent (see e.g. [7, 8, 13, 14, 26], et al) are two
approaches for this purpose.
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Let V (t) = Vpb(t) be the pinball loss function
de�ned as (see [31])

Vpb(t) =

{
(τ − 1)t, if t < 0,
τ t, if t ≥ 0,

where τ ∈ (0, 1) is a given real number. Then, [7]
showed that, if λ = λ(m) → 0, and λ2m → +∞,
then,

lim
m→+∞ ‖fz,λ,Vpb − f

∗
V ‖0 = 0 (2)

holds for all distributions ρ on Z with |ρ|1 =∫
Z |y| dρ < +∞ and ‖f‖0 =

∫
X min{1, |f |}dρX .

(2) is a qualitatively description of the conver-
gence of the algorithm (1) when V (t) = Vpb(t). It
holds for the least square loss and even the p-loss(see
[8]). However, the quantitative description for this
convergence has not been fully studied. Besides the
least square loss the explicit learning rates have not
been provided. A reason is that the learning rates are
related to RKHS approximation problem which has
not been studied fully. In the present paper, we shall
give an estimate for the RKHS approximation prob-
lem and with which show the learning rates. The
fact that HK is a in�nite dimensional space makes
the discussion inconvenient. We shall simplify the
framework to a �nite dimensional optimization prob-
lem and, then, give an explicit learning rate for the
learning rates in the case of Lipschitz loss.

By representer theorem we know fz,λ,V (x) has
the following form (see e.g.[1, 15, 16, 19])

fz,λ,V (x) =
m∑

j=1

αj K(x, xj), x ∈ X,

for real coef�cient vectors α = (α1, α2, · · · , αm)>.
Formulation (1) then can be simpli�ed. In

fact,[34] de�ned the following scheme

αz,λ,V = arg min
α∈<m

{ 1
m

m∑

i=1

V (|wi − fα(xi)|)

+λΩ(α)}, (3)

where fα ∈ HK,X = {fα(x) =
m∑
j=1

αj K(x, xj) :

α = (α1, α2, · · · , αm) ∈ <m}, X =
{x1, x2, · · · , xm} ⊂ X is a given data and
Ω(α) : <m → [0,+∞) are non-negative func-
tions. In particular, when Ω(α) = m

m∑
i=1
|αi|2, we

have

α(V )
z : = arg min

α∈<m
{ 1
m

m∑

i=1

V (|wi − fα(xi)|)

+λm
m∑

i=1

α2
i }, (4)

whereK(x, y) is a continuous kernel de�ned onX×
X . Y = {y1, y2, · · · , ym} ⊂ X is a discrete subset,
fα ∈ HK,Y = {fα(x) =

m∑
j=1

αj K(x, yj) : x ∈
X,α = (α1, α2, · · · , αm) ∈ <m}.

(4) is usually called the coef�cient regularized
framework (see e.g.[34]) since the regularizer is de-
termined by the coef�cient vector α. When V (t) = t2

is the least square loss, the consistency of scheme (4)
is studied respectively in [30] and [22] with different
methods. In the present paper,we shall provide a kind
of learning rates for the mean error

Eρ,V (f
α

(V )
z

)− Eρ,V (f∗V )

when V (t) is a Lipschitzian and Y ⊂ X is a given
discrete subset. We now restate the de�nition of Lips-
chitz loss.

De�nition 1.We call a convex function V (t) :
< → <+ a Lipschitz loss with rankL > 0 if it satis�es
V (0) = 0 and for any t, t′ ∈ <, there holds

|V (t)− V (t′)| ≤ L|t− t′|.
For example, the absolute value loss Va(t) = |t|

is a Lipschitz with rank 1. The ε−insensitive loss

Vil(t) =

{
0, if |t| < ε,
|t| − ε, otherwise

is a Lipschitz loss with rank 1 (see [21]); By [31] we
know pinball loss Vpb is a Lipschitz loss with rank τ.

We assume further that

k = sup
(x, y)∈X×X

|K(x, y)| < +∞. (5)

The algorithm (4) considered in this paper has fol-
lowing features:

• The discrete set Y may be given ahead accord-
ing to ours needs. For example, we can choose
Y such that it is dense inX whenm→ +∞ or is
taken from the sample, i.e., Y = X . The former
is sample independent and the latter is sample
dependent. We shall see that whether or not Y
is sample independent or sample dependent will
in�uence the approximation error.

• Since (4) is a �nite dimensional convex optimiza-
tion problem on <m, it is convenient for us to
design algorithm.

• In our analysis we only require the loss func-
tions are Lipschitzians, they lack of strong con-
vexity and smoothness, the integral operator ap-
proach cannot be used. However, we can use the
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Clarke's directional derivative and the general-
ized gradient to conduct the analysis. These facts
make it possible for us to use non-smooth analy-
sis skill in our analysis.

• Since the least squares loss is local Lipschitzian
and not the Lipschitzian on <, the method used
here will not suit to the least square loss.

Basing on above facts we shall develop ours ap-
proach.

2 Main Results
Before stating our discussions, let us introduce some
de�nitions and notations. The noise free form corre-
sponding to scheme (4) is de�ned by

α(ρ) = arg min
α∈<m

{Eρ,V (fα) + λ m
m∑

i=1

α2
i }, (6)

where fα(x) =
m∑
j=1

αjK(x, yj). The correspond-

ing empirical measure ρz(x,w) for a bounded
ρ−measurable function f(x,w) on Z is de�ned as

∫

Z
f(x, w) dρz =

1
m

m∑

i=1

f(xi, wi). (7)

We decompose the excess generalization error
Eρ,V (f

α
(V )
z

)−Eρ,V (f∗V ) into two parts. One is the sam-
ple error |Eρ,V (f

α
(V )
z

)− Eρ,V (fα(ρ))|, the other one is
the approximation error Eρ,V (fα(ρ))− Eρ,V (f∗V ). The
latter is an approximation problem which will be dis-
cussed in Section 3. The former is determined by the
loss function and the sample z, whose estimate is the
main goal of Section 3.

We present our sample error estimate as following
Theorem 1.

Theorem 1. Let V be a Lipschitz loss with rank
L. Assume that K(x, y) satis�es (5). α(ρ) and α(V )

z

are de�ned in (6) and (4) respectively for a given dis-
crete set Y ⊂ X . Then, for any 0 < δ < 1, with
con�dence 1− δ, there holds

|Eρ,V (f
α

(V )
z

)− Eρ,V (fα(ρ))|

≤ 4k2L2(4log 2
δ +
√
m) log 2

δ

λm
. (8)

(8) shows that the sample error of the regularized
regression with Lipschits loss has the same conver-
gence rates as the ones in [26] obtained by the inte-
gral operator approach. It leads to the convergence

relation:

If λ = λ(m)→ 0, and mλ2 → +∞,when m→ +∞,

then, with possibility 1, holds

lim
m→+∞ |Eρ,V (f

α
(V )
z

)− Eρ,V (fα(ρ))| = 0.

As we shall see in Section 3 that the method used
here induces a capacity independent estimate. It is a
covering number independent approach and there is
no need to make additional assumptions on the kernel
space. The method in our arguments has some prop-
erties similar to the integral operator approach. For
example, both the approaches can gives the explicit
expression of the solution. However, the integral oper-
ator approach is unsuitable to the Lipschits loss. [7, 8]
used the sub-gradient of the loss to describe the con-
vergence for scheme (1). Our arguments will absorb
the advantages of [7, 8] and give a kind of learning
rates quantitatively.

When the loss function in Theorem 1 become
some concrete loss functions, we have the following
Corollary 1.

Corollary 1. If we take the place of loss V (t) in
scheme (4) with the pinball loss, the absolute loss or
the ε−insensitive loss and assume the kernel K(x, y)
satis�es (5), α(V )

z is the uniquely minimizer of scheme
(4), then, for any 0 < δ < 1, with con�dence 1 − δ,
there holds

|Eρ,V (f
α

(V )
z

)− Eρ,V (fα(ρ))|

≤ 4k2(4log 2
δ +
√
m) log 2

δ

λm
.

We now give an explicit learning rates for learn-
ing algorithm (4).

Theorem 2. Under the conditions of Theorem
1, if f∗V (x) =

∫
X ϕ(y) K(x, y) dρX(y) and

ϕ ∈ L2(ρX), then, there is a discrete set Y =
{y1, y2, · · · , ym} ⊂ X such that the solution α(V )

z of
the scheme (4) satis�es, for any 0 < δ < 1, with con-
�dence 1− δ, there holds

|Eρ,V (f
α

(V )
z

)− Eρ,V (f∗V )|

≤ 4k2 L2(4log 2
δ +
√
m)log 2

δ

λ m

+L

√
A− ‖f∗V ‖2L2(ρX)

m
+ λ ‖ϕ‖2L2(ρX), (9)
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where A =
∫
X

∫
X ϕ(y)2 K(x, y)2 dρX(x) dρX(y)

and L2(ρX) = {f : ‖f |L2(ρX) =

(
∫
X |f(x)|2dρX)

1
2 < +∞}.

De�ne an integral operator LK given by

LK(f, x) =
∫

X
K(x, t)f(t) dρX(t).

Then, f∗V (x) =
∫
X ϕ(y)K(x, y) dρX(y) and ϕ ∈

L2(ρX) implies f∗V (x) belongs to the range of oper-
ator LK . This type of function class was studied by
[26, 27] and in this case we say f∗V (x) satis�es regu-
larity condition (see [28]).

The rest of the paper is organized as follows.
We shall give in Section 3.1 some notations on non-
smooth analysis. In Section 3.2, we shall show the
robustness for scheme (6), i.e., for any two Borel pos-
sibility distributions ρ and γ on Z we give an upper
estimate for ‖α(ρ) − α(γ)‖. Theorem 1 is proved in
Section 3.3. In Section 4, we shall �rst prove an esti-
mate for the approximation error, with which and (8)
show Theorem 2.

To make the statement clearer, we give here some
particular symbols. We shall denote by KY (x) the
vector (K(x, y1), · · · ,K(x, ym)) relating to Y . By
<m(m ≥ 1) we denote the m−dimensional Eu-
clidean space with the usual inner product, i.e., for any
a = (a1, a2, · · · , am)>, b = (b1, b2, · · · , bm)> ∈ <m,
we de�ne

‖a‖2 =
m∑

i=1

|ai|2 = a> a, 〈a, b〉 =
m∑

i=1

aibi = a>b.

For a vector function

f(x) = (f1(x), · · · , fm(x))>

and a real function α(x) on X we de�ne

f(x)α(x) = (f1(x)α(x), · · · , fm(x)α(x))>

and
∫

X
f(x)α(x)dρX

= (
∫

X
f1(x)α(x)dρX , · · · ,

∫

X
fm(x)α(x)dρX)>.

3 Sample Error Analysis
We know that non-smooth analysis is an impor-
tant tool in dealing with non-differential optimization
problem. We give here some notations on it for the
latter needs.

3.1 The generalized gradient

Let f be a Lipschitz function de�ned on a Hilbert
space (X, ‖ · ‖), and let l be any other given vectors
in X . The Clarke's generalized directional derivative
(see [10]) of f at x ∈ X in the direction l, denoted by
fo(x; l), is de�ned as

fo(x; l) = lim sup
x′→x, t↓0

f(x′ + tl)− f(x′)
t

,

where of course x′ ∈ X and t is a positive scalar. The
generalized gradient of f at x, denoted ∂f(x), is a
subset of X de�ned by

{ξ ∈ X : fo(x; l) ≥ 〈ξ, l〉 for all l in X},
where 〈·, ·〉 denote the inner product produced by the
norm ‖ · ‖.

If f(x) is a convex function on X , then for any
x′ ∈ X there is (see [10]),

∂f(x) = {ξ ∈ X : f(x′)− f(x) ≥ 〈ξ, x′ − x〉}, (10)

If f(x) : <m → < is a differentiable func-
tion, then, ∂f(x) = {∇f(x)}, where ∇f(x) =
( ∂f∂x1

, · · · , ∂f
∂xm

) is the usual gradient.
A well known result is, if f(x) is a convex func-

tion on X , then x0 is the minimal value point of f(x)
on X if and only if 0 ∈ ∂f(x0)(see [10]).

3.2 The robustness

It is not dif�cult to see that the solutions of the (6)
is in�uenced by the distribution ρ. We call the quan-
titatively description of this in�uence the robustness.
We shall express the solutions with generalized gradi-
ents of the loss and then show the robustness.

Proposition 1. Let V (t) be a convex loss function
on<, ρ and γ be given Borel probability distributions
on Z. α(ρ) and α(γ) are the solutions of scheme (6)
for ρ and γ respectively. Then, there is an H(t) ∈
∂V (|t|) such that

‖α(ρ) − α(γ)‖
≤ 1

λm
‖
∫

Z
H(|w − fα(ρ)(x)|) KY (x)> dρ

−
∫

Z
H(|w − fα(ρ)(x)|) KY (x)> dγ‖.(11)

(11) shows how the solutions of the scheme (6)
is in�uenced by distribution ρ. In fact, we have the
following clearer one.
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If V (t) is an even differentiable convex function
on <, then, ∂V (t) = {V ′(t)}, (11) becomes

‖α(ρ) − α(γ)‖
≤ 1

λm
‖
∫

Z
V ′(w − fα(ρ)(x)) KY (x)> dρ

−
∫

Z
V ′(w − fα(ρ)(x))KY (x)> dγ‖.

To show Proposition 1 we need some lemmas.

Lemma 1.Let V (t) be a convex loss function
on <, ρ be a given Borel probability distribution on
Z.α(ρ) is the unique solution of scheme (6) for ρ.
Then,

(i). For any (x,w) ∈ Z there holds

∂αV (|w − fα(x)|) = −∂V (|w − fα(x)|)KY (x)>. (12)

(ii). There is an H(t) ∈ ∂V (|t|) such that

2λm α(ρ) =
∫

Z
H(|w − fα(ρ)(x)|) KY (x)> dρ. (13)

Proof. Since λ > 0, we known λ‖α‖2 is a strict
convex function about α on <m. On the other hand,
since V (t) is a convex function, we know (6) is a strict
convex optimization problem about α on <m. The
solutions α(ρ) is thus uniqueness.

Proof of (i). By the Theorem 4.2.1 in [18] we
have following result:

If A : <q → <q is an af�ne mapping (Ax =
A0x + b) with A0 linear and b ∈ <q and let g be a
�nite convex function on <q. Then,

∂(g ◦A)(x) = A∗0 ∂g(Ax) (14)

for all x ∈ <q, where A∗0 is the adjoint of A0.

Since V (|w − fα(x)|) = V (|w −KY (x)α|), by
taking A0 = KY (x) and b = w in (14), we have (12).

Proof of (ii). By Proposition 2.2 in [9] we know
the following result:

If fi (i = 1, 2, · · · ,m) are Lipschitz on X and
let λi(i = 1, 2, · · · ,m) be scalars. Then, f(x) =
m∑
i=0

λi fi(x) is Lipschitz on X and we have

∂(
m∑

i=0

λi fi(x)) ⊂
m∑

i=0

λi ∂fi(x). (15)

Moreover, if fi(x) are convex functions onX , then the
equality holds.

Since
∫
Z V (|w−fα(x)|) dρ and ‖α‖2 =

m∑
i=1
|αi|2

are convex function about α on <m, we have by (15)
and the fact that α(ρ) is the minimizer of (6) that

0 ∈ ∂α(
∫

Z
V (|w − fα(x)|) dρ)|α=α(ρ) + 2λ m α(ρ)

=
∫

Z
∂αV (|w − fα(x)|)|α=α(ρ) dρ+ 2λ m α(ρ)

= −
∫

Z
∂V (|w − fα(ρ)(x)|) KY (x)> dρ

+2λm α(ρ),

where, in the last deduction, we have used the equality
(12). Hence, there is H(t) ∈ ∂V (|t|) such that (13)
holds.

Lemma 2. For any a, b ∈ <m there holds

‖a‖2 − ‖b‖2 = 2〈a− b, b〉+ ‖a− b‖2. (16)

(16) can be shown by simple computations.
Proof of (11). Simple computations give

fα(γ)(x)− fα(ρ)(x) = 〈KY (x)>, α(γ) − α(ρ)〉. (17)

Let H be de�ned as in (13). Then, (10) and (17)
yields

V (|w − fα(γ)(x)|)− V (|w − fα(ρ)(x)|)
≥ H(|w − fα(ρ)(x)|)(fα(ρ)(x)− fα(γ)(x))

= 〈α(γ) − α(ρ), −H(|w − fα(ρ)(x)|)
×KY (x)>〉. (18)

(18) is followed by
∫

Z
V (|w − fα(γ)(x)|)dγ

−
∫

Z
V (|w − fα(ρ)(x)|) dγ

≥ 〈α(γ) − α(ρ), −
∫

Z
H(|w − fα(ρ)(x)|)

× KY (x)> dγ〉.

Taking a = α(γ) and b = α(ρ) into (16), we have

‖α(γ)‖2 − ‖α(ρ)‖2 = 2〈α(γ) − α(ρ), α(ρ)〉
+‖α(γ) − α(ρ)‖2.

Above two equalities yields

(Eγ,V (fα(γ)) + λm ‖α(γ)‖2)− (Eγ,V (fα(ρ))

+ λm ‖α(ρ)‖2)
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≥ 〈α(γ) − α(ρ),−
∫

Z
H(|w − fα(ρ)(x)|)KY (x)>dγ〉

+2λm 〈α(γ) − α(ρ), α(ρ)〉+ λm‖α(ρ) − α(γ)‖2
= 〈α(γ) − α(ρ), 2λmα(ρ)

−
∫

Z
H(|w − fα(ρ)(x)|)KY (x)>dγ〉

+λm ‖α(ρ) − α(γ)‖2

= 〈α(γ) − α(ρ),

∫

Z
H(|w − fα(ρ)(x)|)KY (x)>dρ

−
∫

Z
H(|w − fα(ρ)(x)|) KY (x)> dγ〉

+ λ m ‖α(ρ) − α(γ)‖2, (19)

where, in the last deduction, we have used the equa-
tion (13). By the de�nitions of α(ρ) and α(γ) we have

(Eγ,V (fα(γ)) + λm‖α(γ)‖2)− (Eγ,V (fα(ρ))

+λm ‖α(ρ)‖2) ≤ 0,

which and (19) give

λm ‖α(ρ) − α(γ)‖2

≤ 〈α(ρ) − α(γ),

∫

Z
H(|w − fα(ρ)(x)|) KY (x)> dρ

−
∫

Z
H(|w − fα(ρ)(x)|) KY (x)> dγ〉

≤ ‖α(ρ) − α(γ)‖ × ‖
∫

Z
H(|w − fα(ρ)(x)|)KY (x)> dρ

−
∫

Z
H(|w − fα(ρ)(x)|) KY (x)> dγ‖.

(11) then holds.

3.3 Proof of Theorem 1

We now show Theorem 1. By equality (16) we
have

‖α(ρ)‖2 − ‖α(V )
z ‖2 = 2〈α(ρ) − α(V )

z , α(V )
z 〉

+‖α(ρ) − α(V )
z ‖2. (20)

(20) and the de�nition of α(ρ) yields

|Eρ,V (fα(ρ))− Eρ,V (f
α

(V )
z

)|
≤ {(Eρ,V (f

α
(V )
z

) + λm ‖α(V )
z ‖2)

−(Eρ,V (fα(ρ)) + λm ‖α(ρ)‖2)}
+λm |‖α(ρ)‖2 − ‖α(V )

z ‖2|
= {(Eρ,V (f

α
(V )
z

) + λm‖α(V )
z ‖2)

−(Eρ,V (fα(ρ)) + λm ‖α(ρ)‖2)}

+λm |2〈α(ρ) − α(V )
z , α(V )

z 〉+ ‖α(ρ) − α(V )
z ‖2|

≤ {(Eρ,V (f
α

(V )
z

) + λm ‖α(V )
z ‖2)

−(Eρ,V (fα(ρ)) + λm ‖α(ρ)‖2)}
+2λm ‖α(ρ) − α(V )

z ‖ × ‖α(V )
z ‖

+λm ‖α(ρ) − α(V )
z ‖2

= A+ 2λm ‖α(ρ) − α(V )
z ‖ × ‖α(V )

z ‖
+λ m‖α(ρ) − α(V )

z ‖2. (21)

A reformulation of (18) gives

V (|w − f
α

(V )
z

(x)|)− V (|w − fα(ρ)(x)|)
≤ 〈α(V )

z − α(ρ),−H(|w − f
α

(V )
z

(x)|)
×KY (x)>〉. (22)

Therefore,

Eρ,V (f
α

(V )
z

)− Eρ,V (fα(ρ))

≤ 〈 −
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ, α(V )
z

−α(ρ)〉. (23)

On the other hand, rewrite (20) as

‖α(V )
z ‖2 − ‖α(ρ)‖2 = 2〈α(V )

z − α(ρ), α(V )
z 〉

−‖α(V )
z − α(ρ)‖2,

which and (22) yields

A = (Eρ,V (f
α

(V )
z

) + λm ‖α(V )
z ‖2)− (Eρ,V (fα(ρ))

+λm ‖α(ρ)‖2)

≤ 〈 −
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)>dρ,

α(V )
z − α(ρ)〉+ 2λm〈α(V )

z ,

α(V )
z − α(ρ)〉 − λm ‖α(V )

z − α(ρ)‖2

= 〈 −
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ

+2λm α(V )
z , α(V )

z − α(ρ)〉
−λm ‖α(V )

z − α(ρ)‖2.
Since (see (13) and (7))

2λm α(V )
z =

1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|)

×KY (xi)>, (24)

we have

A ≤ 〈 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|) KY (xi)>
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−
∫

Z
H(|w − f

α
(V )
z

(x)|)KY (x)> dρ

, α(V )
z − α(ρ)〉 − λm ‖α(V )

z − α(ρ)‖2

≤ ‖
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ

− 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|) KY (xi)>‖

× ‖α(V )
z − α(ρ)‖ − λm ‖α(V )

z − α(ρ)‖2. (25)

(25) and (21) yields

|Eρ,V (fα(ρ))− Eρ,V (f
α

(V )
z

)|

≤ ‖
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ

− 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|) KY (xi)>‖

×‖α(V )
z − α(ρ)‖+ 2λ m ‖α(ρ) − α(V )

z ‖
×‖α(V )

z ‖
≤

(
‖
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ

− 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|) KY (xi)>‖

+2λm ‖α(V )
z ‖

)
‖α(ρ) − α(V )

z ‖

=
(
‖
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ

− 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|) KY (xi)>‖

+ ‖ 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|) KY (xi)>‖
)

×‖α(ρ) − α(V )
z ‖,

where, in the last deduction, we have used the equa-
tion (24).

On the other hand, (7) and (11) yields

‖α(ρ) − α(V )
z ‖

≤ 1
λm
‖
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ

− 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|) KY (xi)>‖.

We then have

|Eρ,V (fα(ρ))− Eρ,V (f
α

(V )
z

)|

≤ 1
λm

(
‖
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ

− 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|) KY (xi)>‖

+ ‖ 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|)KY (xi)>‖
)

×‖
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ

− 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|)

×KY (xi)>‖. (26)

By the Proposition 1.5 in Chapter 2 of [9] we
know

If f(x) : < → < is a Lipschitz function with rank
L, then, ∂f(x) is a nonempty, convex, subset of<, and
‖ξ‖ ≤ L for every ξ ∈ ∂f(x).

Then, the assumption that V (t) is a Lipschitz loss
with rank L yields |H(|w − f

α
(V )
z

(x)|)| ≤ L for all
(x, w) ∈ X ×W , which and the fact ‖KY (x)>‖ =

(
m∑
j=1
|K(x, yj)|2)

1
2 ≤ k√m ensures

‖H(|w − f
α

(V )
z

(x)|) KY (x)>‖
= |H(|w − f

α
(V )
z

(x)|)| × ‖KY (x)>‖
≤ kL

√
m (27)

and
∫

Z
‖H(|w − f

α
(V )
z

(x)|) KY (x)> ‖2 dρ
≤ k2L2m. (28)

Notice the following large number law(see [26]):
Let (H, ‖ · ‖H) be a Hilbert space and ξ be a

random variable on (Z, ρ) with values in H . As-
sume ‖ξ‖H ≤ M̃ < +∞ almost surely. Denoted
σ2(ξ) = E(‖ξ‖2H). Let {ξi}mi=1 be independent ran-
dom drawers of ρ. For any 0 < δ < 1, with con�dence
1− δ, there holds

‖ 1
m

m∑

i=1

(ξi − E(ξi))‖H

≤ 2M̃log(2/δ)
m

+

√
2σ2(ξ) log(2/δ)

m
. (29)

Take ξ(x,w) = H(|w − f
α

(V )
z

(x)|) KY (x)>,
then, (27) and (28) yields

‖ξ‖ ≤ kL√m and E(‖ξ‖2) ≤ k2L2m. (30)

We know by (29) and (30) that, with con�dence
1− δ, there holds

‖
∫

Z
H(|w − f

α
(V )
z

(x)|) KY (x)> dρ
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− 1
m

m∑

i=1

H(|wi − fα(V )
z

(xi)|) KY (xi)>‖

≤ sup
‖ξ‖≤kL √m

‖
∫

Z
ξ(x, w) dρ− 1

m

m∑

i=1

ξ(xi, wi)‖

≤ kL
√
m× (

2log 2
δ

m
+

√
2log 2

δ

m
)

≤ 4kLlog
2
δ
. (31)

Take (31) and (27) into (26) give (8).

4 Approximation Error and Learn-
ing Rates

By Section 2 we know, besides the sample error,we
need the approximation error to show the learning
rates. The approximation error is related to RKHS ap-
proximation. When V (t) is the least square loss, the
approximation problem has been studied by [27]. For
some chosen discrete sets Y the approximation prob-
lem is investigated in [23, 24, 25]. In this section, we
shall give an upper bound for the approximation error
with possibility theory.

Proposition 2. Under the conditions of The-
orem 1 if f∗V (x) =

∫
X ϕ(y)K(x, y) dρX(y)

and ϕ ∈ L2(ρX) = {f(x) : ‖f‖L2(ρX) =

(
∫
X |f(x)|2 dρX)

1
2 < +∞}, then, there is a discrete

set Y ⊂ X such that the solution α(ρ) of scheme (6)
satis�es

Eρ,V (fα(ρ))− Eρ,V (f∗V )

≤ L
√
A− ‖f∗V ‖2L2(ρX)

m
+ λ‖ϕ‖2L2(ρX), (32)

where A =
∫
X

∫
X ϕ(y)2 K(x, y)2dρX(x) dρX(y).

Proof. The de�nition of α(ρ) yields

Eρ,V (fα(ρ))− Eρ,V (f∗V )

≤ Eρ,V (fα(ρ))− Eρ,V (f∗V ) + λm‖α(ρ)‖2
= inf

α∈<m
(Eρ,V (fα)− Eρ,V (f∗V ) + λm‖α‖2).

Since V (t) is a Lipschitz loss with rank L, we
have

Eρ,V (fα)− Eρ,V (f∗V )
= |Eρ,V (fα)− Eρ,V (f∗V )|
≤

∫

Z
|V (|fα(x)− w|)− V (|f∗V (x)− w|)| dρ

≤ L

∫

X
|fα(x)− f∗V (x)| dρX .

Let {X1, X2, · · · , Xm} be i.i.d. random vari-
ables with the same distribution ρX and for a function
g(X1, X2, · · · , Xm) on Xm we de�ne the mathe-
matical expectation E(g) as

E(g) =
∫

Xm
g(X1, X2, · · · , Xm) dρX(X1)

× · · · dρX(Xm),

then, there is Y = (y1, y2, · · · , ym) ⊂ X such that

Eρ,V (fα(ρ))− Eρ,V (f∗V )
≤ Eρ,V (fα(ρ))− Eρ,V (f∗V )

+λm ‖α(ρ)‖2

≤ inf
α∈<m

(L
∫

X
|fα(x)− f∗V (x)| dρX + λm ‖α‖2)

≤ L

∫

X

∣∣∣
m∑

k=1

ϕ(yk)
m
×K(x, yk)− f∗V (x)

∣∣∣ dρX

+λ
m∑

k=1

ϕ(yk)2

m

≤ E(L
∫

X

∣∣∣
m∑

k=1

ϕ(Xk)
m

×K(x,Xk)− f∗V (x)
∣∣∣ dρX

+λ
m∑

k=1

ϕ(Xk)2

m
)

≤ λ‖ϕ‖2L2(ρX)

+L
∫

X
E(|

m∑

k=1

ϕ(Xk)
m

×K(x, Xk)− f∗V (x)|) dρX .

The Cauchy's inequality gives

E[|
m∑

k=1

ϕ(Xk)
m

×K(x, Xk)− f∗V (x)|]

≤ (E(|
m∑

k=1

ϕ(Xk)
m

×K(x,Xk)− f∗V (x)|2))
1
2 .

It follows by the Hölder inequality that
∫

X
E(|

m∑

k=1

ϕ(Xk)
m

×K(x, Xk)− f∗V (x)|)

×dρX(x)

≤
∫

X
(E[|

m∑

k=1

ϕ(Xk)
m

×K(x, Xk)− f∗V (x)|2])
1
2

×dρX(x)

≤ (
∫

X
E[|

m∑

k=1

ϕ(Xk)
m

×K(x, Xk)− f∗V (x)|2]

×dρX(x))
1
2 .
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Therefore,

Eρ,V (fα(ρ))− Eρ,V (f∗V )

≤ λ ‖ϕ‖2L2(ρX)

+ L
( ∫

X
E(|

m∑

k=1

ϕ(Xk)
m

×K(x,Xk)− f∗V (x)|2)

×dρX
) 1

2

= λ‖ϕ‖2L2(ρX) + L
( ∫

X
E(|f∗V (x)|2

−2
m∑

k=1

ϕ(Xk) K(x, Xk)
m

× f∗V (x)

+
m∑

k,j=1

ϕ(Xk) ϕ(Xj)
m2

×K(x, Xk)

×K(x, Xj))dρX
) 1

2 . (33)

Since X1, X2, · · · , Xm are independent and

f∗V (x) =
∫

X
ϕ(y)K(x, y) dρX(y),

we have

E

(
|f∗V (x)|2 − 2

m∑

k=1

ϕ(Xk) K(x,Xk)
m

× f∗V (x)

+
m∑

k,j=1

ϕ(Xk)ϕ(Xj)
m2

×K(x, Xk) K(x,Xj)
)

= |f∗V (x)|2 − 2
m

m∑

k=1

E(ϕ(Xk)K(x,Xk))× f∗V (x)

+
1
m2

m∑

k,j=1

E(ϕ(Xk)ϕ(Xj) K(x, Xk) K(x, Xj))

= −|f∗V (x)|2

+
1
m2

∑

k=j

E
[
ϕ(Xk)ϕ(Xj)K(x,Xk)

×K(x,Xj)
]

+
1
m2

∑

k 6=j
E
[
ϕ(Xk) ϕ(Xj)K(x,Xk)K(x,Xj)

]

= −|f∗V (x)|2 +
1
m

∫

X
ϕ(y)2K(x, y)2 dρX(y)

+
m(m− 1)

m2
× |f∗V (x)|2

and therefore
∫

X
E
(
|f∗V (x)|2 − 2

m∑

k=1

ϕ(Xk) K(x, Xk)
m

×f∗V (x) +
m∑

k,j=1

ϕ(Xk)ϕ(Xj)
m2

×K(x,Xk) K(x,Xj)
)
dρX

= −‖f∗V ‖2L2(ρX)

+
1
m

∫

X

∫

X
ϕ(y)2K(x, y)2 dρX(y)dρX(x)

+
m(m− 1)

m2
× ‖f∗V (x)‖2L2(ρX)

=

∫
X×X ϕ(y)2K(x, y)2dρX(y)dρX(x)− ‖f∗V ‖2L2(ρX)

m
.

(33) and above equality yields (32).

Proof of Theorem 2. (9) can be obtained by (32)
and (8).
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