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ABSTRACT.   The Carathe'odory and Kobayashi distance functions on a bounded
domain G in C    have related infinitesimal forms.   These are the Carathe'odory and
Kobayashi metrics.  They are denoted by F(z, {■) (length of the tangent vector £ at
the point z).   They are defined in terms of holomorphic mappings, from G to the
unit disk for the Carathe'odory metric, and from the unit disk to G for the Kobayashi
metric.

We consider the boundary behavior of these metrics on strongly pseudoconvex
domains in C   with C   boundary.  J is fixed and z is allowed to approach a boundary
point Zq.   The quantity F(z, £) d(z, 3G) is shown to have a finite limit.   In addition,
if £ belongs to the complex tangent space to the boundary at zQ, then this first limit

2is zero, and (F{z, £)) d(z, 3G) has a (nontangential) limit in which the Levi form
appears.

We prove an approximation theorem for bounded holomorphic functions which
uses peak functions in a novel way.  The proof was suggested by N. Kerzman.  This
theorem is used here in studying the boundary behavior of the Carathe'odory metric.

1. Introduction and statement of results. This paper is based on the
author's doctoral dissertation [7]. The main results were announced in [8].
At the suggestion of N. Kerzman we have included an approximation theorem
which is of independent interest (Theorem 2).

By a metric we shah mean a differential metric in the sense of Grauert and
Reckziegel [10]. A topological metric is always referred to as a distance.

Let G be a dounded domain in C". Let A be the unit disk in C. Let A(G)
be the set of holomorphic mappings from G to A, and G(A) the set of holomor-
phic mappings from A to G.  Let p be the Poincaré distance on A.

Definition 1. The Carathéodory metric on G is the function Fc: G x
C" —► R+ defined by [21]
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220 IAN GRAHAM

Fc(z,%)= sup |/*(?)l= sup
/eA(G);/(z)=0 /SA(G);/(z)=0 ¿=i azi

(The condition /(z) = 0 is superfluous [21].) The Caratheodory distance is defined
by [2]

C(zxz2)=   sup    p(f(zx),f(z2)),     zx,z2EG.
/eA(G)

It was shown by Reiffen [21] that if 7: [0, 1] —*■ G is a C1 curve in G with
Caratheodory length defined by

Mr)-       "j   ö  , ¿ c^.-i).7(0),

then

Definition 2. The Kobayashi metric on G is the function FK: G x C" —*■
R+ defined by [22]

Fj-iz, |) = inf {a I a > 0, 3/G G(A) with /(0) - z, /'(0) = £/a}.

The Kobayashi distance is defined as follows [18] :  Let zx, z2 G G.  Consider all
finite sequences of points zx =p0,px, •••, pfc_i, pk =z2 of G such that there
exist points xx, • • •, xk,   yx, • • •, yk of A and mappings fx, • • •, fk G G(A)
satisfying/Tix,.) = p/_1 and/¡O,) = p,, 1 = 1, •••, k. Set

fe
F(z1,z2) = infX)p(^,»3'()

f=i

where the infimum is taken over all choices of points and mappings. Royden
[22] showed that D is actually the integrated form of FK. That is, given zx, z2
EG,

D(zx, z2) = inf f1 FK(y(t), 7 '(t)) dt

where the infimum is taken over all differentiable curves 7: [0, 1] —*■ G joining
Zj to z2.

Note.  The Caratheodory distance and metric do not satisfy such a relation-
ship.

For fixed % we investigate the behavior of the metrics F(z, %) as z approach-
es a point z0 G bG.
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BOUNDARY BEHAVIOR 221

Theorem 1. (The notation is explained below.) Let G be a (bounded^))
strongly pseudoconvex domain in C" with C2 boundary. Let F(z, £) be either
the Carathéodory or Kobayashi metric on G. Let z0 G 9G. Let 0 be a C2 de-
fining function for oG such that ||Vz0(zo)|| = 1.  Then

(0 hm F(z, %)d(z, oG) = M%N(z0)H•
z-"z0

If l/v(z0) = 0, i.e. %is a holomorphic tangent vector to dG at z0, then

lim       (F(z, %))2d(z, 3G) = ** L^ß)
z-*-zq^£A

1    " 3**    (   \tT
2f,/=i dzidzi

d(z, dG) is the Euclidean distance to the boundary.  Vz0 is the vector
(btpßzy ,•", d<p/dzn). %N(z0) is the (complex) normal component of % at z0.
A in (ii) denotes a cone of arbitrary aperture with vertex at z0 and axis the in-
terior normal to 3G at z0.

Fix the aperture of the cone A. It is shown that the limits are approached
uniformly in vectors % of unit length and in the boundary point z0. It is also
possible to reformulate Theorem 1 in such a way that the restriction z G A in
the second limit is not needed (§5.4).

The significance of Theorem 1 lies in (i) the different limiting behavior in
(complex) tangential and normal directions (cf. Stein [23]), and (ii) the appear-
ance of the Levi form as the limiting value of a quantity defined inside the
domain.

The approximation theorem is the following:

Theorem 2. Let G be a (pounded) strongly pseudoconvex domain in
C" with C2 boundary. Let z0 E dG.  Let ip be a peak function for G at zQ.
Let 0<a<b < I,and let

A = {zEG\ |ip(z)|>a},     77={zGG| |ip(z)|>ô}.

Also choose an integer m>0 and an arbitrary 17 > 0.  Then there exists a
positive constant L = L(G, a, b, m, 77) such that the following holds: given fE
H°°(A), there exists f E H°°(G) such that

(i)  UD«f-Daf\\L„(B)<r}\\f\\LOO(A), 0<|a|<m.
(h)ll/llL„(G)<¿ll/llL„M).

(1)  A strongly pseudoconvex domain is by assumption bounded (Definition 4).
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222 IAN GRAHAM

Given a multi-index a = (ap • • • , a„) of length n, we write D01 =
(d/dzx)ai ••• (cl/dzn)an. Also \a\=ax + •••+a„.

The constant ¿ can be chosen independently of z0 if the peak function ty
depends continuously on z0. Since the uniform statement in Theorem 1 also
depends on choosing peak functions in a continuous manner, we discuss this
question in §3.2.

The significance of Theorem 2 is that it gives approximation of holomorphic
functions up to the boundary. It is used here in studying the boundary behavior
of the Caratheodory metric.

Note.  One cannot hope to obtain such a theorem with a bound independent
of 17.

G. Henkin [14] has independently obtained an estimate for the Caratheodory
metric which suffices to show that biholomorphic maps between strongly pseudo-
convex domains satisfy a Holder-& condition.

The boundary behavior of the Bergman kernel and metric is a somewhat
older question. Bergman [1] obtained results for domains in C2 which, at a
given boundary point, admit both interior and exterior 'domains of comparison'.
By no means do all strongly pseudoconvex domains have this property. However
in [15] Hbrmander showed that the boundary behavior of the kernel function
on such domains is a local question. Suitable local domains of comparison
could be found for any strongly pseudoconvex domain with smooth boundary.
This idea is the basis of our approach.

With a suitable choice of coordinates, analytic eUipsoids (§2.3) provide
local domains of comparison. The metrics and the limits in Theorem 1 can be
computed exphcitly for these domains. (They are complex-linearly equivalent
to the unit ball.) The reduction to local questions is made possible by the
monotonicity property of the metrics (§2.1), together with (a) for the
Caratheodory metric, Theorem 2, and (b) for the Kobayashi metric, and estimate
of Royden (Lemma 4).

Related work on the Bergman metric has been done by Diederich ([4], [5]).
In [4] he obtains statement (i) in our Theorem 1 for the Bergman metric with
a factor of (n + l)1'2 on the right-hand side. Statement (ii) with a factor of
n + 1   on the right-hand side is contained in [5].

Recent work on the boundary behavior of the Bergman kernel has been done
by Fefferman [6].

The author is indebted to N. Kerzman for advice and encouragement as well
as for the idea for the proof of Theorem 2. He also wishes to thank H. L.
Royden for pointing out the relevance of his estimate for the Kobayashi metric.
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2. The Carathéodoryand Kobayashi metrics.
2.1. General properties.   See §1 for definitions of the metrics and corres-

ponding distance functions. These definitions can be given for arbitrary complex
manifolds, but the metrics may be zero in some directions, and the distances
zero for distinct pairs of points, in this case. F without a subscript C or K refers
to either metric unless specified otherwise. We have

(i) Regularity properties.
(a) Since A(G) is a normal family, the supremum in the definition of

Fc(z, %) is assumed by some / G A(G). Necessarily f(z) = 0 [21]. Fc is con-
tinuous in (z, £) by a normal families argument [21, pp. 29-30]. It is not in
general Hermitian [21, Satz 10].

(b) The Kobayashi metric is in general only upper semicontinuous [22]
is continuous in case G(A) is a normal family by the same argument as in (a)
Kerzman [16] has shown that this is the case if G is a bounded domain of
holomorphy in C" with C1 boundary.

(ü) Homogeneity in %. If c E C, F(z, c%) = \c\F(z, %).
(hi) The Carathe'odory metric is subadditive in |. For if/G A(G) and

S.tjGC",

It

1=1 ozi
££«t,1=1 azi

+
1=1 ozi

(iv) If G C C", G' C Cm are bounded domains, and 4>: G -* G' is a
holomorphic mapping, then FG>(<ï>(z), <&*£) ̂FG(z, £). Hence

(v) F is preserved by biholomorphic mappings; and
(vi) Monotonicity.  Ii G CG' and % lies in the tangent space of G then

FG(z, £) >FG'(z, %). For (iv) applies to the inclusion mapping.
(vh) On the unit disk A both metrics coincide with the Poincaré metric, i.e.

F(z, £) = |||/(1 - |z|2). Because the automorphism group of the disk is transi-
tive it suffices to check the equality at the origin. Here it follows from the
Schwarz lemma.

2.2.  The metrics on the unit ball in C". Let Bn denote the unit ball in
C". If w, 17 G C" we write (w, rp = H^wtf,.

by

(1)

Proposition 1.  The Carathéodoryand Kobayashi metrics on Bn are given

(F(W, T)))2 =
2 _. NI2

1-llwl
+- \<w, n)\2

(l - IMl2)2\2

Proof. (This is the Bergman metric on Bn except that the factor (n + 1)
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is missing.  Cf. [23, p. 23].) This expression is invariant under unitary transfor-
mations and under the  automorphism

yj\ - a2 • Wj
w'x = r-1     -,   w¡=—-,     / = 2, •••,«,1 -aw,        ' 1 -aw.

,' -^

which takes the point (a, 0, •••, 0) on the real wx axis to the origin.
Hence it is invariant under the full automorphism group of the ball. Since

this group is transitive on directions as well as points, the metrics must coincide
with (1) except possibly for constant factors.

We claim that both metrics must reduce to the Poincaré metric on the
unit disk Aj in (say) the wx plane. Thus no constant factors appear.  For, by
monotonicity, FB (w, £) <FA (w, £) for w E Ax and % in the wx plane. To
prove the opposite inequahty let w: C" —* C be the projection onto the first
coordinate.

(a) Caratheodory metric.  The function/G A(Aj) which maximizes
l/*(£)l extends to a function / G A(F„) by composition with n.

(h) Kobayashi metric.   Suppose there were a vector % in the wx plane and
a mapping / G F„(A) such that /(0) - 0, /'(0) ■ |/a, with a < FA ( (0, £). Then
n o fE Aj(A) and (n ° f)'(Q) = £/a, a contradiction.

2.3.  7TAe metrics on analytic ellipsoids.   Let (a¡j)"j=x he a Hermitian
positive definite matrix. We write F(£, z) = £?*K¡'ff$f£y In the terminology
of [4] we introduce

Definition 3.  An analytic ellipsoid is a domain

F = {z G C" | <pE(z) = - zx - F, + H(z, z) < 0}.

Given positive constants 0 < c < C we denote by E (c, C) the set of analytic
ellipsoids F for which c||z||2 < H(z, z) < C\\z\\2. Notice that H(%, £) - L0£(£).

Proposition 2.  7Ae Caratheodory and Kobayashi metrics on E are both
given by

(2) <^tf-r§S + H(%, z) - S,
- 0£-(z)

2

Proof. We follow the computation of the Bergman kernel function for
such domains in [4] and [15]. First diagonalize ^"j^a^zjzj by a unitary trans-
formation in the variables z2, •••, zn. (2) is invariant. The linear transformation

vx=zx,     vk=zk+axkzx/akk,      k = 2,—,n,
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BOUNDARY BEHAVIOR 225

removes the remaining off-diagonal terms. E is transformed into

vECn a0\vy-l/a0\2 + Zakk\vk\2<l/a0\
k=2

where a0 = aix - Xk=2\alk\2/akk. Now if we set

wi = flo(°i - Vflo).    wk = (aoakk)l/2vk>      k = 2,'-',n,

the transformed domain becomes the unit bah. So if in (1) we make the sub-
stitutions (still assuming (a//)"/=2 is diagonal)

wi =flozi _1>

wk = (*oflkk)l/2(zk + aikzi/akk)>       k = 2,—,n,

Vi =a(£y,

Vk = (ßoakk)l/2(h + "iktiKk)'       * = 2> •". ".

l-|M|2=fl0    (Vy   +Vy-aQ\Vy\2-'Eayy\VkA

= a0(zy +Zy -H(z,z)),

we obtain (2).
2.4. Evaluation of limits for analytic ellipsoids.  We shall evaluate the limits

in Theorem 1 at the point z0 = 0 of 9F. We impose the restriction z G A in
both limits. A, a cone with vertex at 0 and axis the positive real zx axis, is given
by A = {z G C"|Re zx > k\\z\\} for some k E (0, 1). We replace d(z, bG) by
Re Zy for the moment.

Proposition 3. Let E = {z E C"\<¡>E(z) = -Zy-zx + H(z, z) < 0} be
an analytic ellipsoid. Let FE(z, %) be either the Carathéodory or Kobayashi metric
on E.   Then
(3) lim      FE(z, 8 Re z, = & 1^ |.
v ' z-+0;z£A

In addition if%y =0 then

(4) hm     (FE(z, |))2Re i, - % 77(Ç, ©«H L#_($).
z-0;zeA V£

Remark . Suppose A and constants 0 < c < C are fixed. Then the limits
(3) and (4) are approached uniformly in E E E (c, C) and in unit vectors £. (This
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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means for (3) that given e > 0 there is a neighborhood W of 0 such that
\FE(Z' £)Re zi - H$,ll< e when z G F D W/ for all F and all unit vectors £.)

Proof. Since S^a^z,.!, = 0(||z||2),

t<\ u Rezi       1
z-»0;zGA    - <pE(Z)      2

From (2) we obtain

(6) hm     (F£(z, |) Re z^2 = M hm |F(?, z) - ^ |2 = % ||, |2
z-»0;z£A z-»0

and if %x = 0,

(7) lim     (FE(z, %))2 Re zx = HF& &.

Note that - %x is the normal component of £ here. The uniform statement is
clear.

3. Strongly pseudoconvex domains.
3.1. General remarks.
Definition 4. A strongly pseudoconvex domain in C" with C2 boundary

is a bounded domain G in C" for which there exist a neighborhood U of 9G and
a real-valued function <pEC2(U) such that

(i)Gn U= {zEU\<t>(z)<0};
(ii)0 is strictly plurisubharmonic in U, i.e.

£    920
*,/=!  9ziÖZ/

(z)^. > 0    for % G C - {0 } and z G U;

for | G C"- {0} andzG Í7;
(iii) V0(z) # 0 in U.
That this is equivalent to the usual definition of strong pseudoconvexity is

shown in [11, pp. 263-264]. Thus we may take the defining function 0 for
3G in Theorem 1 to be strictly plurisubharmonic. We may simultaneously
assume ||Vz0(zo)|| = 1 for all z0 G 9G, where Vz0 = (90/9z,, •••, 90/9z„). (Replace
0 by x(0/IVz0l), where x satisfies x'(0) = 1 and is otherwise suitably chosen
[11, pp. 263-264].)

The complex tangent space to the boundary at a point z0 G 9G is the set
{% G C" | SJLj 90/9z,. (z0) %t = 0 }. One can decompose a vector £ G C" into
complex normal and tangential components at z0: £ = %N(z0) + %T(z0)- This
decomposition extends to points z EG which are sufficiently near 9G that there
is a unique boundary point z0 at minimum distance from z.

We refer to [11, Chapter 9], for elementary properties of the Levi form
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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/,/= i oziazi

Since G is bounded there exist positive constants k, K such that fclllfll2 <
L0)Z (%) < K\\t\\2 for ah z0 G 3G and % E C". Also suppose 0 is a C2 function
compactly supported in U, and e > 0 is sufficiently small. Then <p - e0~ is
strictly plurisubharmonic, and C={z6 t/](0 - e0~)(z) <0}U(G-i/)is strong-
ly pseudoconvex.

The expression

°    i=iaz/

is the Levi polynomial at z0. Expanding (¡> about the boundary point z0 we
obtain

0(z) = 2 ReG>Z0(z)) + L0>zo(z - z0) + ofjlz -z0H2)-
Since I-0)Z   is positive definite and 0(z) < 0 in G n Í/ there is a neighborhood
F of z0 for which Re pz (z) < 0 in iTiG.  This is of importance for the con-
struction of peak functions.

§§ 3.2 and 4 depend on properties of certain solutions of the 3-problem for
(0, 1) forms on strongly pseudoconvex domains. The interior estimates of the
Kohn solution [19] suffice for the construction of holomorphic peak functions.
The approximation theorem (§4) requires the ¿"-estimates of one of the more
recent solutions (Grauert-Iieb [9], Henkin [13]).

3.2. Dependence of holomorphic peak functions on the boundary point.
Definition 5. Let G be a strongly pseudoconvex domain in C. Let z0 G

3G.  A peak function on G at z0 is a function ty such that
(i)   0 is holomorphic on a neighborhood of G;
(Ü) 0(zo)=l;
(in) KXz)|<l on G-{z0}.

The existence of peak functions is well known. It is their dependence on the
boundary point z0 which is of importance here.

Proposition 4. Let G be a strongly pseudoconvex domain in C" with
C boundary. There exist a neighborhood G of G, and a function *:3G x
G —*■ C, such that

(i) ^(zq, z) is jointly continuous in z0 and z, and holomorphic in z EG
for fixed z0;
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228 IAN GRAHAM

(ii) for each z0 E 9G, *(z0, •) is a peak function on G at zQ.

Remarks. 1. The mapping z0 —► *(z0, •) is continuous in L°°(G) by
uniform continuity.

2. If G has Ck+2 boundary then * G Cfe(9G x Ô). By the Cauchy
integral formula any derivative Dz D^ty with |a| < k, ß arbitrary, is continuous
in (z0,z).

3. By replacing * by &(3 + *) one can assume |^| > Vi (in particular
* ¥> 0) on 9G x G.

We recall the following facts from [19] :  Let G be a strongly pseudoconvex
domain with C°° boundary.  Let g be a C°° differential form of type (0, 1) in
¿2(G), dg = 0. Then there is a unique C°° function « on G such that

(i)  bu=g;
(ii) « is orthogonal to the holomorphic functions on G.

In this section we shall write u = Sg for this solution. The operator S is linear
and bounded in ¿2 :

l|M|l¿2(G)<Cl^L2(G)     Where   C = C^-

We shall write ||g-||, „,;*. for any of the equivalent ¿°° norms on (0, 1) formsL    (G)
with bounded coefficients. Also C will be used in this section to denote different
constants.

Lemma 1 . ¿er U be an arbitrary open set in C". Let K be a compact
subset of U. Any function u E C°°(U) satisfies an estimate

(D ^W<W\L%(m + li5uh-iu?
where C=C(K, U).

Proof. In one variable this is obtained from the Cauchy integral formula.
Since we can find r > 0 such that r < d(K, bU), it suffices to show the following:
if u E C°°(BJ) (Br is the ball of radius r in C centered at 0), then

(2) l"(0)| < C(JMIl2(s } 4- llä"llLco(Br))
or

(3) i«(o)i2 < c(\\u\\2L2,Br) + \ml~pj-

We obtain (3) by integrating the corresponding result for the disk of radius r
over all directions.

Lemma 2 . Let G CC C" be strongly pseudoconvex with C°° boundary.
Let K be a compact subset of G. Let g be a d-closed C°°(0, l)-form on G,
g E L°°(G), and u = Sg.  Then s\xnK |w| < Cllgll^.. e wAere C = C(K, G).
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Proof . u is a C°° function.  Lemma 1 and the ¿2 boundedness of S
give

suP|M|<C(NlL2(S) + W^(g))

<C01s1li2(d) + lte"£»(gp

<C|^-(G)

for (different) constants C.

Lemma 3. Let M be a compact subset of Rm.  Let G CC C" be strongly
pseudoconvex with C°° boundary. Let {gx \.^M be bounded C°°d-closed (0, 1)
forms on G whose dependence on xEMis continuous in ¿°°(G). Let ux = Sgx.
Then u(x, z) = ux(z) is a continuous function on M xG.

Proof. By Lemma 2 and the linearity of S, ux —► m     as x —► x0 uni-
formly on compact subsets of G. This implies the joint continuity of u(x, z).

Proof of Proposition 4. Let z0 G 3G.  There exists a neighborhood
V oí z0 of uniform size for which Re PZ(i(z) < 0 in VOG.  (See §3.1.  Uniform
size means as usual that, for each z0 G 3G,   V is the translate of a fixed neighbor-
hood of the origin.)

Let A(z0) = {z G C"| PZQ(z) = 0 }. We claim there exist balls By, B2 of
uniform size centered at z0 such that 7i2 CC By CC V, and a strongly pseudo-
convex neighborhood G' of G, such that (By - B2) n G' n A(z0) = 0. (The
subscripts 1, 2 do not refer to the radii of the balls.) For let e > 0 be smaller
than the eigenvalues of L^ z   for ah z0 G 3G.  Choose By of uniform size such
that

A(zQ) n 77, n {z G U\cp(z) - e\\z - z„||2 = 0 } = {z0 }.

(U is the domain of definition of <p.) Now take 7?2 to be any smaller bah, of
radius r say, and put

G'={zE U\4>(z) < er2 } U (G - If).

Finally let G be a strongly pseudoconvex domain with C°° boundary such that
G CC G CC G'. It is on G that we shall solve 3".

The balls By and 7?2 are obtained by translating fixed balls 7?j(0) and
77,(0) centered at 0. Let x be a C°° function on C" such that

(i) x is supported in 7^(0);
(h) x(*) = lforzG7i2(0);
(hi) 0<x(z)<l.

Define xZQ00 = x(z ~ z0)-
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Note that Re(x20/pZ0) < 0 on G.  Also the (0, 1) form gZQ = 9(xZ{/pZrj)
has bounded C°° coefficients on G' and is 9-closed. As z0 varies over 3G the
coefficients are jointly continuous in z and z0. Hence on 9G x G they are
uniformly continuous. The conditions of Lemma 3 are therefore satisfied with
M = bG. The solutions uz   = Sgz   give a function u(z0, z) = uZ(.(z) which is
continuous on 9G x G. Replacing G by a slightly smaller domain (with G CC
G still) we may assume sup3Gxg|«| < k for some k > 0. Then the functions
Xz /pz   - uz   - k axe meromorphic on G and have negative real part on G.

The linear fractional transformation h(w) = (w + l)/(w - 1) maps the
left half plane onto the unit disk, taking °° to 1. Thus if we define

*(z0,z) = A(xZ0/pZ0-uZ0-fc),

properties (ii) and (iii) of peak functions are satisfied.
Each function \¡jz   = V(z0, •) is holomorphic on G U (G - F2). On F2,

^z„ =

i-(«Z0 + *-iK0

'zo    i-(Uzo+k+i)Pzo

This is holomorphic when the denominator is not zero. Since IIm.JI, „,,;*, < *
and the Levi polynomials are equicontinuous on G, there is a neighborhood
G C G of G on which the functions \¡/z   axe all holomorphic. The continuity
of *(z0, z) on 9G x G follows from that of u(z0, z), PzAz), and XZQ(Z)-

3.3. Completeness of the Caratheodory and Kobayashi distances.

Proposition 5. Let G CCC" be strongly pseudoconvex with C2 boundary.
For any z EG and R > 0, iAe subset GR(z) = {w G G| C(z, w)<R} of G is
compact.

Proof. That GR(z) has compact closure contained in G is shown in Satz
4 of [24] (a straightforward argument using peak functions).

C(z, w) is a continuous function of w by a normal families argument [21,
pp. 17-18].  Hence GR(z) is closed in G.

Remark . This implies the completeness of the Kobayashi distance on G,
an unpubhshed result of Royden (verbal communication).  For C(z, w) <
D(z, w), and on a bounded domain the Kobayashi distance defines the usual
topology [18].

4. Holomorphic approximation on the level sets of peak functions. The
idea for the following theorem is due to N. Kerzman.

Theorem 2. Let G CC C" be strongly pseudoconvex with C2 boundary.
Let z0 G 9G.  Let \jj be a peak function on G at z0. Let 0 < a < b < 1, and
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let A = {zEG\\\p(z)\ >a},andB= {zEG\\\p(z)\ >b}. Choose an integer
m>0 and an arbitrary small positive t?.   Then there exists a constant L =
L(G, a, b, m, rf) such that the following holds: given fEH°°(A), there exists
f EH°°(G) such that

(i) \\Daf-Daf\\LCB(B) < i7ll/V(il)> 0 < M <*■
(h)     WX„m<LWLmiAy

L can be chosen independently ofz0 if the peak function \p depends continuously
on z0 as in §3.2.

Remark. At a given point w G 77 we can require
(hi) Daf (w) = Daf(w), 0 < ft < m,

by adding to / a polynomial of degree m with smah coefficients (and changing
¿).

We shah consider solutions of the equation du = g on a strongly pseudo-
convex domain G D G which satisfy ¿°° estimates, (g wih be a (0, 1) form
related to/.)  Such solutions were first obtained by Grauert-Lieb [9] and
Henkin([12], [13]).  By modifying Henkin's construction Ovrelid [20] reduced
the differentiability assumption on 3G to C2. We shah write S for the Henkin-
Ovrelid solution operator. Thus \\Sg\\r „, *  < C||g||  «,,£,.• A constructionL    (G) _   L    (G)
of Kerzman [17] which yields ¿   estimates for 3 also works for strongly
pseudoconvex domains in Stein manifolds.

The key observation here is that \p~rS(\prg) also solves the given 3 problem
for any positive integer r.  (We can assume |i//1 > Vi on G by replacing u> by
Va(3 + \p).) L°° estimates for ^~rS(\prg) on B improve as r increases. Estimates
for the derivatives are obtained from the Cauchy estimates.

Proof of Theorem 2. We may assume b > infzeG|\£'(z)|. Hence we may
also assume a > infzSG lvKz)l- Choose a and b' such that a < a' < b' < b.
Set A' = {z E G\ |<//(z)| > a }, B' = {z E G\ |i/-(z)| > b'}. Let G be a strongly
pseudo convex perturbation of G (§3.1) such that

(i)7iCCG\
(ii) Ô-B' = G-B',
(hi) |0|>e'onG-G.
TVbre.   With a, a, b , b fixed the same G satisfies these conditions for

nearby boundary points of G.
Set B = (G - G) U 77'. There is a function x G C°°(G) and positive con-

stants 5, k such that 0 < x < 1> X = 1 on A',x = 0 on G - A, |Vxl < k inde-
pendently of z0 G 3G, and d(B, G~B')>6 independently of z0 G 3G. We

A

may assume d(B, 377) > 5.
Given / G 77°°G4), define a (0, 1) form g on G by
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s=n\ (9x)/    on A,
on G -A.

Then g G L°°(G) and bg = 0. Note that g = 0onA', hence |i//1 < a' on the
support of g. Define f =xf~ ^~rS(Vg) where r is an integer to be chosen.
Clearly/ G F°°(G), and

\\f-f\\L„(ê)=W-rS(Vg\~(ê)

<c(bYr\\Vg\\L„ic)

<Ck(a'/b')r\\f\\L„(Ay

(C is the constant in the ¿°° estimate for S.  k is related to the peak function \¡j .)
_ A a

Since \¡/ rS(\prg) is holomorphic on F (g = 0 on B ) the Cauchy estimates give

\\Daf-Daf\\LOO(B) <a! S-^aia'/Ayil/ll^^

By choosing r such that ml 8~mCk(a'/b')r < r¡ we obtain the first statement in
Theorem 2. Setting f = infze. G\\p(z)\ we have

ll/ll^(G)<,l-nli-W) + ll^r5^l,i~(G)

<[l+rrCA:(a'/èr]ll/llLooU).
-.

Thus ¿ = 1 + rrCk(a'/b'Y. As noted in §3.2 we may assume t > Vi.
A

The constant C depends on the domain G. However since we can use a
A

fixed G for all boundary points in a neighborhood of a fixed z0, only finitely
many domains G need be considered. Thus ¿ may be chosen independently
of z0 once the other parameters are fixed.

Remark . The result holds for strongly pseudoconvex domains (with C*
boundary) in Stein manifolds. One defines derivative norms with respect to a
given covering of the compact set G by coordinate patches. For S one uses the
Kerzman solution operator [17] which works in the manifold case also.

5. Proof of Theorem 1.

Theorem 1. ¿er G be a strongly pseudoconvex domain in C with C2
boundary. Let F(z, %) be either the Carathèodory or Kobayashi metric on G.
Let z0 G 9G.  ¿er <pbe aC2 defining function for bG such that II Vz0(zo)|| = 1.
Then

lim F(z, %)d(z, bG) = ^ll^izo)!!.
Z-^Zfj
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7/ Iat(zo) = 0>z,e* S zí a holomorphic tangent vector to 3G ar z0, rfte«

lim      (F(z, %))2d(z, 3G) = ^L0Zo(?)
z->-zo;zeA "

2 4í   3z3z.    °J ' r

7/ ffte aperture of A is /ixec? ffcen fol/i /imift are approached uniformly in vectors
% of unit length and in the boundary point z0.

5.1. Localization of the metrices on strongly pseudoconvex domains.  In
the statement of Proposition 6, F refers to either the Carathéodory or Kobayashi
metric.

Proposition 6. Let G CC C" be strongly pseudoconvex with C2 boundary.
Let z0 G 3G. Let P be any neighborhood ofz0.  Then for all vectors % G C"

FGnp(z- ?)     ,
lim —=—;—rr— = 1.
z-*zq   fg(z> Ö

Remark. The locahzation is uniform in the sense that:
(i) Suppose G is fixed and F is a neighborhood of the (variable) boundary

point z0 of uniform size. Then given e > 0 there exists a neighborhood Q of
z0 of uniform size, such that FGnp(z, %)/FG(z, %) < 1 + e for z G G n Q and
alUGC".

(h) Suppose F is a fixed neighborhood of 0 and G varies over a family
E(c, C) of analytic ellipsoids (§2.3). Then given e > 0 there is a fixed neighbor-
hood Q of 0 such that, for all F G E(c, C) and all % G C", FEnP(z, Q/Fjjz, £)<
1 -HewhenzGFng.

Proof . (a) Carathéodory metric.  The proof combines peak functions
with an approximation theorem (Theorem 2) in a manner similar to Lemma 12
of [4].

Let 0 be a peak function for G at z0. We shall assume 0 depends contin-
uously on the boundary point z0 as in §3.2. There exists a G (0, 1) such that
the set A = [z G G\ \ii(z)\ > a} is contained in G C\ P independently of z0.
Choose b E(a, 1) and let B = {z G G\ |i//(z)| > b }. Choose an arbitrary small
T?>0.

For each w EB and % E C", there exists a function/G A(G n P) such
that FGnp(w, £) = |ZjLi#(wy<fer,£|. Necessarily f(w) = 0. Apply Theorem 2
to/l^ with m = 1 and t? as given: there exists / G H°°(G) such that
1/ -/\-(fl) < * Aw) =/(w) = 0, 3/ÍH0/3Z,. = 3/(w)/3z,., i = 1, —, n, and
ll/"ll,oo/r^¿ =¿0?)- (¿ is independent of z0. The other parameters on which
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¿ depends will be fixed.) There is a positive integer ß such that b^L < 1. We
take Q to be a ball of uniform size centered at z0 for which |ip^(z)| > 1 - 17 on
eng.

Assume w G G D ß-  Define a holomorphic function f onGbyf = ty^f .
Since / (w) = /(w) = 0, we have bf(w)/bz¡ = \pp(w) bf(w)/bz¡, and hence

£ bz~^)%i1=1 ozi
>(l-T?)FGni,(W,£>

Now/ £A(G) but llTllLoo(G_B) <^X< 1, and

H/V(s) < 11/ll£00(ß) < ll/llL„(B) + n < 1 + rj.

We conclude that FG(w, %) > (1 - t?)/(1 + T?)FGni,(w, £) for w E G n g-
This proves the proposition and the first remark. The second remark follows

from the fact that any two analytic ellipsoids are biholomorphic, and that bounds
on the coefficients of the ellipsoids give bounds on the sequence complex affine
transformations in 2.3.

(b) Kobayashi metric.  The following estimate was drawn to my attention
by H. L. Royden. It appears without proof as Lemma 2 in [22].

Lemma 4 . Let G and P be subdomains of a hyperbolic manifold(2) M.
ForzEGnp define

D*(z)=D*(z,G-P)=    inf   D*(z, w).
w^G-P

Then FGnp(z, %) < coth(Z?*(z))FG(z, £).

(The Kobayashi distance DG(z, w) was defined in §1. DG(z, w) is defined
as follows:

D*(z, w) = inf {p(a, b)\ 3/GG(A) such that /(a) = z, f(b) = w }.

Thus DG(z, w) > DG(z, w).)
Proof . Note that coth DG(z, w) = sup{r_11 3 /G G(A) such that /(0) =

z, f(r) = w}. Since coth is a decreasing function we have

coth D*(z) =   sup    DG(z, w)
wBG-P

= sup{r_1| 3/G G(A) such that/(0) =z, f(r) G G -F}.

Let Ar denote the disk of radius r centered at 0.
Suppose / G G(A), /(0) = z, f'(0) = %/a where a > 0. If r"1 > coth D*(z)

(2)   I.e. a complex manifold on which the Kobayashi pseudodistance is a distance.  The
proposition applies to bounded subdomains of Cn.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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then f(Aj) C G n P.  We conclude that FGnp(z, £) < a/r, and hence FGnp(z, £) <
a coth D*(z) since r was arbitrary. Taking the infimum over a now gives the
lemma.

End of proof of Proposition 7 forF = Fk. Let D(z) =infwGG_PD(z, w).
Since coth is decreasing we may replace D*(z) by D(z) in the statement of
Lemma 1. From the completeness of the Kobayashi distance on G (§3.3) it
follows that coth D(z) —► 1 as z —> z0.

However, remark (i) is more easily obtained using the Carathe'odory distance
and peak functions. With the numbers a, b and sets A, B defined as in part (a)
of the proof we have

DG(z, w) > CG(z, w)>- log- - - log-
l       \— o     2       I — a

for z G F, w G G - A.  The right-hand side may be made arbitrarily large by
choosing b close to 1, and a neighborhood Q of z0 of uniform size may be chosen
so that GC\QCB.

Remark (ii) follows as before.
5.2. Choice of coordinates at the boundary point z0.   The local domains of

comparison.  We may assume 0 is strictly plurisubharmonic.  Let U be the
neighborhood of 9G in which it is defined.

By a translation followed by a unitary transformation we may take z0 to 0
and the vector Vz0(zo) to the negative real z, axis. The statements in Theorem
1 are invariant. Taking into account the normalization of 0, we have

_      I   "_
0(Z) = - Z, - ZX  + - £  (CijZiZj + CtjZ^j)

(1) n U=l

+ Z a(J Zilj + o(\\z\\2)

where (aA",= 1is Hermitian positive definite.   Also %N(z0) = - %x, and

Lemma 5.
Re z,

Urn     Jf     '   =1.
z-»0;zGA"(Z, bG)

Furthermore if the aperture of A is fixed and z0 (and hence the choice of
coordinates) varies over bG, the limit is approached uniformly.

Proof. Follows from d(z, bG) = Re zx 4- 0(||z||2) and the definition of
the cone A (§2.4).

We again consider the expansion (1). The mapping 3>: C" —► C" given by
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Wy=Zy-~'Z CyZfZj ,      Wk=Zk, k « 2, •», «,
Z',/=l

is biholomorphic in a neighborhood F of 0 of fixed size (asz0 runs over 3G). In
terms of the w coordinates <j> has the form

<p(w) = - Wy -Wy + 77(w, w) + o(||w||2)

where 77(w, w) = S^-jö^w = L,pt0(w). (The Levi form at 0 is preserved while
the other second order terms have been removed.) We shah also write I(w, w) =
s?=1Ki2.

The analytic ellipsoids F±e with defining functions

&E   (w) =~Wy-Wy+ H(w, w) + el(w, w)

provide local domains of comparison for <ï>(G D P). (e wih be chosen less than
the eigenvalues of 77.) We shall use their images under <ï>-1 as local domains of
comparison for G.

Lemma 6. Let E = {w G C" | - Wy - w, + 77(w, w) < 0 } be an analytic
ellipsoid. Let D' = E n d>(7>), and D = $-1(D')- Let FD(z, %) be either the
Carathéodory or Kobayashi metric on D.   Then

(2) hm    FD(z, %)Rezy=K\%y\
z-K);zGA

and if |j =0,
(3) lim     (FD(z, £))2 Re zx = KH(%, %).
y-3' z-»0;zeA

Furthermore suppose P and the aperture of A are fixed, and $ ranges over the
transformations $   , z0 G 3G, and E ranges over a family E(c, C).  Then the
limits are approached uniformly in the domains D and in unit vectors %.

Proof,  (i) As in Satz 1 of [4] we first show that for fixed A there exist
a cone A' in w space and a neighborhood Q of 0 in z space such that $(An0C
A'.   <f> is allowed to range over all transformations i>z..   Suppose A =
{z G C"| Re Zy > k\\z\\}. We have |Re Wy(z)\ >\ReZy\- C\\z\\2, and
\\w(z)\\ < ||z|| + C||z||2, independently of z0.  Hence

Re wy (z)    Re Zj - C\\z\\2       k _ C||z||

lk(z)ll   '     ||z|| + Cllzll2 1 + CHzll
We may find a suitable Q for any A' with k' < k.

(ii)  Similarly we note that
Re Wy(z)

lim     ——- = 1
z-»0;zeA    RezjLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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uniformly in the transformations <ï>    for fixed A.
(hi) Now FD(z, £) = FD'(w(z), $*(£)). Hence for (2) we must show

lim     Re wx(z) [FD.(w(z), £) -FD,(w(z), $*£)] = 0
z-»-0;zGA

uniformly in D' and in unit vectors £.  For the Carathe'odory metric which is
subadditive in £ (§2.1) it suffices to show

lim     Re wx (z)FD> (w(z), £ - $*£) = 0.
z-*0;zeA

This is sufficient for the Kobayashi metric also, for by the Royden estimate
FD'(w, %)/FE(w, £) —*■ 1 as w —► 0. Hence choosing C> 1, we will have

FD<"> 6t + W < CFE (w, £x 4-12) < C(FE(w, £,) + FE(w, £2))

<C(FD.(w,%x)+FD.(w,%2))

in the intersection of D' with a neighborhood of 0 of uniform size.
Now the matrix of 4>* can be written / + 0(||z||) where 0(||z||) has nonzero

entries only in the first row.  If e denotes the column vector (1 0 ••• 0)T, we
have £-$*£ = 0(\\z\\)e where ||0(||z||)e|| < C||z|| for some C> 0 independently
ofz0. Thus

(4) FD,(w(z), £ - $*£) < C||z||Fö.(w(z), e).

Since hm^^Q.^,^ Re wxFD'(w, e) exists uniformly in D' we are done,
(iv)  For (3) we must show that if £j = 0,

lim      Re wx(z) [(FD>(w(z), £))2 -FD.(w(z), **£)2] = 0
z-»0;z£A

uniformly in D' and in unit vectors. Again it suffices to show

Um     Re wx(z)FD>(w(z), £ - $*£) [FD{w, £) + FD<(w, **£)] - 0.
z->0;zSA

This is clear because of (4) and because

lim     Re wx(z) (FD.(w, £) + FD-(w, $*£))
z->0;zSA

exists, uniformly in the usual quantities.
5.3. Main part of proof. We are reduced to showing, with the usual remarks

about uniformness,
(5) lim   F(z, Ö Re z, =5415,1
v ' z-0;z€A

and, if £, = 0,

(6) Km   (n*. £))2 Re z, = }U0>n(£) = í¿F(£, £).2-+OJ26A v
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For by Lemma 5 we can replace Re Zj by d(z, 3G). Then by uniformness in
z0 we can delete the restriction z G A in the first limit. We cannot in the se-
cond, for the complex tangent space varies with the boundary point zQ. (See
the example in §5.4.)

Choose an arbitrary e > 0 which is smaller than the eigenvalues of 77(£, %)
for all z0 G 3G.  Let F be a neighborhood of z0 = 0 such that the following
two conditions are satisfied independently of the point z0 e 3G:

(i) the transformation $ (§5.2) is biholomorphic in P;
(ii) setting Ge = ^~1(Ee n$(P)), we have

(7) G_e C G n F C G£.
The first inclusion together with Lemma 6 gives

(8) Mm     FGnp(z, © Re *!<%!*, |
z-»0;zeA

and, if %y - 0,

(9) Urn"   (FGnp(z, %))2 Re zx < Î4 [77(|, %) + el(%, %)\.
z-»0;zeA

The second inclusion in (7) and Lemma 6 give

(10) hm     FGnP(z,^)ReZy>^y\
z-»0 ;z£A

and, if %y = 0,

(11) Ihn    (FGnjP(z,|))2Rez1>^[77(?,?)-e7ß,?)].
z->0;zSA

By Proposition 6 we may replace FGnp by FG in (8)—(11). (5) follows immedi-
ately, and (6) follows on letting e —► 0.

It remains only to note that (5) and (6) hold uniformly in the boundary
point z0 (taken to be 0) and in unit vectors | if A is fixed. This fohows from
the uniform statements in Proposition 6 and Lemma 6.

5.4. A reformulation of Theorem 1. The second statement in Theorem 1
does not hold unless the cone condition is imposed, as the following example
illustrates.  Let G be the unit bah in C2, z0 = (1, 0), % = (0, 1). Then

(F(z, %))2d(z, 3G) = (1 - \zy |2) (1 - |z|2)-2(l - |z|)

^(l-lz/Hl-lzl2)-1.

The latter expression has the value k when |z2|2 = (1 - (2k)~1) (1 - |zj I2).
Thus we may find a sequence of points converging to z0 for which the left-hand
side tends to infinity.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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However by decomposing £ at points sufficiently near 9G as £ = %N(z) +
£r(z), we can reformulate Theorem 1 so that unrestricted approach is permitted
in both limits.

Theorem 1'.  With hypotheses as in Theorem 1,

lim   F(z, %N (z))d(z, bG) = M%N(z0)\\,
z->z0

Urn FXz, %T(z))2d(z, bG) = HL0iZo(£r(zo)).
Z^ZQ

The limits are approached uniformly in the point z0 G 9G and in vectors
£ of unit length.
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