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Abstract 

A one dimensional lattice gas model is used to study the interaction of fluid flows with solid 

houndaries. Various interaction mechanisms are examined. Lattice Boltzmann simulations 

show that bounce-back reflection is not the only interaction that yields "no-slip"boundary 

conditions (zéro velocity at a fixed wall) and that Knudsen type interaction is also 

appropnate. 

In t roduc t ion 

A large class of problems in fluid mechanics involves solid boundanes. Standard 

analysis require that the velocity of the fluid be zéro at a fixed boundary, in agreemeni 

with expérimental observation at the hydrodynamic level: this is known as "no-slip' 

condition. This condition is satisfactory for simulation of the Navier-Stokes équations with 

iraditional computadonal methods, but obviously it does not shed any light on the 

mechanisms that effectively reduce the velocity to zéro on the wall. On the other hand, 

there are very few experiments that explore the interaction of fluids and solid boundaries at 

the molecular level. In this respect, lattice gas methods prove useful because e v e n though 

iattice gas automata are construcred as fictitious microworlds, their operational algorithms 
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must include the proper basic microscopic mechanisms in order to produce correct 

hydrodynamic behavior. Therefore the lattice gas approach to the boundary flow problem 

requires a model interaction mechanism with solid boundaries. We présent a simple lattice 

gas model, for the study of flows near walls; the model is easily implemented on a small 

computer and is free of the usual Monte-Carlo noise inhérent to a description at the 

microscopic level, so that computations run fast. 

The latttice gas model 

We consider the six-particle FHP model [1]: this automaton runs on a triangular 

lattice with hexagonal symmetry; ail panicles have unit mass, move with unit velocity in 

one of the six possible directions of the lattice (fig. la) and are subject to an exclusion 

principle, (at a given node, no two particles occupy the same link at a given nme); thus, the 

maximum number of panicles per node is six; when two particles meet at a node, they 

collide at integer times. There are essentially two collision rules, one involving head-on 

binary collisions and one involving three particles converging symmetrically towards a 

node ( fig. lb).The présence of three particle collisions is essential in order to remove a 

non-physical conservation law [2] so that the only conserved quantities are mass and 

momentum. Ail other collisions leave the particle configuration unchanged, and so do not 

contribute to momentum transfer. After the collision, partiales move one lattice link length 

per unit time in the direction of their velocity. Thèse are the simplest rules that produce 

correct hydrodynamic behavior at the macroscopic level.Spécifie collision rules are used to 

model interactions of particles with solid boundaries; for instance, particles are either 

specularly reflected or bounced back as shown in figure 2. Collision rules can be 

conveniently written as a collision table. In the simple six particle FHP model, the collision 

table has 64 input states (the number of possible input configurations is 2 , where b is the 

number of sites per node). 
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The équations goveming the évolution of the gas can be written by inspection. The 

position of a lattice node is denoted by r . The occupancy variable n̂  (direction i = 0, 1,2, 

...,5) is either 0 or l(because of the exclusion principle) and n- is a function of position r 

on the latrice and of time t. The évolution of the automaton in space and time proceeds by 

séquences of two consécutive events: propagation followed by collision. During 

propagation, all panicles move one lattice unit in the direction of their velocity Cj, and 

during collision , all nodes are updated i.e. panicles are reorganized according to the 

collision ruies. Note that after a large number of updates, it does not matter wether collision 

or propagation occurred first [2]. 

In establishing the équations goveming the évolution of the lattice gas obeying the 

simple FHP collision rules (fig. Ib) given above one must account for the fact that there are 

two possible output configurations for binary head-on collisions which are assigned 

complementary probabilities a and (1-a). The value a =1/2 is most common, that is on the 

average every other collision leads to one of the possible configurations. The 

microdynamical équations are [2]: 

nj(t+l, r + c- ) = n-( t,r ) + Â C n ), i = 0 ,1 , . . . . 5 , (1) 

where n-( t,r ) is the propagation term and A-( n ) is the collision term: 

Ai( n ) = 

'à n i+ in i+4 rii ni+2ni+3 ni+5 + (1- a) ni+2 ni+5 ïïi iîi+ini+3 ni+4 - ni ni+3 nj+i ni+2 'î^i-^4 "i+s 

+ n i+ in i+3 ni+sï ï i ni+2 ni+4 - n ini+2 ni+4ni+i ni+3 ïïi+s ïïi = 1 - n i ( 2 ) 

The first line on the right hand side of (2) refers to collisions involving two particles 

and the second line to those involving three particles; terms with a plus (minus) sign 

represent populating (depopulating) contributions to n | ( t+l, r + Cj ). A lattice gas obeying 

the microdynanical équations; 

1- has an equilibrium state, and the equilibrium distribution is of the Fermi-

Dirac type, resulting from the exclusion principle [2]. 
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2- evolves according to the Navier-Stokes équations in the incompressible 

hydrodynamic limit 

The set of équations (2) defines the cellular automaton to be implemented for simulation 

purposes. Thèse équations are well suited for efficient implementation since ail variables 

are boolean. AU particles on the lattice are first propagated in the direction of their velocity; 

then each node is updated according to the collision rules. This opération is most 

conveniendy performed by means of at look up table, that yield directly the output 

configuration resulting firom a given input configuration. Ail variables are thus updated by 

"boolean processors" of the cellular automaton type. 

As appealing as this method may seem, it may not be the optimal computaiion technique for 

investigating boundary flôw mechanisms, because it is by essence inherentiy noisy. 

Therefore to obtain a velocity profile with the required degree of accuracy one needs long 

rimes for the average velociries to émerge from the noise. So it appears more efficient to use 

averaged quantities Nj for the occupancy rather than the boolean microscopic quantities n .̂ 

This is accomplished by standard of statistical mechanical methods 

One defines a probability distribution P that assigns each microstate a probability of 

occurrence in phase space Fof ail possible assignments {n- = {nj(r )}, r e Latncejof the 

boolean field nj(r ) [2]. Averaged quantities can then be defined; in panicular, macroscopic 

probabilities of occupancy Ni are given by: 

The averaging process defined above applied to the microdynamical équations (1) yields: 

Ni(r*) = < n i ( r O > = X ni(r*)P({mj}) 

(nij)Gr (3) 

Ni(t+l , r + Ci) = N i ( t , r ) + A i ( n), 

where Aj( n) = 

(4) 

a< ni+ini+4 ni ni+2ni+3 ni+5> 

+ (1- a) <ni+2 ni+5 n; nj+inj+s ni+4> - <ni ni+3 ni+i ni+2 ni+4 ni+5 > 

+< ni+ini+.3 ni+sïïi ni+2 ni+4> - <nini+2 ni44ni+i ni+3 ni+5> ) (5) 
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With the factorization hypothesis ( Boltzmann approximation) applied to (5), (4) b e c o m e s 

the la tr i ce Boltzmann équation where the collision term (for the FHP model) reads: 

Aj( N ) = 

a Ni+iNi^ (1-Ni)(l-Ni^2)(l-Ni^3)(l-Ni^5)+ d - a ) Ni+2Ni+5 ( l-Ni)(l-Ni+i)(l-Ni^3)(l-Ni^) 

- NiNi^3 (l-Ni+i)(l-Ni^2)(l-Ni^)(l-Ni+5) 

+ Ni^iNi^3Ni^5(l-Ni)(l-Ni^2)(l-Ni^)-NiNi+2Ni^(l-N,^i)(I-Ni^3)(l-Ni+5) (6) 

The local observables, such as the density p and the velocity U are obtained as : 

p= IN, I ^ i ' ' (7) 
1 

1 

For t h e type of problem considered here, computation from the lattice équation is q u i t e 

straightfonvard; the lattice Boit method is then particularly fast and convenient, as 

compared to microscopic simulations and to conventional numerical techniques. 

Flow n e a r a f la t wall 

We consider the interaction of a moving fluid with an infînitely long flat boundary; 

however because of translational invariance, it suffices to consider a short section of the 

boi 'ndary (actually, a single column of nodes perpendicular to the wall). The S y s t e m is 

initialized as a fluid with density p ( or link density d = p /6 ) at rest near along the w a l l . At 

rime t = 0, the fluid is made to flow instantaneously with velocity Uo and the bulk of the 

fluid is in the stationary state corresponding to density p and velocity (Uo,0) (fig.3). 

After the first time step, o r . l y the layer adjacent to the wall will expérience the 

influence of the boundary and die velocities at ail nodes in that first layer will have 

decreased by an equal amount AU. Ail subséquent layers (labeled second layer, th i rd 

layer,...) r e m a i n at the free flow velocity Uo. After the second t i m e step, n o t only b a s the 

first layer been further slowed down by the wall, but now the velocity gradient imposed 

between the first and third layers has slowed down the second layer. Because of t h e in i t ia l 
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conditions in the simulation, ail the nodes of the second layer are slowed down by an equal 

amount. Again ail layers beyond the second one remain at velocity Uo. 

After the n ^ time step, friction effects from the wall affect ail layers up to the n'^ 

layer. AU velocities within a given layer will be reduced by an equal amount and ail nodes 

above the n^^ layer have velocity Uo. Thus,the velocity profile of the gas is translationally 

invariant: for flat boundaries of infinité extent, we have a one dimensional problem. Such a 

problem can be easily implemented. Each new computation step adds a new layer to the 

simulation, while ail layers beyond are at the stationary velocity Uo. 

We define the boundary layer thickness ô as the distance from the wall where the 

velocity is 0.99 Uo. 5 increases with time at a much slower rate than the rate at which the 

number of layers involved in the computation increases. 

Because of translational invariance, there is no velocity gradient along the wall and 

the Navier-Stokes équation for the flow considered reduces to (in the incompressible limit): 

at ay2 

where v is the kinematic viscosity, u is the velocity in the x direction along the wall and y 

dénotes the axis orthogonal to the wall. If the velocity on the wall is zéro, the boundary 

condition are u(0,t) = 0, and u(<»,t) = Uo, and the solution to (8) reads [4]: 

Two important properties émerge from îhis solution; 

1- velocity profiles have a space-dependent scaling property; 

2- the boundary layer thickness ô increases as the square root of time. 

Note that when the free flow velocity is constant, time can be convened into distance 

along the wall ( x=Uot ) and the variation of d with respect to t can be equally expressed in 

terms of x. In classical laminar boundary theory applied to flow along a semi-infinite plane 

[4] (Blasius), ô increases as (x)^'''^, where x is the horizontal distance from the leading edge 
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of the wall. Since Uo is constant, we can interpret the successive velocity profiles as 

profiles at increasing distance along the wall whose edge is located at x = 0 (i.e. at t=0). 

Lattice Bol tzmann Simulat ions 

Simulations with zéro velocity boundary condition obtained by the bounce-back 

rule on the wall (fig. 2b) match very well the theoretical prédiction, équation (9), for the 

velocity profile ( fig. 4) and for the growth of the boundary layer thickness (fig.5). The 

velocity profiles are also quite close to the classical Blasius profile (fig. 4). 

When the assumption of zéro velocity on the wall is relaxed, one no longer has an 

error funcrion type velocity profile. In this respect, we now specifically address the 

question tof the relationship between the velocity profile and the particle-wall interaction. 

Bounce-back reflection with solid bodies is (fig. 2b) is commnly used in lattice gas 

simulations; however, there are good reasons to examine other types of reflections. One 

reason stems from considération of experiments at the molecular level. In his book 

published in 1934, Knudsen [5] describes an experiment where molécules are directed 

towards a wall at a fixed angle of incidence; he observes that the molécules are randomly 

scattered in ail directions. In a lattice gas, this would correspond to a combination of 

specular and bounce back reflections in equal proportions. A second reason is that, with 

purely deterministic interactions with the wall, the Boltzmann assumption of no corrélation 

between particles prior to collision is not valid; note however that the hypothesis is correct 

in a statistical sensé for a 50% combination of bounce-back and specular reflections. 

In a lattice gas, zéro velocity at the boundary is obtained (in a strict sensé) only with 

pure bounce back reflection. If bounce-back reflection is présent (in any proportion), more 

fluid particles will be reflected in the backward direction than the forward direction. This 

results in a ftiction effect that slows down the fluid near the wall until its velocity vanishes; 

in other words, the velocity on the wall should go as close to zéro as we want, if we wait 

long enough. 
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Our model is particularly well suited to verify this assertion. We define a reflection 

coefficient r as the ratio of bounce-back to specular reflections in the interactions with the 

wall: r=l corresponds to pure bounce-back reflection and r=0 to pure specular reflection. 

Figure 6 shows the velocity profiles obtained for différent values of r, ail other parameters ( 

computation time, particle density and free flow velocity ) being kept constant. As 

expected, velocity on the wall is found to be zéro for r=l , and increases progressively to 

Uo as r decreases to zéro. However, for long computation rimes (with ail other parameters 

kept constant), ( fîg. 7), the velocity on the wall decreases and goes arbitrarily close to 

zéro. 

In order to support the claim that zéro velocity on the wall can be obtained in the 

long time limit, figure 8 shows the computation time required to obtain the velocity value 

0.1 Uo on the wall as a function of r ( ail other parameters being kept constant ). We find 

that the velocity on the wall can be expected to go close to zéro very rapidly for r > 0.4 ( 

60% specular reflection proportion or less ); for 0.1> r >0.35, the computation time 

increases exponentially with (1-r). 

The validation of lattice gas modelling of physical phenomena requires knowledge 

of thèse phenomena at the hydrodynamic level, but also, to some extent, at the molecular 

ievel. Conversely, lattice gas simulations can be useful in providing information as to what 

simple modeis can do and how simplified microdynamics can provide correct 

hydrodynamics. Boundary interactions are a good example of such a situation. In a real 

gas there are no "layers" and molécules do not move in discrète time steps. However, if we 

imagine layers of thickness dy parallel to the wall, and if we assume that ail molécules in 

each layer have the same average velocity, then a random redistribution of molécules 

colliding with a wall would not give a zéro velocity sdicto sensu; to first approximation the 

redistribution would resuit in a velocity on the wall with value equal to one half the velocity 

in the first layer. Of course, as dy --> 0, this value would go infinitesimally close to zéro. 
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However, even without going to this limit, the velocity on the wall is expected to get doser 

to zéro in the course of time because of viscosity effects. This suggests that r = 0.5 might 

be an altemate choice to r=l for boundary condition . 

The situation discussed above is différent from Couette channel flow (one side of 

the channel moves with velocity Uo) where the flow effectively reaches a steady state.With 

r=l on fixed wall, t h e o r y predicts a steady-state v e l o c i t y profile increasing linearly from 

zéro on the wall at rest to Uo o n the m o v i n g wall. For the semi-infmite Poiseuille S y s t e m , 

the profile never reaches a steady state and the boundary layer grows indefinitely. Lattice 

gas simulations of Couette flow show the expected linear profile. The velocity on the fixed 

wall is zéro for a reflection coefficient r =1. However, for r <1, the velocity on the fixed 

wall reaches a non zéro steady state value which increases as specular reflection becomes 

more imponant; indeed one should not expect zéro velocity on tiie boundary since along the 

wall momentum transferred fix»m the adjacent layers cannot be be transferred back to the 

fluid at each time step and consequentiy there is a constant velocity on tiie waJl. This effect 

is expected to be negligible when the width of the channel is large compared to the mean 

free path. 

C o n c l u s i o n 

We have shown that in a lattice gas flow along a fixed solid boundary, pure bounce-

back reflection is not the only type of interaction that yields no-slip condition at the 

boundary. Zéro velocity on the wall can be reached when bounce-back reflection is 

combined with sp)ecular reflection in any proportion. However the time required to obtain 

no slip condition increases considerably when the reflection coefficient becomes smaller 

than 0.4 . Thèse results validate the use of the Knudsen interaction (r=0.5) model which is 

in agreement with actual expérimental observation. 



1 0 

Acknowledgement 

We would like to thank Dominique d'Humières, Geoffrey Searby and Femand 

Hayot for for helpful discussions. A. N. has benefited from a P.A.I. grant. J.P. B 

acknowledges support from the " Fonds national de la recherche scientifique"(FNRS, 

Belgium). This work was supponed by European Community grant ST2J-0190. Part of 

this work was donc under PAFAC grant Z217-L128. 

REFERENCES 

1- U. Frisch, B. Hasslacher, Y, Pomeau,"Lattice gas automata for the Navier-Stokes 

équation". Phvs. Rev. Lett..S6 (1986),1505. 

2- U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, 

J.P. Rivet,"Lattice Gas Hydrodynamics in two and three dimensions", 

Comolex Svstems.l.f IQS?). 648 

4- G.K. Batchelor, "An introduction to fluid dvnamics". Cambridge 

University Press , Cambridge, 1967. 

5- M. Knudsen "The kinetic theorv of gases". Methuen Monographs, London,1934 . 



1 1 

Figure captions 

Figure 1. (a)Indices for velocity orientations on lattice nodes ; (b)Collision rules 

Figure 2. Collision rules for wall interactions (a)Specular reflection ; (b)Bounce back 

reflection 

Figure 3: Configuration of the lattice near the wall (layer indices) 

Figure 4: Velocity profile for flow along a fixed wall. Theoretical error function, Blasius 

profile, and lattice gas simulation data after 150 time steps (particle density d = 0.1833, 

free flow velocity Uo = 2.72, bounce back reflection coefficient r = 1). y norm is the 

normalized space coordinate measuring the distance from the wall. y norm = 4.99 j/jo 

where jo is the interpolated row index value corresponding to U = 0.99Uo. The factors 

4.99 and 0.99 are standard in boundary layer theory [4] 

Figure 5: Boundary layer growth with distance ( up to 41 distance units ). Same 

conditions as given in caption of figure 4. y norm is defined in caption of figure 4. The 

distance from the leading edge is t U*. Since the boundary layer thickness is defined at 

U* = 0.99 Uo, we define x by converting directly t into distance (ignoring the constant 

factor U*) 

Figure 6: Velocity profiles for various bounce back reflection ratios. ( gas density: d = 

0.233; free flow velocity: Uo = 0.500 ). The data shown were obtained after 20 time 

steps 
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Figure 7; Velocity at the boundary as a function of time for various reflection coefficient 

values 

Figure 8; Logarithm of the number of computation steps versus reflection coefficient. 

(d=0.25, Uo = 0.4). 
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