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Abstract: The transport of intensity equation (TIE) is a two-dimensional 

second order elliptic partial differential equation that must be solved under 

appropriate boundary conditions. However, the boundary conditions are 

difficult to obtain in practice. The fast Fourier transform (FFT) based TIE 

solutions are widely adopted for its speed and simplicity. However, it 

implies periodic boundary conditions, which lead to significant boundary 

artifacts when the imposed assumption is violated. In this work, TIE phase 

retrieval is considered as an inhomogeneous Neumann boundary value 

problem with the boundary values experimentally measurable around a 

hard-edged aperture, without any assumption or prior knowledge about the 

test object and the setup. The analytic integral solution via Green’s function 

is given, as well as a fast numerical implementation for a rectangular region 

using the discrete cosine transform. This approach is applicable for the case 

of non-uniform intensity distribution with no extra effort to extract the 

boundary values from the intensity derivative signals. Its efficiency and 

robustness have been verified by several numerical simulations even when 

the objects are complex and the intensity measurements are noisy. This 

method promises to be an effective fast TIE solver for quantitative phase 

imaging applications. 
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OCIS codes: (100.5070) Phase retrieval; (100.3010) Image reconstruction techniques; 

(120.5050) Phase measurement. 
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1. Introduction 

Phase is an important component of an optical wavefield providing information of the 
refractive index, optical thickness, and the topology of the specimen. Phase retrieval is a 
central problem in many areas of physics and optics since the phase of a wavefield is not 
accessible directly. In contrast, it is relatively easy to measure the intensity of the wavefield; 
therefore it is tempting to seek methods for phase reconstruction from intensity 
measurements. The commonly known transport of intensity equation (TIE) proposed by 
Teague [1] is a non-interferometric method for the optical phase retrieval. This equation 
provides a relationship between intensity and phase of a light wave in the near Fresnel 
regime. With two or more intensity images taken at distinct planes orthogonal to the optical 
axis, solving the TIE directly gives the phase distribution, in a non-iterative manner. In the 
past few decades, TIE has found a variety of applications in adaptive optics [2], X-ray 
diffraction [3], electron- microscopy [4] and optical quantitative phase imaging [5, 6]. 

TIE is a second order elliptic partial differential equation for the phase function, and 
solving this equation does not appear to be difficult. Mathematically, the TIE phase retrieval 
is essentially a boundary value problem – seeking the solution of the partial differential 
equation subject to certain boundary conditions. The well-posed nature of this problem is well 
acknowledged in literature - with proper boundary conditions, one may find a unique (apart 
from an arbitrary additive constant) solution to the TIE if the intensity distribution is strictly 
positive [7]. Several method have been proposed to solve the TIE for the unknown phase: the 
Green’s function method [1, 8], the multi-grid method [9, 10], the Zernike polynomial 
expansion method [11, 12], and the fast Fourier transform (FFT) method [9, 13–15]. 
However, one important practical problem pervading these TIE solvers is that the associated 
boundary conditions are difficult to measure or to know a priori. For example, in Teague’s 
Green’s function solution [1], one needs to know the phase function at the region boundary as 
the Dirichlet boundary conditions, which is rather difficult without resorting to other means. 
The use of Neumann boundary conditions, studied by Roddier [2, 16] and later by Woods and 
Greenaway [8] has the advantage that the boundary values can be found from the intensity 
measurements at the pupil boundary. However, the results make one major assumption - that 
the intensity distribution should be uniform within the region [2, 16]. Moreover, 
distinguishing the boundary signal from the interior intensity derivative has been known to 
cause serious difficulties [11, 17]. Gureyev and Nugent [12] proposed to solve the TIE under 
non-classical boundary conditions – assuming the intensity distribution is non-zero inside the 
domain but drops to zero at the boundary. They proved that under such condition, TIE has a 
unique solution up to an additive constant. They then, employed orthogonal polynomial 
expansion (Zernike polynomial expansion for the circular region [11, 12] and fast Fourier 
transform (FFT) for the rectangular region [12, 13]) to solve the TIE without imposing any 
separate boundary conditions. However, the soft-edged intensity profile is hard to realize 
experimentally, and one may face the difficulty on how to define the correct domain as the 
intensity tends to zero as it approaches the boundary. 

Another important issue among these TIE solvers is that only very few of them are 
sufficiently fast for reasonable sized image. The FFT-based methods [9, 13–15] are probably 
the most popular TIE solvers especially in the field of quantitative phase imaging [18–23] for 
its simplicity, efficiency, and applicability to rectangular domain. Though Gureyev and 
Nugent [12, 13] claimed that no boundary conditions are required for getting a unique (up to 
an arbitrary additive constant) solution of the TIE, the FFT-based methods have been shown 
to be quite sensitive to the boundary artifacts, in particular when the actual phase distribution 
covers the boundary of the image [15, 24, 25]. The root of the problem lies in the fact that the 
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FFT solver implying periodic boundary conditions due to the cyclic nature of the discrete 
Fourier transform, which is often in contradiction with the actual situations. Throughout 
literature [18–23], a common way to avoid such boundary error is to consider the object to be 
isolated and placed in the center of the image [24]. However, this configuration does not 
reflect the general experimental conditions, and is not practical when the measured object is 
larger than the camera field of view. An alternative FFT-based method proposed by Volkov et 
al. [15] extends the measured intensity by a mirror padding scheme, which provides 
homogenous Neumann boundary conditions rather than the periodic ones. However, it still 
does not fundamentally solve the boundary artifacts problem since the boundary conditions 
are formed purely by a mathematical trick which is generally not physically grounded. 

In this paper, we will solve the TIE with experimentally measurable inhomogeneous 
Neumann boundary conditions, through an efficient numerical algorithm using the fast 
discrete cosine transform (DCT). This approach not only addresses the above mentioned 
difficulties such as obtaining boundary conditions under non-uniform intensity distribution, 
distinguishing the boundary signal from the interior intensity derivative, and defining the 
correct domain for the solution, but also retains the major advantages of the FFT-based 
methods – simple and fast for the rectangular domain. Rather than conventional differential 
equation methods where the TIE is discretized directly, we derive the analytic integral 
solution via the Green’s function method, and then the DCT is applied to calculate the 
integral solution numerically. All the efforts are made to simplify the numerical calculation 
process as well as the enforcement of the experimentally obtained Neumann boundary 
conditions. Its good performance is demonstrated by several numerical examples. 

2. Transport of intensity equation, boundary conditions, and uniqueness of the solution 

Assume that a paraxial beam is propagating along the z  axis, and let the complex amplitude 
of the object be ( ) exp[ ( )]I ikφr r . The derivative of intensity along the beam propagation 
direction, z  contains phase information that can be retrieved via TIE [1]: 

 
( )

( ) ( ) ,
I

k I
z

φ
∂

− = ∇⋅ ∇  ∂

r
r r  (1) 

where k  is the wave number 2π λ , r  is the position vector representing the spatial 
coordinates ( ),x y . ( )I r  is the intensity, located without loss of generality at the plane 

0z = . ∇  is the gradient operator over r  which is normal to the beam propagation direction. 
Expanding the right hand side (RHS) of Eq. (1), we obtain 

 2 .
I

k I I
z

φ φ
∂

− = ∇ ⋅∇ + ∇
∂

 (2) 

Note here the r  dependence has been omitted for notation simplicity. It is seen that the TIE 
links the longitudinal intensity derivative with the slope and curvature of the wavefront that 
produces the changes in intensity as the wavefront propagates. 

2.1 Boundary conditions and uniqueness of the solution 

The TIE is an elliptic partial differential equation for the phase function φ . We assume the 
region governed by the TIE to be a general open and bounded domain 2Ω ⊂   with a 
piecewise smooth boundary ∂Ω . The intensity distribution I  is a continuous, non-negative 
function defined on the enclosure Ω  (consisting of the domain Ω  plus its boundary ∂Ω ) and 
is smooth and strictly positive in Ω . The longitudinal intensity derivative I z∂ ∂  is assumed 
to be a smooth function in Ω . The phase φ  is expected to be single-valued and smooth in Ω . 
Before deriving a solution to the TIE, the issues concerning its solvability (well-posedness) 
and the uniqueness of the solution must be addressed. The classic theory of elliptic partial 
differential equation states that the uniqueness of the TIE solution subject to certain boundary 
conditions [26]. We shall consider two classes of possible boundary conditions that could be 
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applied to the solution of TIE: (1) Dirichlet boundary conditions. The values of phase 
function φ  are specified on the domain boundary 

 .gφ
∂Ω

=  (3) 

(2) Neumann boundary conditions. The product of I  and the normal derivative of φ , are 
specified on the domain boundary 

 .I g
n

φ

∂Ω

∂
=

∂
 (4) 

Here g  is a smooth function on the boundary ∂Ω , nφ∂ ∂  is the outward normal derivative. 
For the case of Dirichlet boundary conditions, the solution to the TIE always exists and is 
unique [26]. The case of the Neumann boundary conditions demands special attention 
because a solution may or may not exist (depending on whether the compatibility condition 
(Eq. (5)) is satisfied [7, 27]). Furthermore, it is clear that φ  = constant satisfies the 
homogeneous problem with 0k I z− ∂ ∂ =  and 0g = , therefore if φ  is a solution, then Cφ +  
is also a solution for any constant C . In other words, the solution of the TIE subject to 
Neumann boundary conditions (Eq. (4)) should be unique up to an arbitrary additive constant, 
assuming that the solution exists in the first place. This constant is not essential for the phase 
retrieval problem. The proof of the uniqueness theorem is straightforward: we can first 
assume that two qualified solutions have been exhibited and then prove they can only differ 
from one additive constant using the maximum principle for elliptic equations [28]. 

2.2 Compatibility condition and energy conservation law 

For the Neumann boundary problem, there is an important compatibility condition that must 
be satisfied in order that a solution exists. Starting from the TIE (Eq. (1)), we integrate both 
sides of the equation over Ω  and apply the divergence theorem to get the compatibility 
condition 

 ( )
( ) ( )

d d ,
I

I s k
n z

φ
∂Ω Ω

∂ ∂
= −

∂ ∂ 
r r

r r  (5) 

where s  is a parameterization of ∂Ω . The RHS of Eq. (5) is known a priori, since the 
function I z∂ ∂  can be experimentally obtained. The left hand side (LHS) of Eq. (5) is 
determined solely by the Neumann boundary conditions (Eq. (4)). Thus, mathematically all 
these possible Neumann boundary conditions must respect Eq. (5) in order for there to be a 
nontrivial solution to the TIE. Generally, this compatibility condition is only considered to be 
a necessary condition for the solvability of the TIE. But with the smoothness assumptions 
imposed on I  and g , the sufficiency of the condition can be justified. In other words, once 
Eq. (5) is satisfied, a solution to the Neumann boundary value problem (Eqs. (1) and (4)) 
must exist (and use the uniqueness theorem, this solution is unique up to an overall additive 
constant). 

It is more interesting to examine the physical picture described by Eq. (5): actually, it can 
be thought as an expression of local energy conservation law - the loss of energy (intensity) 
inside the region arising from energy flow across the region boundary. If we extend Ω  to the 
unbounded space, the contour integral vanishes and Eq. (5) becomes 

 
( )

2
d 0.

I

z

∂
=

∂ r


r
 (6) 

It represents the law of energy conservation for unlimited free space. In essence, the energy 
conservation expressed by Eqs. (5) and (6) is a universal law of physics, and their validity 
relies only on the paraxial approximation. 
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2.3 Solving the TIE without any boundary values 

Since solving the TIE requires boundary conditions either the Dirichlet boundary value or the 
normal derivative of the phase (Neumann boundary conditions) to ensure the uniqueness of 
the solution, and both kinds of boundary data are not easy to acquire experimentally, 
researchers are looking for ways to solve the TIE without taking any boundary measurements. 
Coincidently, all the efforts aim to find some way to nullify the LHS of Eq. (5), making 
boundary conditions unnecessary 

 
( )

d 0.
I

zΩ

∂
=

∂
r

r  (7) 

Generally, Eq. (7) cannot be really valid on a bounded region unless the contour integral 
(LHS of Eq. (5)) vanishes. Physically, it is equivalent to the special case that there is no 
overall energy transfer across the region boundary. 

One simple and common way to satisfy this is to let the test object be centrally isolated in 
the field of view. Then the zero phase changes at the boundary (corresponding to 
homogeneous Neumann boundary conditions 0I nφ

∂Ω
∂ ∂ = ) can be assumed thus the LHS 

of Eq. (5) vanishes. In fact, in this case one can define not only the Neumann boundary 
conditions, but any uniform Dirichlet boundary conditions (constant phase at the boundary 

Cφ
∂Ω

= ) or periodic ones (the phase at the boundary repeats cyclically) as well. Gureyev and 
Nugent [12] suggested another way to eliminate the need of boundary conditions (LHS of Eq. 
(5)) by considering the case that the intensity 0I >  inside the domain Ω  but strictly vanishes 
at the boundary (actually it corresponds to a special case of the homogeneous Neumann 
boundary conditions 0I nφ

∂Ω
∂ ∂ =  though not mentioned in [12]). Alternatively, without 

any additional requirement about the test object and experimental conditions, Volkov et al. 
[15] proposed a pure mathematical trick to nullify the energy flow across the boundary 
through appropriate symmetrization of input images. However, it assumes there is no energy 
dissipation through the image boundary for any class of images and objects, which is 
generally not physically grounded. To summarize former discussion, without boundary value 
measurements does not mean that we can solve the TIE without imposing any boundary 
conditions, or more exactly, we have to confine our test object or experimental configuration 
to some implicit boundary conditions. Obviously, the assumption of the test object to be 
isolated is apparently limiting and does not reflect general cases. Furthermore, the assumption 
is impractical when the object is larger than the image field of view. On the other hand, 
intensity measurement satisfying Gureyev and Nugent’s conditions tends to be difficult as 
well. One needs to use a special-designed soft-edged aperture or use specific illumination 
with intensity vanishing at the boundary ∂Ω . Furthermore, defining the boundary of the 
domain tends to be very difficult in practice since very-near zero and at zero may seem 
almost the same but can be entirely different vis-a-vis the well-posedness of the TIE. 

3. Solution to transport of intensity under non-uniform intensity 

As suggested in last section, because of its physical origin, solving the TIE essentially boils 
down to boundary value problems – to find a solution in Ω  with conditions imposed on its 
boundary ∂Ω . However, the major obstacle for solving the TIE is that the associated 
boundary conditions are difficult to measure or know a priori. Therefore, in this section, a 
simple approach to get the boundary conditions and construct an analytic solution to the TIE 
using Green’s function method is suggested. 

3.1 Boundary values generation with a hard-edged aperture 

Let us consider a particular intensity distribution in the object plane ( 0z = ): the intensity I  
is smooth (but can be non-uniform) in Ω  but suddenly vanishes with a step-like discontinuity 
at the boundary ∂Ω . Physically, it is equivalent to capturing intensity images through a hard-
edged aperture at the object plane: 
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 0

0 ,
0

I
I A I

others
Ω

 ∈Ω
= = 



r
 (8) 

where 0I  is the intensity when there is no aperture; AΩ  is the aperture function ( AΩ  = 1 
when ∈Ωr , AΩ  = 0 when ∉ Ωr ). Since the intensity I  is smooth inside Ω , it is reasonable 
to assume that its gradient on the boundary ∂Ω  is dominated by the component in the 
boundary normal direction, which has the impulse value that equals the negative of the 
intensity boundary value and points outward from the domain: 

 
0 , ,

0 others

I

I I

δ∂Ω− ∈∂Ω


∇ = ∇ ∈Ω



n r

r  (9) 

where δ∂Ω  is the Dirac delta function around the aperture edge ∂Ω  and n is an outward-
pointing unit vector, normal to ∂Ω . Strictly speaking, the gradient I∇  does not exist in 
calculus since I  is discontinuous at ∂Ω . So we call I∇  here as a generalized gradient. Here 
we adopted the notation δ∂Ω  that first used by Roddier [2] as a plausible representation of the 
physical quantity concentrated on the boundary curve. The δ∂Ω  can be loosely thought of as 
the gradient magnitude of the aperture function Aδ∂Ω Ω= ∇  or interpreted as the limit of a 
sequence of smooth functions. Mathematically, the function δ∂Ω  is an extension of the Dirac 
delta function δr

 at single point r , which can be rigorously defined as a distribution such 
that for any test function ( )f r  that is smooth and compactly supported 

 ( ) ( )
2

d .f d f sδ∂Ω ∂Ω
= r r r

   (10) 

Substituting Eqs. (8) and (9) into the TIE (Eq. (2)), we obtain 

 ( )2

0 0
.

I
k A I I I

z n

φ
φ φ δΩ ∂Ω

∂ ∂
− = ∇ + ∇ ⋅∇ −

∂ ∂
 (11) 

The first term on RHS is the intensity variation inside the domain due to the phase slope and 
curvature as if the aperture is not present. The second term is a delta-function-like a sharply 
peaked signal at the aperture boundary, which provides the exact Neumann boundary 
conditions for the TIE (Eq. (4)). Since the axial intensity derivative in LHS is experimentally 
measurable, and the two RHS terms do not overlap in space, there is enough information to 
solve the TIE with no other measurement specially for the boundary values (Teague [1] 
suggested to measure the phase values on the domain boundary for the Dirichlet boundary 
conditions (Eq. (3)) using Hartmann sensors). However, from a purely mathematical 
viewpoint, the new form of the TIE defined in Eq. (11) is not rigorous because the function 
δ∂Ω  belongs to the class of generalized functions, which is meaningful only as a part of an 
integral expression. Thus, this new form serves merely as an apparatus for describing the 
physical quantities (longitudinal intensity derivative) in a convenient and adequate manner. 
When writing the unusual form of the TIE as in Eq. (11), we always keep in mind that δ∂Ω  
will eventually become a part of an integral, and produce valid results that can be used. 

Let us put aside these complications for a while and assumes we already have the 
separated longitudinal intensity derivative inside Ω  and the amplitude of the δ∂Ω  along the 
boundary line through some peculiar way. When applying these measured quantities to solve 
the TIE (us the interior signal as the source term of the TIE (LHS of Eq. (1)) and take the 
amplitude of delta-function term in Eq. (11) as the function g  in Eq. (4)), we must make sure 
the Neumann boundary value problem is well-posed and yields a unique solution to the 
problem. Integrating both sides of Eq. (11) over all space and using Eq. (10), we obtain 
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( ) ( ) ( )

( )
( )

2
d d d .

I I I
k k k d I s

z z z n

φ
Ω Ω ∂Ω

∂ ∂ ∂ ∂
− = − = − −

∂ ∂ ∂ ∂   
r r r r

r r r r
   (12) 

According to the energy conservation law for unbounded space (Eq. (6)), the LHS of the 

above equation should equal to zero 

 
( ) ( )

( )
( )

d d 0,
I I

k k d I s
z z n

φ
Ω Ω ∂Ω

∂ ∂ ∂
− = − − =

∂ ∂ ∂  
r r r

r r r  (13) 

which is the same expression as the compatibility condition, Eq. (5) in Section 2.2. This leads 
to the inescapable conclusion that the solution to this Neumann boundary problem always 
exists and is unique up to an arbitrary additive constant. Note a similar approach was 
suggested by Roddier [2, 16] to obtain the normal derivative of the phase function at the pupil 
edge. Such an approach relies on the major assumption that the intensity has to be uniform 
inside the region Ω , which is reasonable in adaptive optics. However, our derivation 
represents a more general case and is valid for non-uniform intensity distribution - which is 
quite common in many practically important applications such as quantitative phase imaging. 

3.2 Analytic solution to the TIE with the Green’s function approach 

In this subsection, we derive a special analytic solution to the TIE with the Neumann 
boundary conditions found from the intensity derivative boundary based on Green’s function 
approach. The reason why we do not use numerical methods directly is that these methods 
generally require the intensity derivative inside the aperture and the Neumann boundary value 
(delta-function term at the aperture edge) being treated separately. More specifically, in order 
to get the Neumann boundary value, one has to find some appropriate ways to extract the 
amplitude of the delta-function around the aperture edge. However, as we mentioned 
previously, the Eq. (11) is an only an idealized representation which is not suitable for direct 
application. The delta function δ∂Ω  is only defined on infinitely small support and takes 
infinite values, reflecting the fact that a physical quantity cannot be measured along one line. 
Although in reality the boundary signal assumes finite values and can be measured by a 
camera, it occupies a finite area, bringing about a series of non-trivial issues like how to 
define the boundary region, and how to separate the boundary values from the interior signals 
[11, 17]. In the following, we will introduce a way to bypass these difficulties. 

Firstly, as suggested by Teague [1], an auxiliary function ψ  was introduced, which 
satisfies 

 Iψ φ∇ = ∇  (14) 

This physical meaning of the vector field I φ∇  can be interpreted as the Poynting vector [14, 
29], which is characterized by the scalar potential ψ . With this auxiliary function ψ , the 
elliptic TIE can be converted down to a standard Poisson equation [9, 13, 23] 

 2 ,
I

k
z

ψ
∂

− = ∇
∂

 (15) 

with the associated Neumann boundary conditions unchanged 

       .I
n n

ψ φ

∂Ω ∂Ω

∂ ∂
=

∂ ∂
 (16) 

Once ψ  is solved, the phase function can be uniquely determined up to an arbitrary additive 
constant by integrating Eq. (14). The Green's function representation of the solution to the 
Neumann boundary-value problem (Eqs. (14) and (16)) is given by 
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 ( ) ( ) ( ) ( ) ( )
( )2 , d , d ,I I G G I s
n

φ
ψ φ φ

Ω ∂Ω

′∂
′ ′ ′ ′ ′= ∇ + ∇ ⋅∇ −

∂ 
r

r r r r r r r  (17) 

where ( ),G ′r r  is the Neumann Green’s function, which is the solution of the Neumann 
boundary value problem: 

 ( ) ( )
( )2 1

,
, , 0,

G
G A

n
δ −

Ω

′∂
′ ′∇ = − − =

∂

r r
r r r r    (18) 

where A  is the area of the region Ω  [30]. As we can see, the Green's function method 
represents the solution of the partial differential equation by one area and one curve integral 
of the Green's function. The two terms stands for the two contributory sources to the solution: 
the intensity derivative inside the aperture and the boundary signal at the aperture edge. It 
seems that the issue on how to distinguish the boundary value from the interior signal has not 
yet been solved. However, if we multiply both sides of Eq. (11) by the Green’s function 

( ),G ′r r  and then integrate it over all space, we obtain: 

 

( )
( )

( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )

2

2

0 0

2

, d , d

, d

, d , d .

I I
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z z
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φ
φ φ

Ω

Ω ∂Ω ∂ΩΩ

Ω ∂Ω

′ ′∂ ∂
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∂ ∂

∂  ′ ′= ∇ + ∇ ⋅∇ − ∂ 
′∂

′ ′ ′ ′ ′= ∇ + ∇ ⋅∇ −
∂

 



 

r r
r r r r r r

r r r

r
r r r r r r





 (19) 

Comparing Eq. (19) with Eq. (17), we can rewrite the Green's function solution into a more 
compact area integral: 

 ( )
( )

( ), d .
I

k G
z

ψ
Ω

′∂
′ ′= −

∂
r

r r r r  (20) 

Equation (20) is the central result of this section. Here we should reemphasize that the region 
Ω  in Eq. (20) should be closed so that all the boundary values in the intensity derivative 
signal is covered by this area integral. By doing so, the solution of the Poisson equation can 
be simply represented as only one area (convolution) integral over the aperture region so that 
the two terms (interior signal and boundary value) can be considered as one entity, instead of 
separately. Before going further, there are two important points need to be clarified. First, as 
we know for the normal integrable functions, there makes no difference between the integral 
over the interior Ω  and its closure Ω . However, this rule cannot be applied to our case since 
the integrand in Eq. (19) contains the generalized function δ∂Ω . As shown in Eq. (10), the 
generalized function δ∂Ω  defines a distribution mapping from function to the value of its 
curve integral, which is used here to greatly simplify the original Green’s function solution 
(Eq. (17)). Second, the new form of solution (Eq. (20)) does not go against the fact that the 
solution of the partial differential equation must depend on the boundary conditions, since the 
experimentally measured boundary value information has already been encapsulated in the 
area integral. It can be seen that once the Green’s function ( ),G ′r r  is determined, the 
solution of the Poisson equation (Eq. (15)) can be obtained from Eq. (20) with single area 
integral via Green's function; and we emphasize the Green's function here is solely 
determined by the shape of the region Ω , and independent on experimental data. 

Once ψ  is obtained by the area integral (Eq. (20)), the phase function φ  can be 
reconstructed from its determined gradient 1Iφ ψ−∇ = ∇  uniquely up to an additive constant. 
Mathematically, phase integration is a well-defined problem and can be simply achieved by a 
line-by-line accumulation procedure. However, the phase integration is ill-posed (and not 
well defined) as the vector field 1I ψ− ∇  is rarely integrable (see Sec. 6.2 for details). A 
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common approach is to find the scalar function whose gradients are closest to the determined 
vector field 

1I ψ− ∇  in a least squares sense. It can be shown by calculus of variations [31, 
32], the solution to this least squares error problem is equivalent to that of finding the solution 
of the following Poisson equation 

 ( )1 2 .I ψ φ−∇⋅ ∇ = ∇  (21) 

with homogeneous Neumann boundary conditions 

 0.
n

φ

∂Ω

∂
=

∂
 (22) 

The Green's function solution of the Neumann boundary problem (Eqs. (21) and (22)) is 

 ( ) ( ) ( )1 , d ,I Gφ ψ−

Ω
′ ′= ∇⋅ ∇r r r r  (23) 

where ( ),G ′r r  is the Neumann Green’s function, which is exactly the same one as in Eq. 
(20). As can be seen, Eq. (20) and (23) give analytic convolution integral solution to the TIE 
with the Green’s function, and the object phase distribution can be obtained by calculating the 
two area integrals numerically. There are two major benefits of our approach. First, it 
explicitly considers the case of non-uniform intensity distribution. Second, the delta-function 
terms at the aperture edge (second terms of RHS of Eqs. (11) and (17)) are enclosed in Eq. 
(20), without requiring special-purpose detection scheme to separate these boundary values 
from the interior signals. The well-posedness and uniqueness of the solution is guaranteed by 
the energy conservation law (Eq. (13)), which can be used to define the integral domain Ω  
and check the consistency of experimentally measured intensity data. 

4. Fast numerical implementation with use of discrete cosine transform 

Evidently, the analytic solution to TIE (Eqs. (20) and (23)) is not very convenient for 
numerical implementation since the Green's function is a four dimensional function - the 
direct calculation is memory and computationally demanding. For an M N×  pixel image, 

( ),G ′r r  will contain 2 2M N  elements, which may require thousands of gigabyte memory to 
store. Besides, the direct numerical implementation of the integral requires expensive 
operations of ( )2 2O M N complexity. Therefore, in this section, we focus on developing an 
efficient numerical implementation of the solution. More specifically, we consider the case of 
a rectangular domain since most detectors (like the CCD camera) are of rectangular geometry, 
thus in order to maximally fill the camera sensor area, using a rectangular aperture is a natural 
choice. It is found that the Green's function under Neumann boundary conditions with a 
rectangular region can be represented as an infinite-series expansion in terms of Fourier 
cosine harmonics, leading to a fast and efficient numerical implementation of the TIE solution 
with use of fast DCT. It should be noted that in practice this approach can be easily extended 
to the domains with arbitrary shapes (e.g. the circular or annular regions) as long as the 
corresponding eigen-functions of Laplacian can be obtained. 

4.1 Eigen-functions expansion of the Green's function 

Although the analytic representation of the Green's function of Poisson equation under 
Neumann boundary conditions for a rectangular domain [0, ] [0, ]a b×  can be found in many 
mathematical textbooks [30, 33], here we prefer to expand it into an infinite series to gain 
some insight to the efficient numerical implementation. Consider the Green's function in Eq. 
(20) associated with the Neumann condition problem, which obeys Eq. (18), we can expand it 
in terms of eigen-functions of Laplacian [33] 
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 ( ) , ,

0 0
,

( ) ( )
, .

m n m n

m n
m n

G
λ

∞ ∞

= =

′Ψ Ψ
′ = 

r r
r r  (24) 

Here ,m nΨ  are eigen-functions of Laplacian satisfying the homogeneous Neumann conditions 
on the boundary: 2

, , ,m n m n m nλ∇ Ψ = Ψ , , 0m n n Ω∂Ψ ∂ = and ,m nλ  are the associated 
eigenvalues. According to Sturm-Liouville theory [33], the eigen-functions form a complete 
and orthogonal basis over the domain Ω . More specifically, for a rectangular domain, the 
eigen-functions can be represented as the Fourier cosine harmonics 

 , ,( , ) cos cos ,m n m n

m n
x y a x y

a b

π π   
Ψ =    

   
 (25) 

with the normalization coefficients 

 
,

2
, , 0

,
2

, 0

m n

m n
ab

a

m or n
ab


≠

= 
 =

 (26) 

and the associated eigenvalues 

 
2 2

2

, 2 2
.m n

m n

a b
λ π

 
= − + 

 
 (27) 

Substituting Eqs. (24)–(27) into Eq. (20), and interchanging the order of summation and 
integral, we obtain 

 ( )
( )1 2

, ,0 0
cos cos d cos cos .m n m nm n

I m n m n
a k x y x y

z a b a b

π π π π
ψ λ

∞ ∞ −

= = Ω

′∂        ′ ′ ′= −         
∂         

  
r

r r (28) 

Although it seems to be more complex, Eq. (28) explicitly interprets the convolution integral 
as a three-step process. As it is shown in Appendix A, the expression inside the square 
brackets on the RHS is by definition the coefficient of the Fourier cosine series expansion of 
the axial intensity derivative signal. These coefficients are then multiplied with the factor 

1

,m nλ − , and finally the function ( )ψ r  is recomposed by the Fourier cosine basis with these 
modified coefficients. The same approach can be applied to compute Eq. (23) to obtain the 
phase function. The major advantage of using the Fourier cosine expansion is the availability 
of the fast algorithm, which considerably increases the speed and efficiency of all the 
numerical computations. We will discuss it in more detail in next subsection. 

4.2 Numerical implementation with fast discrete cosine transform 

In practice, the intensity distributions are always recorded by a pixelated detector - the 
continuous function I z∂ ∂  is discretized into a finite M N×  rectangular grid cells of equal 
size. For convenience, in this subsection we still use the ( ),x y=r  to represent the image 
traverse coordinate, but keep in mind they can only assume integral values, i.e., 

0,1,..., 1;x M= − 0,1,..., 1y N= − . The pixel coordinate ( ),x y  corresponds the grid cell 
centered at the location ( ) ( )( )0.5 , 0.5x x y yΔ + Δ +  in the continuous real space within the 
rectangular domain [0, ] [0, ]a b× , where x a MΔ = , y b NΔ =  is the cell interval (pixel size) 
in the x  and y  direction, respectively. Besides the intensity derivative I z∂ ∂ , the cosine 
harmonics basis functions need to be discretized as well. As shown in Appendix B, the set of 
functions ( ) ( )cos 0.5 cos 0.5m x M n y Nπ π+ +        form an orthogonal basis over the 
M N×  discrete space while satisfies the homogeneous Neumann condition on the boundary. 
Correspondingly, the discretized form of Eq. (28) can be represented as 
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1 1 1
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cos 0.5 cos 0.5 .

M N

m n m n m nm n

m n
A A S x y

M N

π π
ψ λ

− − −

= =

   
= + +      
 r  (30) 

The normalization coefficients m nA A  for the discrete cosine basis functions are defined in Eq. 
(40). It is shown that the two equations can be considered as the forward and backward 
(inverse) DCT (see the definition of DCT in Appendix A). Thus, with use of DCT, the 
numerical implementation of Eq. (20) is quite straightforward: perform DCT of the measured 
axial intensity derivative, reweight its DCT coefficients with the factor 1

,m nλ − , and then 
perform inverse DCT, ψ  can be obtained. The phase distribution φ  can be obtained by Eq. 
(23) in a similar way. Since the DCT and inverse DCT can be calculated efficiently using 
some fast algorithm or using the FFT in ( )log( )O MN MN  time (one simple FFT-based fast 
DCT algorithm is given in Appendix B), the complexity of integral calculation is also of the 
order ( )log( )O MN MN , which is a significant improvement over the ( )2 2O M N  complexity 
of the direct computation. Meanwhile, the memory requirement is substantially reduced since 
there is no need to store the four dimensional Green's function. Note that although the DCT 
has been already used as a fast solver for the discrete Poisson equation with Neumann 
boundary conditions, our method is quite different from the common one in the textbook [34] 
which uses the finite difference numerical method (using a five-point stencil approximating 
the Laplacian) to discretize the Poisson equation into a MN MN×  linear system. 

So far, the only remaining problem is to calculate the source term ( )1I ψ−∇⋅ ∇  in Eq. (23). 
As ψ  can be expanded into DCT basis vectors, its derivative can be efficiently calculated 
through DCT-based differential operators (all the relevant operators can be found in 
Appendix C). Once the gradient field ( ),

x DCT y DCT
ψ ψ ψ− −∇ = ∂ ∂  is obtained from Eqs. (53) 

and (55), the vector field ( )1 1 1,x yI I Iψ ψ ψ− − −∇ = ∂ ∂ can be easily calculated by point-wise 
multiplication. Finally, the divergence ( )1I ψ−∇⋅ ∇  can be obtained through 

 ( ) ( ) ( ) ( )1 1 1 1 ,
DCT DCT x DCT x DCT y DCT y DCT

I I I Iψ ψ ψ ψ− − − −
− − − −∇⋅ ∇ = ∇ ⋅ ∇ = ∂ ∂ + ∂ ∂ (31) 

with two more DCT-based derivative operations. As we mentioned in Appendix C, the basis 
functions of the obtained derivative are no longer cosine functions, which means we cannot 
reconstruct the modified coefficients via inverse DCT. One can either directly calculate it 
with the Eqs. (53) and (55), or use some fast algorithms (as shown in Appendix D, the DCT-
based derivatives can be efficiently calculated through FFT as well). 

Combining the above analysis, the complete numerical implementation of the TIE 
solution can be summarized as the following steps: 

(1) Calculate the intensity derivative term k I z− ∂ ∂  from the measured intensity images. 
(2) Transform k I z− ∂ ∂  into cosine frequency domain by DCT (Eq. (43)). 
(3) Reweight the DCT coefficients by 1

,m nλ − (Eq. (27)). 
(4) Transform the modified DCT coefficient back to spatial domain to get ψ  (Eq. (44)). 
(5) Calculate ψ∇  based on DCT (Eqs. (53), (55), and (58)). 
(6) Calculate 

1I ψ− ∇ . 
(7) Calculate ( )1I ψ−∇⋅ ∇ (Eqs. (53), (55), and (59)). 
(8) Transform ( )1I ψ−∇⋅ ∇  into cosine frequency domain by DCT. 
(9) Reweight the DCT coefficients by 1

,m nλ − . 
(10) The phase can be determined up to an additive constant by transforming the modified 

DCT coefficient back to spatial domain. Steps (8)-(10) are analogous to steps (2)-(4). 
It should be noted that all the source intensity images should be strictly defined on the 

rectangular-shaped area Ω , which includes both the aperture boundary and the region inside 
it. However, it is evident that the above steps have redundant operations: the auxiliary 
function ψ  is the intermediate step in the solution and therefore should not be express 
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explicitly. Taking out all the redundancies from the above steps and adopting the simple 
notation we used in Appendix C, the final algorithm is given in Algorithm 1. 

Algorithm 1: Solution to TIE using the DCT-based Green's function method under non-
uniform intensity distribution ( constant≠I ). (This gives identical results to Algorithm 2 
when constant=I ). 

( ){ }2 1 2φ − − − = − ∇ ∇ ⋅ ∇ ∇ ∂ ∂ DCT DCTDCT DCTk I I z  

where 

( ),
DCT x DCT y DCT

f f− −∇ = ∂ ∂  (Eq. (58)) 

( )
2 1 1

,
λ

− − −∇ =DCT m n
f DCT DCT f (Eq. (62)) 

Further, when the intensity is uniform in the defined region, Algorithm 1 can be further 
simplified as: 

Algorithm 2: Solution to TIE using the DCT-based Green's function method under non-
uniform intensity distribution ( constant=I ).  

( ) ( )
2

1 1 1 1

,DCT m nk I I z kDCT DCT I I zφ λ
− − − − − = − ∇ ∂ ∂ = − ∂ ∂   

In this case, the TIE can be directly simplified as a Poisson equation without the need of 
the auxiliary function ψ , which corresponds to the case discussed in [8,16]. However, our 
method involves only one forward and one inverse DCT, which substantially reduces the 
computation and memory demand compared with the classical Green's function method [8]. 
As shown in Appendices B and D, the DCT as well as all DCT-based derivative operators 
involved can be easily calculated through FFT with even extension scheme. These methods 
are quite helpful to simplify the numerical implementation of the proposed algorithms since 
FFT is available in almost all computer packages, but fast algorithms for DCT and some other 
transforms like Eq. (54) are not. The two alternatives to Algorithm 1 and 2 based on FFT and 
even extension are given in Algorithm 3 and 4, respectively. 

Algorithm 3: Alternative to Algorithm 1 based on FFT and even extension (this gives the 
exactly the same solution as Algorithm 1). 

_______
2 1 2 ( )φ − − −  

= − ∇ ∇ ⋅ ∇ ∇ ∂ ∂    
FFT FFT FFT FFTk I I z  

 

Algorithm 4: Alternative to Algorithm 2 based on FFT and even extension] (this gives the 
exactly the same solution as Algorithm 2). 

2
______

1
FFTk I I zφ
− − 

= − ∇ ∂ ∂ 
 

 

The meaning of the bar (‘-’) and angle brackets notations (‘< >’) used here can be found 
in Appendix D. At the first glance, the Algorithms 3 and 4 seem to be very similar with the 
previous work using FFT and even symmetrization [15]. However, one should note the key 
differences: our algorithm only applies to the experimental data captured with the presence of 
an aperture, which means the axial derivative of intensity generally contains a delta-function 
term at the boundary. It was derived from the Green's function method with the 
inhomogeneous Neumann boundary value measured at the aperture edge without imposing 
any implicit or prior assumptions on test objects. We found the solution to the Poisson 
equation can be expressed by cosine series expansion and then we use DCT as a fast 
numerical method for the Green's function solution. The FFT and even symmetrization 
schemes merely serve as alternative ways to perform DCT and its related computations. 
While previous work [15] used even symmetrization to nullify the contour integral 
(corresponding to the second terms of RHS of Eq. (17)) by making a silent assumption for the 
test object to be even symmetry, which is usually unrealistic especially when the object 
extends out of the image boundary, leading to non-optimal or even erroneous results. 
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Before proceeding further, several points on practical implementation of our algorithm 
need to be clarified: First, 1

,m nλ −  is not defined at the zero point of the DCT space, therefore, 
we multiply by zero instead. Second, since the intensity I  appears in the denominator, one 
should avoid dividing too small values to guarantee the stability of solution by setting a 
certain threshold value (e.g. 1% of the maximum value of I ). Finally, one should correctly 
define the domain for each captured intensity image before carrying out the algorithms. It is 
trivial when the small defocus distance requirement is fulfilled (Eq. (11) is valid) - one may 
simply choose the pixels within aperture region Ω  as well as those around the aperture 
boundary ∂Ω . However, when the defocus distance is not sufficiently small (increasing the 
defocus distance is a common way to improve the SNR of the intensity derivative estimates 
[35]), some boundary signal will either go into the aperture zone or escape outside from the 
aperture edge due to the diffraction effect (Eq. (11) will no longer well hold). In this case, 
defining the proper domain seems problematic, and we will examine this point in Section 5.4. 

5. Simulations and comparisons 

Simulations were performed to test the proposed method. We simulated three challenging 
situations for TIE phase retrieval. In these simulations, the complex field was defined on a 
256 × 256 grid with 2μm × 2μm pixel size. The wavelength is 632.8nm and the object is 
assumed to be larger than the camera field of view (200 × 200 pixels) which represents a 
more general situation than the common assumption in the literatures that the object is 
isolated and placed in the center of the camera field of view. Angular spectrum numerical 
propagation was used to generate two defocused images I+  and I−  with the distance of 

10zΔ = ± μm. The intensity derivative I z∂ ∂ is estimated by central finite difference 

 
( ) ( ) ( )

.
2

I I I

z z

+ −∂ −
≈

∂ Δ

r r r
 (32) 

The metric relative root-mean-square error (RMSE) is used to quantify phase retrieval 
accuracy. Since the TIE can only determine the phase uniquely up to an additive constant, the 
piston term (the mean value) of each result was removed before RMSE evaluation. 
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Fig. 1. Simulation results for the phase function with zero Laplacian. (a) True phase 

distribution. (b) Longitudinal intensity derivative distribution in the absence of the aperture. (c) 

Longitudinal intensity derivative distribution with the aperture. (d) Reconstructed phase with 

the proposed algorithm. (e) Residual error map (RMSE 0.91%). The white dashed box in (a) 

outlines the aperture edge. 
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5.1 Pure phase object with uniform intensity distribution 

First we focus on the case that the test object is a pure phase function with unitary intensity. 
As shown in Fig. 1(a), the phase function is predefined as 2 2( , ) 10 10 0.7 2 0.82x y x y x yφ = − − + +  
where the lateral dimensions x  and y  are limited within a range from −0.2 mm to 0.2 mm in 
the camera field of view. Since the object is a pure phase one, I  is constant when no aperture 
exists, and can be pulled out of the divergence operator [21, 36, 37] from the TIE (Eq. (1)), 
resulting in a standard Poisson equation 

 2 .
I

k I
z

φ
∂

− = ∇
∂

 (33) 

This Poisson equation states that the intensity derivative is proportional to the Laplacian of 
the phase. Since the simulated phase function has zero Laplacian, the difference between two 
defocus images I+  and I−  provided a null signal as expected (Fig. 1(b)), therefore 
reconstructing the phase using these intensity measurements can never be achieved in this 
situation [38, 39]. This once again reveals the dependence of the TIE solution on the 
boundary conditions. By introducing an aperture (aperture size 180 × 180 pixels) located at 
the center of the object plane, intensity derivative signal can (only) be observed around the 
aperture boundary (Fig. 1(c)), which is consistent with our theoretical analysis (Eq. (11)). 
With use of the proposed method (Algorithm 2), the phase function was retrieved accurately 
with the RMSE 0.91% (Figs. 1(d) and 1(e)). Since only one DCT and inverse DCT is needed 
to retrieve the phase, the algorithm can be performed extremely fast. The computation time in 
this example was only 16 ms using a 2.5 GHz laptop in the MATLAB environment. In 
contrast, the direct computation of the convolution integral (Eq. (20)) requires a large amount 
of memory to store the Green’s function, therefore limits the maximum size of the phase 
matrix allowed to only 50 × 50 pixels. Even for such low resolution data, the direct 
computation took almost 12 seconds. 

5.2 Phase retrieval with non-uniform intensity distribution 

To test the proposed algorithm in the case of non-uniform intensity distribution, we further 
consider the same phase map but with the non-uniform intensity distribution 

( )2 2 2( , ) exp 2I x y x y σ = − +   with σ  = 0.18 mm (Fig. 2(a)). In this case, the intensity 
derivative signal obtained is non-zero in the absence of the aperture, but still quite weak, as 
shown in Fig. 2(b). When the aperture was introduced, boundary signal can be observed at the 
aperture edge, which is much stronger compared with the derivative signal inside the aperture 
(Fig. 2(c)). Again, the phase distribution was faithfully retrieved by the proposed method 
(Algorithm 1) (Fig. 2(d)), with the residual error plotted in Fig. 2(e). The RMSE of the 
reconstructed phase is 2.23%, which is slightly higher than the uniform intensity case. The 
increased error may result from the “Teague’s assumption” (see Section 6.2 for details). The 
runtime of the algorithm in this example was 66 ms, which is nearly four times as the uniform 
intensity case (Algorithm 2). However, if one simply assumes constant intensity and applies 
Algorithm 2 to the same dataset when the intensity is in fact non-uniform, the resultant phase 
error will be much higher, as shown in Fig. 2(f). This further verifies that the intensity 
variations cannot be neglected even its distribution is relatively smooth. 

To compare the proposed method with previously developed techniques, we applied the 
FFT-based method developed by Paganin and Nugent [14] and the FFT-based symmetrization 
method developed by Volkov et.al [15] to the same dataset but without the presence of the 
aperture. Besides, for the FFT-based method, we also tested it with the same data set as our 
DCT-based algorithm in the presence of the aperture. The RMSEs of different methods are 
summarized in the first row (Dataset 1) of Table 1. It can be seen that only the proposed 
algorithm reconstructed the phase reliably, while all other methods failed to retrieve the phase 
function with zero Laplacian correctly, leading to very large RMSE values. 

#203318 - $15.00 USD Received 18 Dec 2013; revised 27 Feb 2014; accepted 3 Mar 2014; published 9 Apr 2014

(C) 2014 OSA 21 April 2014 | Vol. 22,  No. 8 | DOI:10.1364/OE.22.009220 | OPTICS EXPRESS  9234



X(mm)

Y
(m

m
)

 

 

-0.2 -0.1 0 0.1 0.2

-0.2

-0.1

0

0.1

0.2 -0.2

-0.1

0

0.1

0.2

X(mm)

Y
(m

m
)

 

 

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

X(mm)

Y
(m

m
)

 

 

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

X(mm)

Y
(m

m
)

 

 

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
0

0.2

0.4

0.6

0.8

1

1.2

(d)

X(mm)

Y
(m

m
)

 

 

-0.2 -0.1 0 0.1 0.2

-0.2

-0.1

0

0.1

0.2 -0.01

-0.005

0

0.005

0.01

X(mm)

Y
(m

m
)

 

 

-0.2 -0.1 0 0.1 0.2

-0.2

-0.1

0

0.1

0.2 0

0.2

0.4

0.6

0.8

1

(b) (c)

(e) (f)

rad rad rad

(a)

rad rad rad

 
Fig. 2. Reconstruction results for the zero-Laplacian phase function with non-uniform intensity 

distribution. (a) Simulated non-uniform intensity distribution. (b) Longitudinal intensity 

derivative distribution without the aperture. (c) Longitudinal intensity derivative distribution 

with the aperture. (d) Reconstructed phase with the proposed algorithm (using Algorithm 1 or 

3). (e) Residual error map. (f) Residual error when the intensity distribution is assumed to be 

uniform (using Algorithm 2 or 4). The white dashed box in (a) outlines the aperture edge. 

 

Table 1. RMSEs of the Phases Reconstructed by Different Solutions to the TIE 

Dataset 
Proposed 

(Algorithm 1) 

FFT-based 

method (with 

aperture) 

FFT-based 

method 

FFT with odd 

symmetrization 

FFT with even 

symmetrization 

1 2.23% 77.80% 89.54% 71.34% 96.18% 

2 2.75% 19.25% 131.49% 33.83% 493.51% 

5.3 Complex phase and intensity distribution 

The next simulation focuses on more complex phase map and intensity distribution. We 
consider the phase profile of letters ‘TIE’ (Fig. 3(a)) with the non-uniform intensity 
distribution of letters ‘COLE’ (Fig. 3(b)). Figures 3(c) and 3(d) plot the longitudinal intensity 
derivative distribution without/with the presence of the aperture, respectively. The two 
derivative images look quite similar at first glance. However, a closer inspection on the 
enlarged area (Figs. 3(e) and 3(f)) reveals that the aperture generated additional boundary 
signals at the aperture edge which cannot be observed for the no aperture case. 

Figure 4 gives the pictorial comparison of different solutions and the RMSE values are 
presented in the second row (Dataset 2) of Table 1. It can be seen that the conventional FFT 
method could not retrieve the phase correctly no matter with (Figs. 4(b) and 4(f)) or without 
(Figs. 4(c) and 4(d)) the aperture since it simply assumes periodic boundary conditions, which 
is of course not true in this situation. Furthermore, the boundary error of the even 
symmetrization method was also significant in the absence of the aperture (Figs. 4(d) and 
4(h)). In contrast, the proposed method provided a faithful result with much higher accuracy 
(RMSE 2.75%), proving that boundary errors can only be eliminated by the proposed DCT-
based method with the practical boundary value information obtained on the aperture edges. 
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Fig. 3. Simulation result of complex intensity and phase distribution. (a) True phase map. (b) 
Simulated intensity map. (c) Longitudinal intensity derivative without the aperture. (d) 
Longitudinal intensity derivative with the aperture. (e) Enlarged region corresponding to the 
boxed area of (c). (f) Enlarged region corresponding to the boxed area of (d). The white dashed 
box in (a) outlines the aperture edge, which defines the integral region Ω shown in (f). 
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Fig. 4. Comparison of different TIE solutions. The first row shows the recovered phase by (a) 

the proposed algorithm with the aperture, (b) FFT-based algorithm with the aperture, (c) FFT-

based algorithm without the aperture, (d) even symmetrization method without the aperture. 

The second row (e)-(f) shows the corresponding residual errors for different methods. 

5.4 Phase retrieval under noise and large defocus distance 

In the last simulation, we tested the accuracy and stability of the proposed method in the 
presence of noise. Different levels of pseudo-random Gaussian noise with standard deviations 
(STD) of 0.0001, 0.001 and 0.01 were generated and superimposed on each intensity image of 
the dataset from Section 5.3. To clearly demonstrate the noise levels, we show the calculated 
noisy intensity derivatives in Figs. 5(a)–5(c) (the defocus distance is 10zΔ = ± μm, same as 
the previous simulations). The reconstructed phases and corresponding residual errors are 
shown in Figs. 5(d)–5(f) and Figs. 5(g)–5(i), respectively. The RMSE values of the 
reconstructed phases are further given in the first row (defocus distances 10μm) of Table 2. It 
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can be seen that when the noise level was low, the current method could still recover the 
phase fairly accurately, with a slight increase in RMSE, from 2.23% to 3.14%. However, with 
increase of noise level, low-frequency artifacts can be clearly observed from the recovered 
phases. Especially when the noise STD reached 0.01, the original phase signal was almost 
submerged by the cloud-like artifacts, leading to significant error (RMSE 213.44%). 

Table 2. RMSEs of the Phases Reconstructed by the Proposed Algorithm Under Different 

Noise Levels and at Difference Defocus Distances 

Defocus distances (μm) 
Low noise level  

(noise STD 10−4) 

medium noise level  

(noise STD 10−3) 

High noise level  

(noise STD 10−2) 

10 3.14% 29.38% 213.44% 

100 8.88% 9.30% 38.75% 

500 17.21% 17.32% 17.92% 
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Fig. 5. Phase reconstruction results by the proposed method at different noise levels when 

defocus distance is 10μm. The first row shows the longitudinal intensity derivative distribution 

with noise stand deviation (a) 0.0001, (b) 0.001, and (c) 0.01. The second row shows the 

reconstructed phases at different noise levels (d)-(f). The third row shows the corresponding 

residual error at different noise levels (g)-(i). 

The high sensitivity to low-frequency phase error is a common and notorious problem in 
the TIE because the inverse Laplacian operator is ill-conditioned at near zero-frequency [35]. 
The common countermeasures include regularization treatments [4], using more intensity 
measurements [21, 22], or simply increasing the defocus distance [35]. By increasing the 
defocus distance zΔ  from 10μm to 100μm, the derivative SNR is almost increased by 10 
times since the image noise is amplified by the inverse of defocus distance zΔ  in the 
derivative estimates, as verified by comparing the two intensity derivative distributions shown 
in Figs. 5(b) and 6(a). However, on the other hand, increasing zΔ  also compromised the 
linearity assumption in the finite-difference derivative approximation (Eq. (32)), leading to 
non-linearity errors [21, 22]. From the enlarged region (Fig. 6(b)), we can clearly see the 
estimated derivative became blurred compared with the more accurate one obtained with zΔ  
= 10μm (Fig. 3(f)). Moreover, some boundary signals escaped from the aperture edge and 
went into the exterior region, suggesting Eq. (11) is no longer well hold. In this case, a new 
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integration region +Ω  should be defined to make sure all the escaped signals can be enclosed 
in to fulfill the energy conservation law (Eq. (13)). Obviously, the choice of region 

+Ω  
satisfying Eq. (13) is not unique and one can even extend +Ω  to the unbounded space. 
However, since the Green's function ( ),G ′r r  in the integral (Eqs. (20) and (23)) is only 
defined on the aperture region; we should choose 

+Ω  as close to Ω  as possible to minimize 
this region mismatch. Therefore, a simple searching process was used to quickly define the 
appropriate integration region +Ω  by checking the integral value (Eq. (13)) starting from the 
initial region 

+Ω = Ω  and then gradually expanded outwards until it is sufficiently close to 
zero. The new integral region +Ω  (190 × 190 pixels) found by this procedure is indicated by 
the solid black line in Fig. 6(b), which is slightly larger than the original aperture region (180 
× 180 pixels). Since the intensity ( )I r  is defined only on the closure Ω , the gap (intensity 
zeros) region between Ω  and +Ω can duplicate the intensity values of the outermost pixels 
within the aperture region (or simply restrict the domain of phase integration in Eq. (23) to Ω  
only). The reconstructed phase and the residual error are shown in Fig. 6(c) and 6(d), 
respectively, which demonstrates a great improvement in phase accuracy compared with the 
result obtained when zΔ  = 10μm (Fig. 5(e)), with the RMSE value decreasing from 29.38% 
to 9.30%. But for the high-noise-level condition (noise STD 0.01), we need to further increase 
the defocus distance zΔ  to 500μm. In this case, although the SNR of the derivative signal 
was improved greatly compared with Fig. 5(c), the nonlinear effect was significant – the 
estimated derivative became quite blurry, as shown from the enlarged region (Fig. 6(f)). It is 
obvious that we cannot expect the result to be very accurate for such a situation. Followed by 
a similar procedure, we found the integration region ′Ω  in this case should be extended to 
198 × 198 pixels indicated by the solid black line in Fig. 6(f). Once again, the reconstructed 
phase demonstrates a significant reduction in low-frequency artifacts, with the RMSE value 
dropping from 213.44% to 17.92%. However, the blurring effects can be easily perceived in 
the reconstructed phase and residual error map, which means the non-linearity error was quite 
dominant and the I z∂ ∂  obtained by Eq. (32) was no longer a valid estimate of axial intensity 
derivative. However, even under such conditions, the RMSE of our algorithm is still much 
lower than all the other algorithms under ideal, noise-free conditions. These results confirm 
the stability of our algorithm with respect to the noise, and its validity under large defocus 
distances and nonlinearity errors. 
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Fig. 6. Phase reconstruction results by the proposed method when the defocus distance is not 

small. The first row shows the (a) longitudinal intensity derivative distribution, (b) enlarged 

region corresponding to the boxed area of (a), (c) reconstructed phase map and (d) residual 

error when the noise standard deviation is 10−3, and the defocus distance is 100μm. The second 

row (e)-(h) shows same figures when the noise standard deviation is 10−2, and the defocus 

distance is 500μm. 
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6. Discussions 

6.1 Relation between FFT-based method 

The main idea of the present method is to consider the solution of the TIE as an 
inhomogeneous Neumann boundary value problem - with the Neumann boundary value 
experimentally measurable around a hard-edged aperture. The validity of boundary value is 
guaranteed by the energy conservation law so that our method represent a more general case 
and can be applied to any complex object without imposing any implicit or prior assumptions. 
Conversely, as we discussed in Sec. 2.3, if we are able to make some safe assumptions on the 
test object or experimental configuration such as constant phase at the boundary (which are a 
quite common assumptions to ensure the validity the FFT-based methods), the boundary 
measurements and the aperture become unnecessary because there would be no boundary 
signal at the aperture edge (see Eq. (9)). In this case, one can define not only the Neumann 
boundary, but any uniform Dirichlet boundary conditions or periodic ones as well. The eigen-
functions of the Laplacian can then be more general Fourier harmonics [33] (can be cosine, 
sine, or exponential harmonics), and thus there will be no essential difference between the 
proposed DCT-based solution and the traditional FFT-based solution. 

6.2 Inaccuracy results from “Teague’s assumption” 

It has to be mentioned that the TIE solution presented here is based on the “Teague’s 
assumption” that there exists an auxiliary function ψ  satisfying Eq. (14). However, as some 
previous work suggested, Teague’s assumption may not be always valid [9, 40]. According to 
the Helmholtz’s theorem, the vector field I φ∇ can be decomposed as 

 ,I φ ψ η∇ = ∇ + rot  (34) 

where ηrot  is the vector field ( ),y xη η η= ∂ ∂ ∂ ∂rot  and η  is a scalar function. Compared 
with Eq. (14), it can be seen that the rotational term ηrot  was simply ignored in Teague’s 
assumption [9], postulating that I φ∇  must be potential and irrotational. A detailed discussion 
about the validity and the inaccuracy resulting from “Teague’s assumption” can be found in 
[40]. Using the identity 0η∇⋅ =rot , the first Poisson equation (Eq. (15)) is still valid and this 
approximation does not affect accurate reconstruction of function ψ . However, the missing 
rotational term does affect the solution of the second Poisson equation (Eq. (21)) 

 ( ) ( )2 1 1I Iφ ψ η− −∇ = ∇⋅ ∇ + ∇⋅ rot  (35) 

It should be noted that the second term ( )1I η−∇⋅ rot  may be generally non-zero thus error 
will be introduced by simply ignoring it. However, in general the contribution of the 
rotational term ηrot  is quite small [40]. As is shown in our simulations, inaccuracies due to 
“Teague’s assumption” are much smaller than the error introduced by incorrect boundary 
conditions. Thus this assumption can be regarded as a reasonable one in our work. Besides, 
the small phase error can be further compensated by an iterative process considering the 
rotational term as a perturbation term [41]. 

7. Conclusions 

In conclusion, we have presented a method for TIE phase retrieval with use of DCT. The new 
method has several substantial advantages: First, it clearly defines the TIE as an 
inhomogeneous Neumann boundary value problem with the boundary value experimentally 
measurable around a hard-edged aperture. Second, the method is valid for the case of non-
uniform intensity distribution. Third, the measured intensity data are treated as one entity, 
without requiring special-purpose detection scheme to separate boundary values from the 
interior signals. Finally, for rectangular region, the DCT based numerical implementation is 
quite simple, fast, and of low memory usage. Its good performance has been confirmed by 
several numerical simulations even when the objects are located at the image borders. Those 
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precise results are clearly essential when dealing with quantitative phase imaging, which was 
the main driver for this research. The method has already been tested experimentally with the 
application to micro-optics characterization and found to be robust to many source of 
experimental error. The experimental results will be published in a subsequent paper. 

Appendix A: Cosine series expansion and discrete cosine transform 

The preceding Appendixes served to motivate the development of DCT as an efficient tool for 
solving the two Poisson equations, i.e., calculating the two area integrals of Eqs. (20) and (23) 
related to the TIE solution. Considering a band limited continuous signal ( )f x  defined on 
[0, ]a , it can be expended into an infinite but convergent series of cosine basis functions 

 
0

( ) cos .kk

k
f x F x

a

π∞

=

 
=  

 
  (36) 

The coefficient for this expansion can be represented as 

 ( )
0

cos ,
a

k k

k
F a f x x dx

a

π 
=  

   (37) 

with the normalization factors 

 

2
, 0

.
1

, 0

k

k
a

a

k
a


≠

= 
 =


 (38) 

It should be noted the basis functions of cosine series expansion ( ) ( )cosk x kx aπΨ =  is the 
eigen-function of Laplacian with the Neumann boundary conditions in one-dimension (1-D) 
case. Without loss of generality, we sample ( )f x  at a uniform interval to produce data 
sequence { }( ), 0,1,..., 1f n n N= − . The cosine series expansion then becomes DCT 
accordingly [42]. The 1-D DCT of ( )f n  is defined as 

 ( )
1

0
( ) ( ) cos 0.5 ; 0,1,..., 1.

N

k n

k
F k A f n n k N

N

π−

=

 
= + = −  

  (39) 

 

2
, 0

.
1

, 0

k

k
N

A

k
N


≠

= 
 =

 (40) 

Its inverse transform is 

 ( )
1

0
( ) ( ) cos 0.5 ; 0,1,..., 1.

N

kk

k
x n A X k n n N

N

π−

=

 
= + = −  
  (41) 

Note that correct to a scaling factor kA , the forward and backward (inverse) transforms have 
identical transformation kernels. The DCT basis vectors are 

 ( )
1,2,..., 1

( ) cos 0.5 ; 0,1,..., 1.k k

n N

k
n A n k N

N

π

= −

  
Ψ = + = −    

 (42) 

DCT is an orthonormal transform since the half point shift of coordinate making the cosine 
base function to be an orthogonal, complete set over the N-dimensional vector space and 
meanwhile fulfills the Neumann at the region boundary. 
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Similar to the cosine transform of one dimension, for the two-dimensional (2-D) data 
sequence { }( , ), 0,1,..., 1, 0,1,..., 1f x y x N y M= − = − , their DCT and inverse transform are 
defined respectively as: 

 ( ) ( ) ( ) ( )
1 1

0 0
, , cos 0.5 cos 0.5 ;

M N

m n x y

m n
F m n A A f x y x y

M N

π π− −

= =

   
= + +      

   (43) 

 ( ) ( ) ( ) ( )
1 1

0 0
, , cos 0.5 cos 0.5 .

M N

m nm n

m n
f x y A A F m n x y

M N

π π− −

= =

   
= + +      
   (44) 

Note that the transformation kernels of 2-D DCT are separable, so that the 2-D transform is 
equivalent to a 1-D DCT performed along a single dimension followed by another 1-D DCT 
in the other dimension. 

Appendix B: Calculate DCT based on FFT 

The direct implementation of DCT involves four nested loops with complexity 2 2( )O M N  for 
an M N×  array, which is prohibitive in most applications. As a result, various fast and 
efficient DCT algorithms have been devised and studied extensively [43]. However, here we 
only discuss one fast algorithm that utilizes the FFT to compute the DCT and its inverse [44] 
due to its simple implementation and relevance to one previous work [15]. The fast 
computation procedure consists of extending the input sequence of N samples to an 2N-point 
sequence with even symmetry, taking an 2N-point DFT, and saving N terms from it. The even 
extension is defined as 

 
( ) 0,1,..., 1

( ) .
(2 1 ) , 1,...,2 1

f n n N
f n

f N n n N N N

= −
= 

− − = + −
 (45) 

The 2N-point DFT vector of ( )f n  is 

 ( )
2

2 1 12

0 0

1 1
( ) ( ) ( ) cos 0.5 , 0,1,..., 2 1.

2 2

kn k
j jN NN N

n n

k
F k f n e e f n n k N

NN N

π π
π

   
−    − −   

= =

 
= = + = −  

  (46) 

Comparing it with the DCT coefficients ( )F k defined in Eq. (39), we get 

 2( ) ( ); 0,1,..., 1.
2

k
j

Nk
A

F k e F k k N
N

π 
−  
 = = −  (47) 

Similarly, it can be deduced that for the inverse DCT, one can recover the 2N-point DFT 
coefficients ( )F k  from the DCT coefficients ( )F k  as follows: 

 

2

2

( ); 0,1,..., 1
2

( ) 0; 0 .

(2 ); 1,..., 2 1
2

k
j

Nk

k
j

Nk

A
e F k k N

N

F k k

A
e F N k k N N

N

π

π

 
 
 

 
 
 


= −


= =

− − = + −


 (48) 

Therefore, computing the 2N-point inverse DFT, the reconstructed data by inverse DCT can 
be obtained in the first N elements of the inverse DFT result. 

 ( ) ( ); 0,1,..., 1,f n f n n N= = −  (49) 

For simplicity, we denote the even extension and the corresponding interception operation as 
the bar (‘-’) and angle brackets (‘< >’) respectively. This algorithm is presented here for the 
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1-D DCT, nevertheless it can be easily extended to the 2-D case (by extending the input 
matrix both in x  and y  coordinates) due to the separability of the 2D-FFT and 2D-DCT. 

Appendix C: Derivative calculation based on DCT 

In this section, expressions are derived for computing derivative operations on a signal, from 
the DCT coefficients of the original signal’s samples. Applying the derivative operation to 
both sides of Eq. (36), and adopting the notation ( )( )l

k xΨ  mean the lth order derivative of the 
basis functions of the transform. Then lth order derivative of f can be deduced as 

 ( )( ) ( ) ( )

0 0
( ) cos .l l l

k k k k kk k

k
f x a F x a F x

a

π∞ ∞

= =

 
= Ψ =  

 
   (50) 

Similarly, for discrete data let us adopt the notation ( ) ( )lf n  to mean the discrete derivative of 
( ) ( )lf x  at x n= , and we can use it as an approximation of the original derivative. Then the 

1st and 2nd order derivative calculated with DCT can be represented as [45] 

 ( )
1

0
( ) ( )sin 0.5 ;

N

nk

k k
f n A F k n

a N

π π−

=

   ′ = − +      
  (51) 

 ( )
2

1

0
( ) ( )cos 0.5 ;

N

nk

k k
f n A F k n

a N

π π−

=

   ′′ = − +      
  (52) 

where ( )F k  is the DCT coefficients of ( )f n . Higher order derivatives can be analogized. It 
is seen that for the 2nd derivative, one only needs to reweight the DCT coefficients with a 
multiplicative term ( )

2
k aπ−  and then reconstruct it by inverse DCT. However, for 1st 

derivative, not only the multiplicative term ( )k aπ−  is induced, but also the basis of the 
obtained derivative are changed. So one could not reconstruct the modified coefficients via 
inverse DCT. Analogous rules apply to rectangular domains in two dimensions. To compute a 
single derivative like ( ),f x y x∂ ∂  or ( )2 2,f x y x∂ ∂ , we can apply Eq. (51) or Eq. (52) 
along the x  direction, once for each y : 

 
( )

( ) ( ) ( )
1 1

0 0

,
, sin 0.5 cos 0.5 ;

M N

m nm n

f x y m m n
A A F m n x y

x a M N

π π π− −

= =

∂      
= − + +     ∂      
  (53) 
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( ) ( ) ( )
22

1 1

2 0 0

,
, cos 0.5 cos 0.5 .

M N

m nm n

f x y m m n
A A F m n x y

x a M N

π π π− −

= =

∂      
= − + +     ∂      
  (54) 

Similar equations applies for derivatives in the y - direction 

 
( )

( ) ( ) ( )
1 1

0 0

,
, cos 0.5 sin 0.5 ;

M N

m nm n

f x y n m n
A A F m n x y

y b M N

π π π− −

= =

∂      
= − + +     ∂      
  (55) 

 
( )

( ) ( ) ( )
22

1 1

2 0 0

,
, cos 0.5 cos 0.5 .

M N

m nm n

f x y n m n
A A F m n x y

y b M N

π π π− −

= =

∂      
= − + +     ∂      
  (56) 

We denote the above formulations in more convenient forms: Eq. (C4) x DCT f−− ∂ , 
2Eq. (C5) x DCT f−− ∂ , Eq. (C6) y DCT f−− ∂ , 2Eq. (C7) y DCT f−− ∂ . With these basic elements, we 

can easily describe the Hamilton ∇  with DCT-based operators 

 ( ), .DCT x DCT y DCT− −∇ = ∂ ∂  (57) 

By applying product to scalars or dot product to vectors, DCT∇  may denote the gradient of a 
scalar field and the divergence of a vector field: 
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 ( ), ,DCT x DCT y DCTf f f− −∇ = ∂ ∂  (58) 

 .DCT x DCT x y DCT yf f− −∇ ⋅ = ∂ + ∂f  (59) 

It is more interesting to consider the Laplacian operator 

 

( )

( ) ( ) ( )

2 2 2

2 2
1 1

0 0

,

, cos 0.5 cos 0.5 ,

DCT x DCT y DCT

M N

m nm n

f x y f f

m n m n
A A F m n x y

a b M N

π π π π

− −

− −

= =

∇ = ∂ + ∂ =
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− + + +                 
 

(60) 

from which it is easy to find that the multiplicative term above is exactly the Laplacian 
eigenvalues shown in Eq. (27). We further denote the inverse version of Eq. (61) as 

2

DCT f
−

∇ : 

 ( ) ( ) ( )
2

1
2 2

1 1

0 0
, cos 0.5 cos 0.5 .DCT

M N

m nm n

m n m n
f A A F m n x y

a b M N

π π π π−

−

− −

= =
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∇ = − + + +                 

  (61) 

Or more compactly, 

 ( )
2 1 1

, .DCT m nf DCT DCT fλ
− − −∇ =  (62) 

Appendix D: Calculate DCT-based derivatives using FFT 

In appendix C, we present several formulations for differentiation differential operators based 
on DCT. It has been found that for operators related to only even order derivatives, such as 

2

x DCT f−∂  and 
2

DCT f
−

∇ , the reconstruction is a simple inverse DCT. However, this rule does not 
work for odd order derivatives. The direct calculation of Eqs. (55) and (56) requires 
expensive computation 2 2( )O M N  for an M N×  matrix. In Appendix B, we demonstrate a 
handy fast algorithm to compute DCT based on 2N point FFT. Accordingly, here we present 
the corresponding fast algorithms to calculate DCT-based differential operators using FFT. 

We again consider the 2N-point sequence ( )f n  extended from the extending the input N 

samples according to Eq. (45) with Fourier coefficients ( ), 0,1,..., 2 1F k k N= −  defined in 

Eq. (46). Using the relationship between DCT coefficients and the 2N-point DFT coefficients 

(Eqs. (47) and (48)), we can deduce that if we modify the ( )F k  as the following rules, 

 

2
( ); 0,1,...,

( ) .
2

( 2 ) ( ); ,...,2 1

jk
F k k N

a
F k

j
k N F k k N N

a

π

π


=

= 
 − = −


 (63) 

Computing the 2N-point inverse FFT, then the first N elements of the reconstruction result 
corresponds to the sampled derivative calculated by DCT-based method (Eq. (51)). 

 ( ) ( ); 0,1,..., 1.f n f n n N′ ′= = −  (64) 

If the ( )F k  is modified as 

 
( )

2

2

2
( ); 0,1,..., 1

( ) ,
2 2

( ); ,...,2 1

k
F k k N

a
F k

k N
F k k N N

a

π

π

  
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= 
− 

− = − 
 

 (65) 
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then the first N elements in the reconstruction result by FFT corresponds to the sampled 
second order derivative calculated by DCT-based method (Eq. (52)). 

 ( ) ( ); 0,1,..., 1.f n f n n N′′ ′′= = −  (66) 

It is not hard to find the weighting coefficients in Eqs. (63) and (65) make no difference if one 
wants to compute the derivative of ( )f n  use the DFT or FFT based method without 
considering that ( )f n  is an extended version of ( )f n  [46]. Similar relations can be found in 
2-D cases: to calculate x DCT f−∂ , y DCT f−∂ , and 

2

DCT f
−

∇ , one can just extend the input matrix 
f  both in x  and y  coordinates symmetrically, then perform the same procedure as in DFT 

or FFT based derivative calculation methods, and finally intercept the part corresponding to 
its original size from the reconstructed result. By denoting the symmetrical extension and the 
corresponding interception operation as the bar (‘-’) and angle brackets (‘< >’) respectively, 
the fast algorithms for some 2-D differential operators can be presented as 

 ,
x DCT x FFT

f f− −∂ = ∂  (67) 

 ,y DCT y FFTf f− −∂ = ∂  (68) 

 
2 2

,DCT FFTf f
− −

∇ = ∇  (69) 

where x FFT f−∂ , y FFT f−∂ , and 
2

FFT f
−

∇  represent their counterpart implemented based on FFT. 
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