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Boundary-aware Fully Convolutional Network

for Brain Tumor Segmentation

Haocheng Shen, Ruixuan Wang, Jianguo Zhang, and Stephen J. McKenna

Computing, School of Science and Engineering, University of Dundee, UK

Abstract. We propose a novel, multi-task, fully convolutional network
(FCN) architecture for automatic segmentation of brain tumor. This
network extracts multi-level contextual information by concatenating
hierarchical feature representations extracted from multimodal MR im-
ages along with their symmetric-difference images. It achieves improved
segmentation performance by incorporating boundary information di-
rectly into the loss function. The proposed method was evaluated on
the BRATS13 and BRATS15 datasets and compared with competing
methods on the BRATS13 testing set. Segmented tumor boundaries ob-
tained were better than those obtained by single-task FCN and by FCN
with CRF. The method is among the most accurate available and has
relatively low computational cost at test time.
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1 Introduction

We address the problem of automatic segmentation of brain tumors. Specifically,
we present and evaluate a method for tumor segmentation in multimodal MRI
of high-grade (HG) glioma patients. Reliable automatic segmentation would be
of considerable value for diagnosis, treatment planning and follow-up [1]. The
problem is made challenging by diversity of tumor size, shape, location and ap-
pearance. Fig. 1 shows an HG tumor with expert delineation of tumor structures:
edema (green), necrosis (red), non-enhancing (blue) and enhancing (yellow). The
latter three form the tumor core.

A common approach is to classify voxels based on hand-crafted features and
a conditional random field (CRF) incorporating label smoothness terms [1, 2].
Alternatively, deep convolutional neural networks (CNNs) automatically learn
high-level discriminative feature representations. When CNNs were applied to
MRI brain tumor segmentation they achieved state-of-the-art results [3–5]. Specif-
ically, Pereira et al. [3] trained a 2D CNN as a sliding window classifier, Havaei
et al. [4] used 2D CNN on larger patches in a cascade to capture both local and
global contextual information, and Kamnitsas et al. [5] trained a 3D CNN on 3D
patches and considered global contextual features via downsampling, followed by
a fully-connected CRF [6]. All these methods operated at the patch level. Fully
convolutional networks (FCNs) recently achieved promising results for natural
image segmentation [11, 12] as well as medical image segmentation [13–15]. In
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Fig. 1: An HG tumor. Left to right: Flair, T1, T1c, T2 and expert delineation;
edema (green), necrosis (red), non-enhancing (blue), enhancing (yellow).

FCNs, fully connected layers are replaced by convolutional kernels; upsampling
or deconvolutional layers are used to transform back to the original spatial size at
the network output. FCNs are trained end-to-end (image-to-segmentation map)
and have computational efficiency advantages over CNN patch classifiers.

Here we adopt a multi-task learning framework based on FCNs. Our model
is a variant of [14–16]. Instead of using 3 auxiliary classifiers for each upsampling
path for regularization as in [14], we extract multi-level contextual information
by concatenating features from each upsampling path before the classification
layer. This also differs from [16] which performed only one upsampling in the
region task. Instead of either applying threshold-based fusion [15] or a deep
fusion stage based on a pooling-upsampling FCN [16] to help separate glands,
we designed a simple combination stage consisting of three convolutional layers
without pooling, aiming at improving tumour boundary segmentation accuracy.
Moreover, our network enables multi-task joint training while [16] has to train
different tasks separately, followed by a fine-tuning of the entire network.

Our main contributions are: 1) we are first to apply a multi-task FCN frame-
work to multimodal brain tumor (and substructure) segmentation; 2) we propose
a boundary-aware FCN that jointly learns to predict tumor regions and tumor
boundary without the need for post-processing, an advantage compared to the
prevailing CNN+CRF framework [1]; 3) we demonstrate that the proposed net-
work improves tumor boundary accuracy (with statistical significance); 4) we
compare directly using BRATS data; our method ranks top on BRATS13 test
data while having good computational efficiency.

2 Variant of FCN

Our FCN variant includes a down-sampling path and three up-sampling paths.
The down-sampling path consists of three convolutional blocks separated by max
pooling (yellow arrows in Fig. 2). Each block includes 2∼3 convolutional layers as
in the VGG-16 network [7]. This down-sampling path extracts features ranging
from small-scale low-level texture to larger-scale, higher-level features. For the
three up-sampling paths, the FCN variant first up-samples feature maps from the
last convolutional layer of each convolutional block such that each up-sampled
feature map (purple rectangles in Fig. 2) has the same spatial size as the input
to the FCN. Then one convolutional layer is added to each up-sampling path to
encode features at different scales. The output feature maps of the convolutional
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Fig. 2: Variant of FCN. Images and symmetry maps are concatenated as the
input to the net [8]. Colored rectangles represent feature maps with numbers
nearby being the number of feature maps. Best viewed in color.

Fig. 3: The structure of boundary-aware FCN. The two up-sampling branches in
the two FCNs are simply represented by the solid orange and blue lines.

layer along the three up-sampling paths are concatenated before being fed to
the final classification layer. We used ReLU activation functions and batch nor-
malization. This FCN variant has been experimentally evaluated in a separate
study [8].

3 Boundary-Aware FCN

The above FCN can already produce good probability maps of tumor tissues.
However, it remains a challenge to precisely segment boundaries due to ambiguity
in discriminating pixels around boundaries. This ambiguity arises partly because
convolution operators even at the first convolutional layer lead to similar values
in feature maps for those neighboring voxels around tumor boundaries. Accurate
tumor boundaries are important for treatment planning and surgical guaidance.
To this end, we propose a deep multi-task network.
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The structure of the proposed boundary-aware FCN is illustrated in Fig. 3.
Instead of treating the segmentation task as a single pixel-wise classification
problem, we formulate it within a multi-task learning framework. Two of the
above FCN variants with shared down-sampling path and two different up-
sampling branches are applied for two separate tasks, one for tumor tissue classi-
fication (‘region task’ in Fig. 3) and the other for tumor boundary classification
(‘boundary task’ in Fig. 3). Then, the outputs (i.e., probability maps) from the
two branches are concatenated and fed to a block of two convolutional layers
followed by the final softmax classification layer (‘combination stage’ in Fig. 3).
This combination stage is trained with the same objective as the ‘region task’.
The combination stage considers both tissue and boundary information esti-
mated from the ‘region task’ and the ‘boundary task’. The ‘region task’ and
the ‘combination stage’ task are each a 5-class classification task whereas the
‘boundary task’ is a binary classfication task. Cross-entropy loss is used for each
task. Therefore, the total loss in our proposed boundary-aware FCN is

Ltotal(θ) =
∑

t∈{r,b,f}

Lt(θt) = −
∑

t∈{r,b,f}

∑

n

∑

i

logPt(lt(xn,i);xn,i, θt) (1)

where θ = {θr, θb, θf} is the set of weight parameters in the boundary-aware
FCN. Lt refers to the loss function of each task. xn,i is the i-th voxel in the
n-th image used for training, and Pt refers to the predicted probability of the
voxel xn,i belonging to class lt. Similarly to [15], we extract boundaries from
radiologists’ region annotations and dilate them with a disk filter.

In the boundary-aware FCN, 2D axial slices from 3D MR volumes are used as
input. In addition, since adding brain symmetry information is helpful for FCN
based tumor segmentation [8], symmetric intensity difference maps are combined
with original slices as input, resulting in 8 input channels (see Fig 2 & 3).

4 Evaluation

Our model was evaluated on BRATS13 and BRATS15 datasets. BRATS13 con-
tains 20 HG patients for training and 10 HGs for testing. (The 10 low-grade pa-
tients were not used.) From BRATS15, we used 220 annotated HG patients’ im-
ages in the training set. For each patient there were 4 modalities (T1, T1-contrast
(T1c), T2 and Flair) which were skull-stripped and co-registered. Quantitative
evaluation was performed on three sub-tasks: 1) the complete tumor (including
all four tumor structures); 2) the tumour core (including all tumor structures
except edema); 3) the enhancing tumor region (including only the enhancing
tumor structure).

Our model was implemented with the Keras and Theano backend. For each
MR image, voxel intensities were normalised to have zero mean and unit variance.
Networks were trained with back-propagation using Adam optimizer. Learning
rate was 0.001. The downsampling path was initialized with VGG-16 weights [7].
Upsampling paths were initialized randomly using the strategy in [17].
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Table 1: Performance on the BRATS15 44 testing set
Dice Positive Predictive Value Sensitivity

Method
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

FCN 88.1 70.9 72.5 92.2 82.7 79.7 86.0 67.5 70.5

FCN + CRF 87.7 70.9 72.5 93.2 82.7 79.7 84.5 67.5 70.5

Boundary-aware FCN 88.7 71.8 72.5 90.1 80.4 77.9 88.7 72.0 72.3

4.1 Results on BRATS15 dataset

We randomly split HG images in the BRATS15 training set into three subsets
at a ratio of 6:2:2, resulting in 132 training, 44 validation and 44 test images.
Three models were compared: 1) variant of FCN (Fig.2), denoted FCN; 2) FCN
with a fully-connected CRF [6]; 3) the multi-task boundary-aware FCN.

Firstly, FCN models were evaluated on the validation set during training.
Fig.4(a) plots Dice values for the Complete tumor task for boundary-aware FCN
and FCN. Using boundary-aware FCN improved performance at most training
epochs, giving an average 1.1% improvement in Dice. No obvious improvement
was observed for Core and Enhancing tasks. We further performed a compari-
son by replacing the combination stage with the threshold-based fusion method
in [15]. This resulted in Dice dropping by 15% for the Complete tumor task
(from 88 to 75), which indicates the combination stage was beneficial. We ex-
perimented adding more layers to FCN (e.g., using four convolutional blocks in
downsampling path and four upsampling paths) but observed no improvement,
suggesting the benefit of boundary-aware FCN is not from simply having more
layers or parameters.

The validation performance of both models saturated at around 30 epochs.
Therefore, models trained at 30 epochs were used for benchmarking on test data.
On the 44 unseen test images, results of boundary-aware FCN, single-task FCN
and FCN+CRF are shown in Table 1. The boundary-aware FCN outperformed
FCN and FCN+CRF in terms of Dice and Sensitivity but not in terms of Positive
Predictive Value.

One advantage of our model is its improvement of tumor boundaries. To show
this, we adopt the trimap [6] to measure precision of segmentation boundaries
for complete tumors. Specifically, we count the proportion of pixels misclassified
within a narrow band surrounding tumor boundaries obtained from the experts’
ground truth. As shown in Fig. 4(b), boundary-aware FCN outperformed single-
task FCN and FCN+CRF across all trimap widths. For each trimap width used,
we conducted a paired t-test over the 44 pairs, where each pair is the perfor-
mance values obtained on one validation image by boundary-aware FCN and
FCN. Small p-values (p<0.01) in all 7 cases indicate that the improvements are
statistically significant irrespective of the trimap measure used. Example seg-
mentation results for boundary-aware FCN and FCN are shown in Fig. 5. It
can be seen that boundary-aware FCN removes both false positives and false
negatives for the complete tumor task.
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(a) (b) (c) (d)

Fig. 4: Validation results on complete tumor task. (a) Dice curves for boundary-
aware FCN and FCN on BRATS15; (b) boundary precision: percentage of mis-
classified pixels within trimaps of different widths; (c) Dice curves on BRATS13;
(d) Trimap on BRATS13.

Table 2: BRATS13 test results (ranked by online VSD system)
Dice Positive Predictive Value Sensitivity

Method
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

Pereira [3] 88 83 77 88 87 74 89 83 81

boundary-aware FCN 88 83 76 87 87 73 90 81 81

Zhao [10] 87 82 76 91 86 77 84 81 77

FCN 87 82 75 85 87 72 89 79 80

Kwon [9] 88 83 72 92 90 74 84 78 72

Havaei [4] 88 79 73 89 79 68 87 79 80

Tustison [2] 87 78 74 85 74 69 89 88 83

Meier [1] 82 73 69 76 78 71 92 72 73

Reza [1] 83 72 72 82 81 70 86 69 76

We conducted another experiment without using symmetry maps. Boundary-
aware FCN gave an average of 1.3% improvement in Dice compared to FCN.
The improvement for boundaries was statistically significant (p<0.01).

4.2 Results on BRATS13 dataset

A 5-fold cross validation was performed on the 20 HG images in BRATS13.
Training folds were augmented by scaling, rotating and flipping each image.
Performance curves for Dice and trimap show similar trends as for BRATS15
(Fig 4(c)-(d)). However, using CRF did not improve performance on this dataset,
suggesting boundary-aware FCN is more robust in improving boundary preci-
sion. The improvement of trimap is larger than for BRATS15. It is worth noting
that, in contrast to BRATS15 (where ground truth was produced by algorithms,
though verified by radiologists), the ground truth of BRATS13 is the fusion of
annotations from multiple radiologists. Thus the improvement gained by our
method on this set is arguably more solid evidence showing the benefit of joint
learning, especially on improving boundary precision.

Our method is among the top-ranking on the BRATS13 test set (Table 2).
Tustison et al. [2], the winner of BRATS13 challenge [1], used an auxiliary health
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(a) (b) (c) (d) (e)

Fig. 5: Example results. Left to right: (a) T2, (b) T1c, (c) Flair with ground
truth, (d) FCN results, (e) boundary-aware FCN results. Best viewed in colour.

brain dataset for registration to calculate the asymmetry features, while we only
use the data provided by the challenge. Our model is fully automatic and overall
ranked higher than a semi-automatic method [9].

Regarding CNN methods, our results are competitive with Pereira et al. [3]
and better than Havaei et al. [4]. Zhao et al. [10] applied joint CNN with CRF
training [18]. Our boundary-aware FCN gave better results without the cost
of tuning a CRF. A direct comparison with 3D CNN is not reported here as
Kamnitsas et al. [5] did not report results on this dataset.

One advantage of our model is its relatively low computational cost for a
new test image. Kwon et al. [9] reported an average running time of 85 minutes
for each 3D volume on a CPU. For CNN approaches, Pereira et al. [3] reported
an average running time of 8 minutes while 3 minutes was reported by Havaei
et al. [4], both using a modern GPU. For an indicative comparison, our method
took similar computational time to Havaei et al. [4]. Note that, in our current
implementation, 95% of the time was used to compute the symmetry inputs on
CPU. Computation of symmetry maps parallelized on GPU would provide a
considerable speed-up.

5 Conclusion

We introduced a boundary-aware FCN for brain tumor segmentation that jointly
learns boundary and region tasks. It achieved state-of-the-art results and im-
proved the precision of segmented boundaries on both BRATS13 and BRATS15
datasets compared to the single-task FCN and FCN+CRF. It is among the top
ranked methods and has relatively low computational cost at test time.
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