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Abstract

There are standard modifications of certain compactly supported wavelets that yield
orthonormal bases on a bounded interval. We extend one such construction to those
wavelets, such as ‘coiflets’, that may have fewer vanishing moments than had to be
assumed previously. Our motivation lies in function estimation in statistics. We use
these boundary-modified coiflets to show that the discrete wavelet transform of finite
data from sampled regression models asymptotically provides a close approximation
to the wavelet transform of the continuous Gaussian white noise model. In particular,
estimation errors in the discrete setting of computational practice need not be essentially
larger than those expected in the continuous setting of statistical theory.
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1. Introduction

The simplest setting for much of the theory of nonparametric function estimation is the
Gaussian white noise model

Y (t) =
∫ t

0
f (s) ds + εW(t), 0 ≤ t ≤ 1, (1)

in which f ∈ L2[0, 1] is unknown andW is standard Brownian motion. Ifψλ is an orthonormal
basis for L2[0, 1], then the model takes the sequence form

yλ = θλ + εzλ (2)

by setting yλ = ∫
ψλ dY , θλ = ∫

ψλf and zλ = ∫
ψλ dW . Here {zλ} are independent and

identically distributed N(0, 1) and the Parseval relation∫
(f̂ − f )2 =

∑
λ

(θ̂λ − θλ)
2

expresses the integrated squared error of function estimation in terms of the �2 error of estimated
coefficients.

If {ψλ} is a wavelet basis for L2[0, 1], then quite simple estimators can be built from
coordinatewise shrinkage or thresholding of the wavelet coefficients yλ, and these estimators
have strong mean square optimality properties. See, for example, [4], [5], [7], [8], [9].
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82 I. M. JOHNSTONE AND B. W. SILVERMAN

In practice, however, instrumentally acquired data that is to be digitally processed is typically
discrete. A common simplification is the equally spaced regression model

Yi = f (ti)+ εi, i = 1, . . . , N, (3)

with f ∈ L2[0, 1] unknown, ti = i/N and εi independent and N(0, σ 2) distributed. After
taking a discrete wavelet transform, we might arrive at empirical wavelet coefficients {ỹλ}
satisfying

ỹλ = θ̃λ + εN z̃λ, λ ∈ �N, (4)

with |�N | .= N and εN = σ/
√
N . Here the {θ̃λ} are the corresponding discrete wavelet

transform of the sampled function values {f (ti)}.
It is common practice to take estimators θ̂ (y) that are motivated, derived and analysed in the

Gaussian white noise model of (1) and (2) and apply them in computer code to discrete wavelet
transform data (Yi) and (ỹλ), whether or not assumptions (3) and (4) apply exactly.

What can be said about the mean squared error of the resulting estimator θ̂ (ỹ)? For example,
is E ‖θ̂ (ỹ) − θ‖2

2 approximately as good as E ‖θ̂ (y) − θ‖2
2? The question was studied in [6],

where Deslauriers–Dubuc interpolation was used to pass from discrete to continuous models. In
this paper, we adopt a different approach. Motivated in part by a study of certain empirical Bayes
wavelet shrinkage methods [9], we make the connection by restricting to certain orthonormal
wavelet bases. One consequence is a certain simplification (see Sections 4, 5) of the proofs
in [6].

Let us first concentrate on points t in the interior of [0, 1], temporarily ignoring boundary
issues. Let N = 2J and φJ,l(t) = 2J/2φ(2J t − l) be the corresponding (interior) scaling
functions at level J . The continuous wavelet coefficients θjk at coarser scales j < J are related
to the finest scaling coefficients 〈f, φJ,l〉 in exactly the same way that the discrete wavelet
transform coefficients θ̃jk are related to f (tl).

If the scaling function φ has
∫
φ = 1 and vanishing moments

∫
t rφ(t) dt = 0 for 1 ≤ r ≤

R − 1, then by Taylor expansion

〈f, φJ,l〉 − 2−J/2f (l2−J ) = O(‖f (R)‖∞2−(R+1/2)J ). (5)

Thus, if the scaling functionφ possesses some vanishing moments, we can expect the continuous
wavelet transform to be well approximated by the discrete wavelet transform.

A family of such scaling functions having vanishing moments and compact support was
constructed by Daubechies [3], who christened them ‘coiflets’.

Now to the boundary issues. The statistical models (1) and (3) are intimately tied to a compact
interval, conventionally [0, 1], and so the question of behaviour near 0 and 1 arises. Families
of compactly supported orthonormal wavelet bases adapted to [0, 1] have been constructed by
Cohen, Daubechies, Jawerth and Vial in [1] and [2] and others. A key consequence of the
compact support is that only a constant number of the 2j wavelets at resolution level j ‘feel’
the boundaries, providing good control of boundary effects.

However, the scaling functions used in these constructions do not have sufficient vanishing
moments to rely on (5), and so in this paper we set out an extension of the argument of [2] to
establish the existence of orthobases for L2[0, 1] based on, for example, coiflets.

Section 2 sets out the existence result for wavelet bases on [0, 1]. Section 3 derives the
analogue of the quadrature error bound (5) that is valid also near the boundaries (after a
preconditioning step). Section 4 uses both preceding sections to derive bounds on the differences
θ̃λ − θλ between discrete and continuous wavelet coefficients. Finally Section 5 draws some
conclusions for the estimation error in discrete data settings that address the issues raised earlier.
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2. Adapting orthobases to [0, 1]

Assume that (φ, ψ) are orthonormal scaling and wavelet functions supported in [−S+1, S],
and thatψ has vanishing moments of degree up toR−1, whereR ≥ 1. (The proof of Theorem 1
below contains precise assumptions.) We describe a construction of an orthonormal basis of
wavelets and scaling functions for L2[0, 1]. Motivated by the example of coiflets, for which
the support length is 3R − 1, we are specifically concerned with the situation R < S, and so
modify the construction of [1] given for R = S. However, we do not yet make any vanishing
moments assumptions on φ.

The idea is to modify the wavelets and scaling functions developed for L2(R) near the
boundaries 0 and 1. At each level j , the modified construction retains the 2j −2S+2 ‘interior’
scaling functions, which have support entirely within [0, 1]. In addition, there are R boundary
scaling functions at each end. There are S − 1 boundary wavelets at each end and 2j − 2S + 2
interior wavelets. The orthonormality properties of the wavelet array are maintained, as are the
vanishing moment properties of the wavelets themselves, but the filters used in the corresponding
multiresolution analysis are modified at each end.

To be explicit, the construction is based on boundary scaling functions φB
k for k =

−R,−R + 1, . . . , R−2, R−1, and boundary wavelets ψB
k for k = −S+1,−S+2, . . . , S−

1, S−2. The support of these functions is contained in [0, 2S−2] for k ≥ 0 and in [−(2S−2), 0]
for k < 0. We fix a coarse resolution level L such that 6S − 6 ≤ 2L. At every level j ≥ L, the
scaling functions are then defined by

φjk(x) =

⎧⎪⎨
⎪⎩

2j/2φB
k (2

j x), 0 ≤ k ≤ R − 1,

2j/2φ(2j x − k), S − 1 ≤ k ≤ 2j − S,

2j/2φB
k−2j

(2j (x − 1)), 2j − R ≤ k ≤ 2j − 1.

(6)

The support properties of the boundary scaling functions, and of the original scaling function
φ, are such that all these functions are supported on [0, 1]. Define Vj as the span of all these
φjk as k runs over the three sets of indices in (6). A key point is that Vj contains polynomials of
degree up to R− 1; this will allow the Besov function space characterizations we need, so long
as R is chosen appropriately. Notice that there are no functions defined when R ≤ k < S − 1
or when 2j − S < k < 2j − R. There are no such gaps in the definition of the wavelets; we
have

ψjk(x) =

⎧⎪⎨
⎪⎩

2j/2ψB
k (2

j x), 0 ≤ k ≤ S − 2,

2j/2ψ(2j x − k), S − 1 ≤ k ≤ 2j − S,

2j/2ψB
k−2j

(2j (x − 1)), 2j − S + 1 ≤ k ≤ 2j − 1.

(7)

The result is that we have a construction with 2j wavelets at each level. Let Wj be their linear
span. The S−1 wavelets at each end are boundary wavelets, which have the same smoothness,
on [0, 1], and the same vanishing moments as the original wavelets but are otherwise modified.
The 2j − 2S + 2 interior wavelets are not affected by the boundary construction, and depend
only on the 2J −2S interior scaling functions at the finest scale. There will be 2j −2(S−R−1)
scaling functions and scaling coefficients at every level, so in particular at the coarsest level L
there will be 2L − 2(S − R − 1) scaling coefficients. It is convenient at every level j ≥ L to
define KB

j to be the set of k for which ψjk is a scaled version of a boundary wavelet, and K I
j

to be the set of k for which ψjk is a scaled version of ψ itself. Let KL−1 be the set of indices
for which the scaling function φLk is defined.
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Theorem 1. Assume that 2L ≥ 6S−6. The construction can be carried out so that (i) for each
j ≥ L, the scaling functions {φjk} defined in (6) form an orthonormal basis for Vj , and (ii) the
collection

{φLk, k ∈ KL} ∪ {ψjk, 0 ≤ k ≤ 2j − 1, j ≥ L} (8)

defined in (6) and (7) forms an orthonormal basis for L2[0, 1]
Remark 1. Let J be fixed. As usual, the discrete wavelet transform W accomplishes the change
of basis in VJ from the scaling functions {φJ l} to the wavelet basis given by

{φLk} ∪ {ψjk, L ≤ j < J, 0 ≤ k ≤ 2j − 1}. (9)

Thus, the entries of the orthogonal matrix W are given by

Wjk,l = 〈ψjk, φJ l〉
if we abuse notation and write ψL−1,k for φLk .

The proof of Theorem 1 adapts methods and notation from [1] and [2] to the case R < S,
which leads to two changes. The first is described in Remark 2 below. The second is that we
do not give an explicit construction of the S − 1 boundary wavelets at each end, Proposition 2
merely establishes their existence.

For the proof of this theorem, it is convenient to change the convention concerning the
support of φ and ψ . The assumptions we need on φ and ψ are set out using this temporary
convention:

(i) We have suppφ = suppψ = [0, 2S − 1]. The scaling function φ satisfies, for some set
of filter coefficients hn, the two-scale relation

φ(x) = 2
2S−1∑
n=0

hnφ(2x − n), (10)

and similarly, with gn = (−1)nh2S−1−n, the wavelet ψ satisfies

ψ(x) = 2
2S−1∑
n=0

gnφ(2x − n). (11)

(ii) Set as usual φjk(x) = 2j/2φ(2j x − k), and similarly for ψjk(x). For each J ∈ Z the
collections {φJk, k ∈ Z} ∪ {ψjk, j ≥ J, k ∈ Z} each form an orthonormal basis for
L2(R).

(iii) The wavelet ψ has R vanishing moments, i.e.∫
tkψ(t) dt = 0, k = 0, 1, . . . , R − 1.

The vanishing moment condition implies (see e.g. [10, Theorem 7.4]) that there exist
polynomials Pi(x) of exact degree i such that∑

k

kiφ(x − k) = Pi(x), 0 ≤ i ≤ R − 1.
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Following [2], we use these relationships to define functions on [0,∞):

φl,i (x) =
{
Pi(x)−

∑
k≥0

kiφ(x − k)

}
1[0,∞) =

∑
k<0

kiφ(x − k) 1[0,∞) (12)

for 0 ≤ i ≤ R − 1. Clearly suppφl,i ⊂ [0, 2S − 2].
Remark 2. The two variations upon [1] and [2], the possibility of which is already mentioned
there, are: (i) we again construct as many functions as there are vanishing moments, but now
R < S, and (ii) the function φ(x − k) for k = 0 is not included in the right-hand sum defining
φl,i ; when R < S, there is no need to ‘sacrifice’ the interior scaling functions whose supports
touch the ends of the interval.

Similarly, we define R functions on x ≤ 0 via

φr,i (x) =
{
Pi(x)−

∑
k<2−2S

kiφ(x − k)

}
1(−∞,0] =

∑
k≥2−2S

kiφ(x − k) 1(−∞,0], (13)

and suppφr,i ⊂ [2 − 2S, 0].
Note that the scaling functions that touch each end of the interval [0, 1] do not overlap: i.e.

2−L(2S − 1) ≤ 1
2 , as implied by the condition 2L ≥ 6S − 6.

The subspaces Vj , j ≥ L, are defined as the spaces spanned by the union of the three sets
of generators:

Gl
j = {φl,i (2j x), 0 ≤ i ≤ R − 1},

Gint
j = {φjk(x), 0 ≤ k ≤ 2j − 2S + 1},
Gr
j = {φr,i (2j (x − 1)), 0 ≤ i ≤ R − 1}.

Define V l
j , V

int
j and V r

j as the linear spans of Gl
j ,G

int
j and Gr

j respectively. Generators in Gl
j

are supported in
[0, 2−j (2S − 2)] ⊂ [0, 1

2 ),

and those in Gr
j are supported in

[1 − 2−j (2S − 2), 1] ⊂ ( 1
2 , 1].

With these definitions, we can verify from (12) and (13) that

Pi(2
j x) = φl,i (2j x)+ 2−j/2

2j−2S+1∑
k=0

kiφjk(x)+
i∑
l=0

(
i

l

)
2j (i−l)φr,l(2j (x − 1)),

so that Vj contains all polynomials of degree at most k − 1 restricted to [0, 1].
Proposition 1. For j ≥ L, Vj ⊂ Vj+1 and the generatorsGj = Gl

j ∪Gint
j ∪Gr

j form a basis
for Vj .

Proof. Step 1. First we show that Gj ⊂ span(Gj+1). The two-scale relation (10) implies
that

φjk = √
2

2S−1∑
n=0

hnφj+1,2k+n.

The conditions 0 ≤ k ≤ 2j−2S+1 and 0 ≤ n ≤ 2S−1 entail that 0 ≤ 2k+n ≤ 2j+1−2S+1,
so that φjk ∈ span(Gint

j+1).
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Step 2. To see that φl,i (2j x) ∈ Vj+1, recall that the set {Pj (x), 0 ≤ j ≤ R − 1} spans
polynomials of degree R − 1 and that the monomials satisfy trivial scaling relations xj =
2−j (2x)j . We therefore have

φl,i (x) ∈ span{Pj (x), φ(x − k)}
= span{xj , φ(x − k)}
⊂ span{(2x)j , φ(2x − k)}
= span{Pj (2x), φ(2x − k)}
= span{φl,j (2x), φ(2x − k)},

where in each case the indices satisfy 0 ≤ j ≤ R− 1 and k ≥ 0. Hence we have an expansion

φl,i (x) =
R−1∑
j=0

ajφ
l,j (2x)+

∞∑
k=0

bkφ(2x − k). (14)

Now suppφ(2x − k) = 2−1[k, k + 2S − 1] ⊂ [2S − 2,∞) whenever k ≥ 4S − 4. But all
functions φl,i (x) and φl,j (2x) vanish on suppφ(2x−k) for such k, and so taking inner products
withφ(2x−k) in (14) shows that bk = 0 for k ≥ 4S−4. Since 4S−4 < 2L < 2j+1−2S+1 for
j ≥ L, we conclude that φl,i (2j x) ∈ Vj+1. A similar argument shows that φr,i (2j x) ∈ Vj+1.
Hence Gj ⊂ span (Gj+1), so Vj ⊂ Vj+1.

Step 3. The generator sets Gl
j ,G

int
j and Gr

j are orthogonal, owing to the range of indices
k used in the definitions (12) and (13) and because the support of generators φjk ∈ Gint

j

lies within [0, 1]. Hence it remains to show that the φl,i are linearly independent. This
is done as in [2] by remarking that {φl,i , 0 ≤ i ≤ R − 1} are obtained by applying a
rank R transformation to the functions 	 = {φ(x − k), 1 − 2S ≤ k ≤ −1}, restricted to
[0,∞). (The functions in 	 are linearly independent because of their ‘embedded supports’:
we suppose that

∑1−2S
k=−1 akφ(x − k) = 0 on [0,∞). Start with k = −1: on [2S − 3, 2S − 2],

all φ(x − k) in the sum vanish except for the k = −1 term, which itself does not vanish since
suppφ(· + 1) = [−1, 2S − 2]. Consequently a−1 = 0. Apply the same argument to k = −2
on the interval [2S − 4, 2S − 3] and so forth, to show that each ak = 0 in turn.)

From Proposition 1, it follows that Vj has dimension 2j −2D forD = S−1−R. Similarly,
Vj+1 has dimension 2j+1 −2D. We defineWj to be the orthogonal complement of Vj in Vj+1,
and clearly it has dimension 2j .

Proposition 2. Assume that 2L ≥ 6S − 6. There exist S − 1 linearly independent functions
ψ l,i , 0 ≤ i ≤ S − 2, on [0,∞) with support in [0, 2S − 2], and S − 1 linearly independent
functions ψ r,i , 0 ≤ i ≤ S − 2, on (−∞, 0] with support in [2 − 2S, 0] such that, for each
j ≥ L, Wj is spanned by the three sets of generators

H l
j = {ψ l,i (2j x), 0 ≤ i ≤ S − 2},

H int
j = {ψjk(x), 0 ≤ k ≤ 2j − 2S + 1},
H r
j = {ψ r,i (2j (x − 1)), 0 ≤ i ≤ S − 2}.

Proof. Step 1. The two-scale relation (11) implies that, if 0 ≤ k ≤ 2j − 2S + 1, then

ψjk(x) = √
2

2S−1∑
n=0

gnφj+1,2k+n(x),
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and so ψjk ∈ Vj+1. On the other hand, ψjk is orthogonal to each of the generator sets of
Vj : for example, for Gl

j this follows because φl,i (2j x) involves only φjk for k < 0 and
suppψjk ⊂ [0, 1]. Consequently, ψjk ⊥ Vj , and so ψjk belongs to Wj .

Step 2. We now demonstrate the existence of the sets ψ l,i and ψ r,i . Initially, we work with the
case j = L: results for j > L will then follow by scaling. Let W int

L = span{ψLk, 0 ≤ k ≤
2L − 2S + 1}. LetW⊥

L = WL ∩ (W int
L )

⊥ denote the orthocomplement ofW int
L inWL, where it

is evident that dimW⊥
L = 2S − 2.

Our goal is to decompose W⊥
L into W l

L ⊕W r
L, with each space having dimension S − 1

and consisting of certain functions supported in [0, 2−L(2S − 2)] and [1 − 2−L(2S − 2), 1]
respectively.

To understand the support of functions in W⊥
L , we need to look more closely at the support

of φL+1,k ∈ V int
L+1. Thus, let IL+1 = {0, 1, . . . , 2L+1 − 2S + 1} denote the set of indices k for

which φL+1,k ∈ Gint
L+1. Then decompose IL+1 as the disjoint union I l ∪ I o ∪ I r, where

I l = {k ∈ IL+1 : sup suppφL+1,k ≤ 1
2 } = {0, . . . , 2L − 2S + 1},

I o = {k ∈ IL+1 : 1
2 ∈ int suppφL+1,k} = {2L − 2S + 2, . . . , 2L − 1},

I r = {k ∈ IL+1 : inf suppφL+1,k ≥ 1
2 } = {2L, . . . , 2L+1 − 2S + 1}.

Define orthogonal projectionsf l = P lf, fm = Pmf andf r = P rf operating onf ∈ VL+1
respectively by projection onto the spans of the three generator sets

{φL+1,k, k ∈ I l} ∪ {φl,i (2L+1x)},
{φL+1,k, k ∈ I o},
{φL+1,k, k ∈ I r} ∪ {φr,i (2L+1(x − 1))},

with 0 ≤ i ≤ R − 1 as usual. Clearly f = f l + fm + f r, and P l, Pm and P r are mutually
orthogonal. Also, by the definition of the index sets I l and I r, we have supp f l ⊂ (−∞, 1

2 ]
and supp f r ⊂ [ 1

2 ,∞).

Step 3. We show that fm = 0 whenever f ⊥ V int
L ⊕W int

L . Let Ao denote the interior of set A.
First note that, if 2L ≥ 6S − 6, then

(suppφL+1,k)
o ∩ (suppφLl)

o = ∅

for k ∈ I o and l /∈ {0, 1, . . . , 2L − 2S + 1}. Indeed, since suppφjk = 2−j [k, k + 2S − 1],⋃
k∈I o

suppφL+1,k = 2−L−1[2L − 2S + 2, 2L + 2S − 2],

while ⋃
l<0

suppφLl = (−∞, 2−L(2S − 2)]

and ⋃
l≥2L−2S+2

suppφLl = [2−L(2L − 2S + 2),∞).

For the interiors of these last two intervals to be disjoint from the first, it is necessary and
sufficient that 2L ≥ 6S − 6.
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Since φL+1,k ∈ VL(R) ⊕ WL(R), we have φL+1,k = ∑
l clφLl + dlψLl for some cl, dl ,

but the previous remark on disjoint supports shows that, for k ∈ I o, φL+1,k is orthogonal to
those φLl not in V int

L . Since suppψLl = suppφLl , the same is true for the wavelets, and so
φL+1,k ∈ V int

L ⊕W int
L . It is now clear that f ⊥ V int

L ⊕W int
L implies that fm = 0.

Step 4. We will now argue that P l and P r map W⊥
L into itself. First, f l and f r both lie in

VL+1, and

VL+1 = V l
L ⊕ V int

L ⊕ V r
L ⊕W int

L ⊕W⊥
L .

So our task is to show that f l and f r are orthogonal to each of V int
j ,W int

j , V
l
j and V r

j .
We begin by showing orthogonality to V int

j and W int
j . We need yet more projections. Set

P l
Lf =

∑
k<0

〈f, φLk〉φLk + 〈f,ψLk〉ψLk.

Note that suppP l
Lf ⊂ (−∞, 2−L(2S−2)] ⊂ (−∞, 1

2 ). Correspondingly, defineP r
L by taking

the sum over k ≥ 2L− 2S+ 2, and note similarly that suppP r
Lf ⊂ [2−L(2L− 2S+ 2),∞) ⊂

( 1
2 ,∞).

Clearly, if f ⊥ V int
j ⊕W int

j , then f = P l
Lf +P r

Lf . Thus, for such f we have two equations,

f = f l + f r and f = P l
Lf + P r

Lf,

and hence

f l − P l
Lf = P r

Lf − f r.

The support of the left-hand side lies in (−∞, 1
2 ) while that of the right-hand side is contained

in ( 1
2 ,∞). Hence, f l = P l

Lf ⊥ V int
L ⊕W int

L . Similarly for f r.
It remains, then, to show that f l and f r are orthogonal to both V l

L and V r
L. Suppose that

g ∈ V l
L. Since f ∈ W⊥

L , we have both f = f l + f r and 〈f, g〉 = 0. Since supp g ⊂ (−∞, 1
2 ]

and supp f r ⊂ [ 1
2 ,∞) have disjoint interiors, we also have 〈f r, g〉 = 0 from which it follows

that 〈f l, g〉 = 0. Hence f l ⊥ V l
L. An analogous argument yields f r ⊥ V r

L.

Step 5. We may now define W l
L = P lW⊥

L and W r
L = P rW⊥

L , with the assurance that

W⊥
L = W l

L ⊕W r
L.

It remains to show that dimW l
L(φ) = dimW r

L(φ) = S − 1, where we now show the scaling
function explicitly in the notation. We will do this by exhibiting an isormorphism ofW l

L(φ) on
W r
L(φ̃), where φ̃(x) = φ(2S − 1 − x) is the reflection of φ having the same support. Assuming

this to be done, we note that dimW l
L(φ) = dimW l

L(φ̃) and so

2 dimW r
L(φ) = dimW r

L(φ̃)+ dimW r
L(φ) = dimW l

L(φ)+ dimW r
L(φ) = 2S − 2.

We construct the required isomorphism as follows. We first remark that, if m0(ξ) =∑2S−1
n=0 hne−inξ , then the reflected coefficients h̃n = h2S−1−n lead to m̃0(ξ) = ei(2S−1)ξm0(ξ).

Consequently, the resulting scaling function is φ̃(x) = φ(2S − 1 − x), and similarly for ψ̃(x).
The pair (φ̃, ψ̃) has all the properties of (φ, ψ); in particular ψ̃ has R vanishing moments if
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and only if ψ does. Applying the definitions (13) and (12) to φ̃ and φ, we find that

φ̃r,i (x) =
∑

k≥2−2S

kiφ(2S − 1 + k − x) 1[−∞,0)(x)

=
∑
k′<0

(1 − 2S − k′)iφ(−x − k′) 1(−∞,0](x)

=
∑

0≤l≤i
Tilφ

l,i (−x).

The triangular matrix T = (Til) is invertible, so this gives the required isomorphism.

Step 6. We may thus choose a set of functions {2L/2ψ l,i (2Lx), i = 0, . . . , S − 2} to be an
orthonormal basis for W l

L and similarly 2L/2ψ r,i (2L(x − 1)) to be some orthobasis for W r
L.

We saw earlier for f ∈ W⊥
L that P l

Lf = P lf was supported in (−∞, 2−L(2S − 2)], and so
this applies a fortiori to ψ l,i (2Lx). Similarly, suppψ r,i (2Lx) ⊂ [2−L(2 − 2S),∞).

For general j > L, we setW l
j = span{ψ l,i (2j x)} andW r

j = span{ψ r,i (2j (x − 1))}, and the
decomposition

Vj+1 = Vj ⊕W l
j ⊕W int

j ⊕W r
j

follows from our previous results by simple scaling. The proof of Proposition 2 is complete.

Proof of Theorem 1. It remains to combine Propositions 1 and 2 and to translate their
conclusions to the notation used for (6) and (7).

Thus, the boundary scaling functions {φB
k } may be taken as an orthonormalized version of the

left group {φl,k}, each set being indexed by k = 0, . . . , R−1. Similarly, {φB
k , k = −R, . . . ,−1}

may be taken as an orthonormalized version of {φr,k, k = 0, . . . , R − 1}.
The boundary wavelets ψB

k for k = 0, . . . , S − 2 can be identified with ψ l,k , while, for
k = −S + 1, . . . ,−1, we may take ψ r,S−1+k .

Finally, since Vj (R) → L2(R) as j ↗ ∞, it is easy to show that V int
j , and a fortiori

Vj → L2[0, 1]. Hence (8) is an orthonormal basis for L2[0, 1].
3. Preconditioning and quadrature errors

Suppose now that we are given a vector f = (f (l/N)) of values of a function. Assume
that the scaling function φ has integral 1 and R − 1 vanishing moments for R ≥ 1. If f is a
polynomial p of degree at most R − 1, then for interior scaling functions φJ l , the property (5)
states that the point values p(l/N) equal the scaling coefficients 〈p, φJ l〉. This property fails
in general for the boundary scaling functions in (6): to achieve something similar, we need
to describe (again extending [1]) preconditioning operations at the left and right edges. After
doing so, we can establish a version of (5) that applies for smooth f to all scaling coefficients.

Consider the left boundary first. Define the R × R matrix T by

Tkl =
∫ ∞

0
xlφB

k (x) dx, k, l = 0, 1, . . . , R − 1,

and the (S − 1)× R matrix U by

Ujl = j l, 0 ≤ j < S − 1, 0 ≤ l < R.

Then the matrix T is of rank R as a consequence of the boundary wavelet construction. To see
this, assume that T a = 0 for some a = (al) �= 0. Then the polynomial p(x) = ∑

alx
l has
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degree at most R − 1 and is orthogonal on [0,∞) to φl,i for i = 0, . . . , R − 1. But from the
construction (12),

p(x) =
∑
i

biφ
l,i (x)+

∑
k

ckφ(x − k).

If the second sum is truncated to the range 0 ≤ k < 2S, then equality still holds for x ∈
[0, 2S]. But the coefficients bi vanish on our linear independence assumption. Hence p(x) =∑2S−1
k=0 ckφ(x − k) on [0, 2S]. In particular, owing to the embedded supports of φ(· − k), on

[0, 1] we must have p(x) = c0φ(x). However, there does not exist a compactly supported
polynomial spline (with knots at the integers) whose integer translates form an orthonormal
sequence [12]. Hence c0 = 0 and so p ≡ 0 and a = 0.

We now define the left preconditioning transformAL to be any R× (S− 1)matrix such that
ALU = T , i.e. ∑

i

AL
ki i

l = Tkl =
∫ ∞

0
xlφB

k (x) dx. (15)

Each subset of R rows of U is linearly independent. Because T is of rank R, so will AL be.
Similarly, the matrix AR is constructed to satisfy ARŪ = T̄ , where

T̄kl =
∫ 0

−∞
xlφB−k(x) dx, k = 1, 2, . . . , R, l = 0, 1, . . . , R − 1,

Ūj l = (−1)lj l, j = 1, 2, . . . , S, l = 0, 1, . . . , R − 1.

We explain the utility of the preconditioning transformations as follows. First, recall that
the reason for using coiflets is the vanishing moment property: if P is a polynomial of degree
at most R − 1, then for the interior scaling functions φ(x − k),

P(k) = 〈P, φ0,k〉. (16)

This property is lost for the boundary scaling functions such as φB
0,k . However, the pre-

conditioning yields analogues: for k = 0, . . . , R − 1,
∑
i A

L
kiP (i) = 〈P, φB

k 〉 and similarly at
the right edge.

3.1. Preconditioning function values

We now define evaluation operators SJk corresponding to the application of the precondi-
tioning transform to a discrete sequence of values of a function. Given any function g on [0, 1],
define

SJkg =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S−2∑
i=0

AL
kig(i2

−J ), 0 ≤ k ≤ R − 1,

g(k2−J ), S − 1 ≤ k ≤ 2J − S,

S−1∑
i=1

AR
2J−k,ig(1 − i2−J ), 2J − R ≤ k ≤ 2J − 1.

Write SJ g for the vector of values SJkg for fixed J .
Given a function g, under suitable conditions, 2−J/2SJ g gives a good approximation to the

vector of scaling coefficients of g at level J . We state and prove a proposition that bounds the
error of this approximation. Define �Jg = (�Jk(g)) to be the vector of coefficients

�Jk(g) = 2−J/2SJkg − 〈g, φJk〉,
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where, for any two functions f and g, we write 〈f, g〉 = ∫ 1
0 f (t)g(t) dt . For any interval A,

define ‖g‖∞,A = sup{|g(x)|, x ∈ A}.
Proposition 3. Suppose that the function g has R ≥ 1 continuous derivatives g(1), . . . , g(R)

on [0, 1]. Define S(φJk) to be the support of φJk if k ∈ K I
J , the interval [0, (2S − 2)2−J ] if

φJk is a boundary scaling function at the left of the interval [0, 1] and [1 − (2S − 2)2−J , 1] if
φJk is a boundary scaling function at the right of the interval.

With the above definitions of boundary scaling functions and preconditioning operators,

|�Jk(g)| ≤ c2−J (R+1/2)‖g(R)‖∞,S(φJk).

Proof. We approximate g by a Taylor polynomial p of degree R− 1. The Taylor expansion
is carried out around the point x, where x = k2−J if φJk is an interior scaling function, x = 0
if φJk is a boundary scaling function on the left of the interval, and x = 1 if φJk is a boundary
scaling function on the right of the interval.

We first show that �Jk(p) = 0. If φJk is an interior scaling function, then by the
vanishing moment properties of φ, by expressing p(t) as a polynomial in t − x we have
2J/2〈p, φJk〉 = p(x) = SJkp. If φjk is a left boundary scaling function, write

p(t) =
R−1∑
l=0

plt
l .

Then

SJkp =
R−1∑
l=0

pl2
−lJ

S−2∑
i=0

AL
ki i

l .

We can make use of (15) and the identity 2−lJWkl = 2J/2
∫
ylφJk(y) dy to again conclude

that SJkp = 2J/2〈p, φJk〉. Via a similar argument, if φjk is a right boundary scaling function,
write p(t) = ∑R−1

l=0 pl(t − 1)l and repeat analogous steps using ARŪ = W̄ to arrive again at
�Jk(p) = 0.

Write g = p + r . For each k, the interval S(φJk) is of length less than 2S2−J and contains
both the support of φJk and the range of function values used by the evaluation operator SJk .
Write g = p + r and use the property �Jk(p) = 0 to obtain that

|�Jk(g)| = |�Jk(r)|
≤ |2−J/2SJkr| + |〈r, φJk〉|
≤ c2−J/2‖r‖∞,S(φJk)

≤ c2−J (R+1/2)‖g(R)‖∞,S(φJk),

applying Taylor’s theorem on the interval S(φJk) to bound r in terms of ‖g(R)‖∞,S(φJk). This
completes the proof.

Here is a variant of the preceding result for functions having bounded total variation, where,
as usual

‖g‖TV = sup
m−1∑
i=1

|g(xi+1)− g(xi)|, (17)

with supremum taken over all finite sequences x1 < x2 < · · · < xm in [0, 1].
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Proposition 4. Assume that φ has
∫
φ = 1 and R − 1 vanishing moments, R ≥ 1. With the

above definitions of boundary scaling functions and preconditioning operators,

‖�Jg‖1 ≤ c2−J/2‖g‖TV.

Proof. Write � for the interior range S − 1, . . . , 2J − S. For k ∈ � , let tk = k2−J and
observe that, since

∫
φ = 1,

−�Jk(g) = 2−J/2
∫

[g(tk + u2−J )− g(tk)]φ(u) du.

From the definition (17), ∑
k∈�

|�Jk(g)| ≤ 2−J/2 · 2S · ‖g‖TV‖φ‖1 (18)

since the increments in the previous integral can be divided into at most 2S nonoverlapping
collections. It remains to consider the boundary contributions. Define ǧ(x) = g(x) − g(0).
For k ∈ {0, . . . , R − 1},

�Jk(g) = 2−J/2
[
SJkg −

∫ ∞

0
g(2−J u)φB

k (u) du

]
= �Jk(ǧ).

Since (15) entails that SJk(1) = ∑
i A

L
ki = ∫ ∞

0 φB
k and ‖ǧ‖∞ ≤ ‖g‖TV, we conclude that

R−1∑
k=0

|�Jk(g)| ≤ c2−J/2‖g‖TV. (19)

A similar bound works for k ∈ {2J − R, . . . , 2J − 1}, so in combination with (18) and (19),
we arrive at the result.
3.2. Preconditioning data

Given a sequence Y0, Y1, . . . , YN−1 with N = 2J , we define the preconditioned sequence
PJY by

(PJ Y )k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S−2∑
i=0

AL
kiYi, 0 ≤ k ≤ R − 1,

Yk, S − 1 ≤ k ≤ N − S,

S−1∑
i=1

AR
N−k,iYN−i , N − R ≤ k ≤ N − 1.

If the original sequence is uncorrelated with variance 1, then the variance matrix of the first
part of the preconditioned sequence isAL(AL)� while that of the last part of the sequence with
indices taken in reverse order is AR(AR)�. Because AL and AR are both of full rank R, these
variance matrices are both strictly positive definite.

Given the choice of AL and AR, let cA be the maximum of the eigenvalues of AL(AL)� and
AR(AR)�. Suppose that the Yi were independent normal random variables with unit variance,
as occurs for example in the regression model (3).

Let ỹ be the boundary-corrected discrete wavelet transform of the sequence PJY . Thus
ỹ = WPJY where W is the discrete wavelet transform matrix (see Remark 1). Clearly
E ỹ = WPJf = WSJ f , where f = (f (i/N)) is the vector of sampled values of f .
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Since W is orthogonal, both PJY and ỹ have multivariate normal distributions whose
variance matrices have eigenvalues bounded by cA. In particular, the variance of all elements
of ỹ is bounded by cA.

However ‘most’ coefficients have unit variance. Let I denote the collection of indices λ
corresponding to interior wavelets: I = {(jk) : L ≤ j < J, S − 1 ≤ k ≤ 2j − S}. Then the
array Ỹ I = {ỹλ : λ ∈ I } of interior coefficients will depend only on Yi for S− 1 ≤ i ≤ N − S,
in other words, those Yi left unchanged by the preconditioning. To see this, letψλ be an interior
wavelet. We have

ỹλ =
∑
l

〈ψλ, φJ l〉(PJ Y )l.

It follows by iterating the two-scale relation (11) thatψλ is a linear combination of those scaling
functions φJ l whose support is contained within suppψλ. In particular, 〈ψλ, φJ l〉 = 0 for the
boundary indices l with 0 ≤ l ≤ R − 1 and N − R ≤ l ≤ N − 1.

As a result, the interior coefficients Ỹ I are independent Gaussian with variance 1.

4. Discrete versus continuous wavelet coefficients

The previous section studied the quality of approximation of the sampled functionN−1/2SJ f

by the fine-scale scaling coefficients 〈f, φJk〉. Now define θ̃ to be the boundary-corrected
discrete wavelet transform of N−1/2SJ f . Let θ = (θλ = 〈f,ψλ〉) be the coefficients of f in
the wavelet basis B = {ψλ}.

We can now turn to one of our key questions, namely bounding the difference between these
two wavelet arrays. Some regularity of f (i.e. θ ) is needed: we make assumptions of two types.
First, we consider norm balls in Besov spaces, denoted �(C) = �αp,∞(C), and defined as the
set of functions f ∈ L2[0, 1] whose coefficients in basis B satisfy

‖θj‖p ≤ C2−aj for all j ≥ L− 1. (20)

Here a = α + 1
2 − 1/p and θj denotes the vector (θjk, 0 ≤ k < 2j ). We assume here that

α > 1/p, which ensures that the point evaluation functionals f → f (t0) are continuous, so
that the sampling model (3) makes sense. As usual, ‖θj‖p = (

∑
k |θjk|p)1/p.

The second smoothness model will be to assume that f ∈ TV(C), the set of functions f
having total variation norm (17) bounded by C. It is well known that

�1
1,1 ⊂ TV ⊂ �1

1,∞,

in the sense of embedding of linear spaces, so that our smoothness assumption corresponds to
α = 1 = p. (In this case, we can make sense of point evaluation by agreeing to use, say, the
left-continuous versions of f ∈ TV.)

Proposition 5. Assume that the scaling function φ and the mother wavelet ψ have R con-
tinuous derivatives and support [−S + 1, S] for some integer S, and that

∫
xmφ(x) dx =∫

xmψ(x) dx = 0 form = 1, 2, . . . , R−1. Assume that the wavelets and scaling functions are
modified by the boundary construction described above. Assume that either (i) θ ∈ �αp,∞(C)
with 1/p < α < R or (ii) θ ∈ TV(C), in which case set α = p = 1. Then, for each j with
L− 1 ≤ j < J ,

2aj‖θj − θ̃j‖p ≤ cC2−ᾱ(J−j),

where ᾱ = α − (1/p − 1)+ > 0 and c = c(α, p, φ,ψ).
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Proof. Step 0. We first recall a lemma for matrix norms (see e.g. [11, Theorem 4.1.2] for a
more general statement). Let T : R

L → R
K be a linear transformation satisfying∑

k

|Tkl | ≤ M1 and
∑
l

|Tkl | ≤ M2

for each k, l. Then, for p ≥ 1,

‖T θ‖p ≤ M
1/p
1 M

1−1/p
2 ‖θ‖p

for all θ ∈ R
L. Of course, if M1 = M2, then ‖T ‖p ≤ M1. For 0 < p ≤ 1, if instead∑

k |Tkl |p ≤ M
p
p for each l, then ‖T θ‖p ≤ Mp‖θ‖p. For convenience, we refer to these

bounds as ‘Young’s inequality’.

Step 1. Now let W be that part of the matrix W that maps the sequence at level J to the j th
level of its discrete wavelet transform. Thus Wkl = 〈ψjk, φJ l〉 if j ≥ L. For j = L − 1, we
have Wkl = 〈φLk, φJ l〉. We may write

θ̃j − θj = W�Jf.

Assume that N = 2J . We first bound ‖�Jf ‖ by decomposing f = ∑
j≥L−1 ej , where

ej = ∑
l θj lψjl for j ≥ L and eL−1 = ∑

l θL−1,lφLl . We have

�Jkej =
∑
l

Tklθj l, (21)

with
Tkl = �Jkψjl = 2−J/2SJkψjl − 〈φJk, ψjl〉.

Step 2. First consider j ≥ J . The orthogonality properties imply that the inner product
〈φJk, ψjl〉 always vanishes, so in this case Tkl = 2−J/2SJk(ψjl). For this range of j , the key
property is the compact support of ψjl : even taking account of the possibility that ψjl may be
a boundary wavelet,

ψjl(k2−J ) = 0 if |l − 2(j−J )k| ≥ 2S.

This means that ‘most’ coefficients Tkl vanish. More precisely, suppose that k is a boundary
coefficient at level J . Define

L(j) = {l : |l − 2(j−J )k′| < 2S for some k′ in [0, S − 2] or [2J − S + 1, 2J − 1].}
Then SJkψjl is zero if l �∈ L(j).

In addition, from the definition of ψjl we have

|SJkψjl | ≤ c2j/2 for all j and l.

We conclude that |Tkl | ≤ c2(j−J )/2Ikl, where

Ikl =

⎧⎪⎨
⎪⎩

1 if k ∈ K I
J , |l − 2j−J k| < 2S,

1 if k ∈ KB
J , l ∈ L(j),

0 otherwise.
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Thus, both
∑
k Ikl and

∑
l Ikl are bounded by 8S2 and so with c = c(p, S) we may apply

Young’s inequality with Mp = c(p, S)2(j−J )/2 to conclude that

‖�Jej‖p ≤ c2(j−J )/2‖θj‖p, j ≥ J.

Step 3. For j ∈ [L, J −1], using the smoothness of the waveletsψ and the vanishing moments
of φ, Proposition 3 yields that

|Tkl | ≤ c2−(R+1/2)J sup |ψ(R)jk | ≤ c2−(R+1/2)(J−j).

When |l − 2−(J−j)k| ≥ 4S, the bounded support properties of the wavelet and scaling function
will ensure that the inner product 〈φJk, ψjl〉 and the evaluation SJkψjl are both zero, and hence
�Jkψjl = 0. The number of indices k for which |l − 2−(J−j)k| < 4S is bounded by 8S ·2J−j .
It therefore follows that ∑

k

|Tkl |p ≤ c2(J−j)2−(R+1/2)(J−j)p,

while
∑
l |Tkl | is no larger than this (with p = 1). Consequently, Young’s inequality yields

‖�Jej‖p ≤ c2−(R+1/2−1/p)(J−j)‖θj‖p, L ≤ j < J.

Step 4. Under the Besov smoothness assumptions, since ‖θj‖p ≤ C2−aj for all j , we may
summarize the first two steps with the bounds

‖�Jej‖p ≤
{
cC2−aJ 2−(a−1/2)(j−J ), j ≥ J,

cC2−aJ 2−(R−α)(J−j), L− 1 ≤ j < J,

which decay geometrically in j if α < 1/p < R, and so

‖�Jf ‖p ≤ cpC2−aJ . (22)

Under the total variation assumption, a = 1
2 , and (22) is precisely the conclusion of Proposi-

tion 4.

Step 5. We turn now to bounding the operator p-norm of the matrix W . First note that,
uniformly in k and l,

|Wkl | = |〈φJk, ψjl〉| ≤ ‖ψjk‖∞‖φJ l‖1 ≤ c2−(J−j)/2.

For each l, the number of values k for which Wkl is nonzero is uniformly bounded, so∑
k

|Wkl |p ≤ cmax
k

|Wkl |p ≤ c2−(J−j)p/2.

In particular, when 0 < p ≤ 1, Young’s inequality yields ‖W‖p ≤ c2−(J−j)/2.
As seen earlier, for each k, the number of values l for which Wkl is nonzero is bounded by

c2(J−j), so ∑
l

|Wkl | ≤ c2(J−j) max
l

|Wkl | ≤ c2(J−j)/2.

Applying Young’s inequality withM1 = c2(j−J )/2 andM2 = c2(J−j)/2, we obtain, for p ≥ 1,

‖W‖p ≤ c2(1/2−1/p)(J−j).
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Everything in the above argument works if we set j = L − 1 and replace ψjk by φLk , so the
preceding bound also holds for j = L− 1.

The vector θ̃j − θj is given by W�Jf , so we can now complete the proof of Proposition 5
by combining the bounds on W and �J :

2aj‖θ̃j − θj‖p ≤ ‖W‖p · 2aj‖�Jf ‖p.
From (22), we have 2aj‖�Jf ‖p ≤ cC2−a(J−j) while ‖W‖p ≤ c2−b(J−j) with b = min ( 1

2 ,

1/p − 1
2 ). Since a + b = α − (1/p − 1)+, the proof is complete.

5. Estimation error

Finally, we return to the question of comparing estimation error from the continuous wavelet
model of (1) and (2) with that from the sampled discrete data model of (3) and (4). In this
section we make a comparison based on minimax risks. For a comparison using a specific
estimator, see for example [9].

In the continuous data model (2), the minimax risk over parameter space � is

RE (�, ε) = inf
θ̂∈E

sup
θ∈�

Eθ ‖θ̂ (y)− θ‖2
2.

Here E stands for a class of estimators: if E = N , then all estimators are allowed, while
E = M restricts to coordinatewise (or ‘marginal’) estimators: the λth coordinate depends
only on yλ: namely θ̂λ(y) = δλ(yλ). When � = �αp,∞(C), we write M(C, ε) to abbreviate
RM(�

α
p,∞(C), ε).

In the discrete data model of (3) and (4), with εN = σ/
√
N ,

R̃E (�, εN) = inf
θ̂∈E

sup
θ∈�

Eθ ‖θ̂ (ỹ)− θ‖2
2.

Note that we still intend to estimate f and therefore θ , even though E ỹλ = θ̃λ, according to (4).
Suppose that B = {ψλ} is a boundary modified coiflet orthonormal basis for L2[0, 1] as

described in Section 2.

Theorem 2. Under the assumptions of Proposition 5, as N → ∞,

R̃N (�(C), εN) ≤ RN(�(C), εN)(1 + o(1)).

The result says that, over a wide range of smoothness classes, indexed by smoothness α,
homogeneity p and radius C, the sampled data problem is not essentially harder than the
continuous data problem. (The converse result, stating that the sampled data problem is not
asymptotically easier, is demonstrated in [6].)

Our strategy will be to take a near-optimal (coordinatewise) estimator θ̂ (y) from the con-
tinuous model and apply it to suitable coordinates ỹλ in the sampled data model. In fact, we
restrict attention to levels j ≤ J0 where J0 = J0(α, p) < J will be specified below. We will
need notation for the restriction of norms to these levels: ‖θ‖2

2,J = ∑
j≤J ‖θj‖2

2, while ‖θ‖2
2,J⊥

denotes the corresponding sum over j > J .
Since E ỹλ = θ̃λ, it is natural to decompose the error of estimation of θ in terms of θ̃ , noting

again that θ̂λ = 0 for j > J0:

‖θ̂ (ỹ)− θ‖2 ≤ ‖θ̂ (ỹ)− θ̃‖2,J0 + ‖θ̃ − θ‖2,J0 + ‖θ‖2,J⊥
0
. (23)



Boundary coiflets for wavelet shrinkage in function estimation 97

We concentrate on the first term on the right-hand side: the other two will later be shown to be
negligible.

For interior coordinates, λ ∈ �I
J0

, we use a coordinatewise estimator to be described below.
For boundary coordinates λ ∈ �B

J0
say, simply use the unbiased estimator: θ̂λ(ỹλ) = ỹλ. Then

E ‖θ̂ (ỹ)− θ̃‖2
2,J0

=
∑
λ∈�I

J0

E[δλ(ỹλ)− θ̃λ]2 +
∑
λ∈�B

J0

E[ỹλ − θ̃λ]2. (24)

From the discussion of Section 3.2, for λ ∈ �B
J0

, we have var(ỹλ) ≤ cAε
2
N and so the second

term on the right-hand side of (24) is bounded by |�B
J0

|cAε2
N . Since |�B

J0
| ≤ 4S log ε−1

N , we
conclude that it is negligible, being O((log ε−1

N )ε2
N).

Suppose that J0 = (1 − γ )J for some γ > 0 to be specified later. The key role of
Proposition 5 is to show that, for levels below J0, the Besov norm of θ̃ is not greatly inflated
relative to θ . Thus, for j ≤ J0 and p ≥ 1,

2aj‖θ̃j‖p ≤ 2aj‖θj‖p + 2aj‖θ̃j − θj‖p ≤ C[1 + c2−αγ J ] = C[1 + δN ] = CN,

say. Thus, if θ ∈ �(C), then �J0 θ̃ ∈ �(CN), where �J denotes projection onto coordinates
with j ≤ J0.

Suppose that
θ̂ (y) = (δλ(yλ))

is a coordinatewise estimator attaining the minimax risk M(CN, εN) in the continuous data
problem.

For the interior coordinates λ ∈ �I
J0

, the discrete data wavelet coefficients ỹλ have dis-
tribution N(θ̃λ, ε2

N) and can be regarded as a submodel of the sequence model (2), but with
CN = C[1 + δN ]. Hence, since θ̂ operates coordinatewise,

sup
θ∈�(C)

∑
λ∈�I

J0

E[δλ(ỹλ)− θ̃λ]2 ≤ sup
θ∈�(C′)

∑
λ

E[δλ(yλ)− θλ]2 = M(CN, εN).

According to [6, Lemma 2.3], the coordinatewise minimax risk satisfies the scaling relation

M(CN, εN) ≤ (1 + δN)
2M(C, εN),

and according to [5, Theorems 3 and 5], for Besov spaces it is asymptotically equivalent to the
unrestricted minimax risk, so that there exist ηN → 0 such that

M(C, εN) ≤ (1 + ηN)RN(�(C), εN).

Combining (24) and its successors, we find that

E ‖θ̂ (ỹ)− θ̃‖2
2,J0

≤ (1 + ηN)(1 + δN)
2RN(�(C), εN)+ c(log ε−1

N )ε2
N. (25)

We turn to the remaining terms in (23). Recall first that

RN = RN(�(C), εN) � C2/(2α+1)ε
4α/(2α+1)
N . (26)

We have J0 = (1 − γ )J = c(1 − γ ) log ε−1
N . Hence, applying again Proposition 5 but now

with p = 2,

‖θ̃ − θ‖2
2,J0

=
∑
j≤J0

‖θ̃j − θj‖2
2 ≤ c2C2J02−2αJ � C2(log ε−1

N )ε4α
N = o(RN). (27)
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When θ ∈ �(C),
‖θ‖2

2,J⊥
0

=
∑
j>J0

‖θj‖2
2

≤
∑
j>J0

22j (1/2−1/p)+‖θj‖2
p

≤ C2
∑
j>J0

2−2j [a−(1/2−1/p)+]

≤ cC22−2α′J0

� C2ε
4α′(1−γ )
N , (28)

where α′ = α for p ≥ 2 and α′ = α−1/p+1/2 for p < 2. Comparing (28) with (26), clearly
α′ > α/(2α + 1) either when p ≥ 2, or when p < 2 and α ≥ 1/p. Under these conditions,
there exists a γ > 0 sufficiently small that α′(1 − γ ) > α/(2α + 1), and so ‖θ‖2

2,J⊥
0

= o(RN)

uniformly over �(C) as N → ∞.
Since (27) and (28) are thus of smaller order than (25), Theorem 2 follows by applying the

general bound E(
∑
Xi)

2 ≤ (
∑ √

EX2
i )

2 to (23).
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