Boundary Conditions and Calculation of Surface Values for the General Two-Dimensional Electromagnetic Induction Problem

L. J. Pascoe and F. W. Jones

(Received 1971 Octobel 4)*

Abstract

Summary General boundary conditions for the problem of electromagnetic induction in a two-dimensional model of a conductor with an arbitrary sub-surface conductivity structure are considered. Program subroutines for both E-polarization and H -polarization cases are given. These boundary condition subroutines can be used to replace the previously presented subroutines and allow the solution of any conductivity configuration within the conducting region by use of the same numerical technique. An example of a particular model with a sub-surface step structure is illustrated. Also, an improved method of calculating the surface values of the tangential component of the H -field (E -case) and the tangential component of the E-field (H-case) at the surface of the conducting region is given for the numerical solution. This new method uses a derivative approximated from the true functional form of the fields instead of a linear approximation and may be applied when a layered or subsurface anomaly is modelled. Some general discussion of the numerical method is given.

1. Introduction

At present there is considerable interest in the solution of the problem of electromagnetic induction in the Earth and the local perturbations of the fields when a lateral inhomogeneity is encountered. Jones \& Price (1970) considered a twodimensional problem with a conducting half-space made up of two quarter-spaces of different conductivity, and Jones \& Price (1971) considered a surface or buried region of rectangular cross-section of one conductivity surrounded by a region of different conductivity. Jones \& Pascoe (1971) extended this work to consider a region of arbitrary shape and of several conductivities surrounded by a region of different conductivity and gave computer programs for the numerical solution of this problem for both the E-polarization (E parallel to the strike of the structure) and the H-polarization (H parallel to the strike of the structure) cases.

The programs given by Jones \& Pascoe (1971) may be used to consider long cylinders composed of several conductivities and of arbitrary cross-section embedded in a region of uniform conductivity, but cannot be used to solve the problem in which the surrounding region is not uniform. It is important to be able to solve the more general case in which the surrounding medium is a layered one and is not necessarily the same at great distances from the conductivity inhomogeneities on both sides. In

[^0]the previous work (Jones \& Pascoe 1971) it was necessary to place the sides of the mesh over which the equations were solved far enough away from any inhomogeneity so that a uniform conducting region could be assumed at these boundaries. It is also true in the more general case presented here that the sides of the mesh must be far from any vertical discontinuity in conductivity so that a horizontally layered medium may be assumed at these boundaries. The subroutines for the boundary conditions for the E-polarization and H-polarization cases which we now present can be used in place of the previous boundary condition subroutines (Jones \& Pascoe 1971) and allow the solution of any conductivity configuration within the conducting region as long as the above condition is met.

2. The boundary conditions for layered media

Jones (1971) investigated the problem of induction in a two-layered Earth model with a general layer contact topography and derived analytic expressions for the boundary. However, the analytic expressions for the fields at the boundaries in terms of the conductivities and the depth to the interface became cumbersome even for this two-layered case. Therefore, to proceed to a situation which involves more than two layers, a different approach is taken.

(a) E-polarization

If we consider the same co-ordinate system as before, namely with the origin on the surface, x and y co-ordinates horizontal and the z co-ordinate vertically downward, (Jones \& Pascoe 1971), then for a uniformly layered conducting region, $\left(\partial E_{x} / \partial y\right)=0$ everywhere. The equation which must be solved,

$$
\nabla^{2} E_{x}=i \eta^{2} E_{x}
$$

where $\eta^{2}=4 \pi \sigma \omega$ reduces to

$$
\frac{\partial^{2} E_{x}}{\partial z^{2}}=i \eta^{2} E_{x}
$$

This equation has the solution

$$
E_{x}=D_{1} \exp (-\eta z \sqrt{ }(i))+D_{2} \exp (\eta z \sqrt{ }(i)) \text { for } \eta \neq 0
$$

and

$$
E_{x}=D_{1}+D_{2} z \text { for } \eta=0
$$

If we now consider Fig. 1 and assume that $E_{x \mid k}$ and $\left(\partial E_{x} / \partial z\right)_{\mid k}$ are known, then by using the proper functional form in region η_{j} and the boundary conditions [the continuity of E_{x} and the tangential component of $H,\left(\partial E_{x} / \partial z\right)$] at the horizontal interface, k, then the constants D_{1} and D_{2} may be evaluated for layer η_{j}. Once D_{1} and D_{2} are known, $E_{x \mid j}$ and $\left(\partial E_{x} \mid \partial z\right)_{\mid j}$ may be calculated. In this way a knowledge of E_{x} and ($\partial E_{x} / \partial z$) on the lowest grid row allows the determination of E_{x} and $\left(\partial E_{x} / \partial z\right)$ for the remaining grid rows.
(b) H-polarization

For the H-polarization case a similar form of the solution is encountered:

$$
H_{x}=D_{1} \exp (-\eta z \sqrt{ }(i))+D_{2} \exp (\eta z \sqrt{ }(i)) \text { for } \eta \neq 0
$$

and

$$
H_{x}=D_{1}+D_{2} z \text { for } \eta=0 .
$$

Again, if $H_{x \mid k}$ and $\left(\partial H_{x} / \partial z\right)_{\mid k}$ are known, the constants D_{1} and D_{2} may be determined by using the conditions of continuity of H and continuity of the tangential

Fig. 1. Notation used to describe boundary of layered medium.
component of E on line k. After D_{1} and D_{2} are thus determined for η_{j}, we may calculate $H_{x \mid j}$ and $\left(\partial H_{x} / \partial z\right)_{\mid j}$ and proceed as described in the E polarization case.

It should be noted that to be certain that E_{x} (or H_{x}) remains finite as $z \rightarrow \infty$, we have set the value of E_{x} (or H_{x}) on the lowermost grid row according to

$$
\begin{gathered}
E_{x}=\exp (-\eta z \sqrt{ }(i)) \\
\left(\text { or } H_{x}=\exp (-\eta z \sqrt{ }(i)) ;\right.
\end{gathered}
$$

that is $D_{1}=1, D_{2}=0$.
Also, in the H-polarization case, $H_{x}=H_{0}$ everywhere in the free-space region (Jones \& Price 1970).

In the E-polarization case, it is necessary to take (Jones \& Price 1970)

$$
H_{y \mid \text { left-hand surface }}=H_{y \mid \text { right-hand surface }}
$$

and also to place the upper boundary high enough to ensure that any perturbations in H due to discontinuities in the conductor are negligible there.

Furthermore, since the above applies for a horizontally layered conducting medium, we must ensure that the boundaries are far enough away from any vertical discontinuity so that this assumption holds.

3. The boundary value subroutines and example

Figs 2 and 3 give the boundary value subroutine for the E-polarization case and Figs 4 and 5 for the H-polarization case. In these subroutines complex variables are used directly, and the real and imaginary parts are separated at the end to accommodate the main program.

Fig. 6 gives the conductive configuration for the example illustrated. The model is that of a layered medium with a step discontinuity. The different conductivities are illustrated by the different letters.

Fig. 7 gives the E-polarization surface values of the three components, the phase and apparent resistivity. Fig. 8 is the solution for the H-polarization case. In the model illustrated, a slightly different method of calculating the surface values using a non-linear approximation of the functional form at the surface is employed.

Fig. 2. E-polarization boundary condition subroutine.
FURTKAN IV G CUMPILER BYCONU 11:56.48 04-13-71 PAGE 0002

TLTAL MEMOFY REQUIREMENTS DOLGCG BYTES
11:31.05 4.502 RC=0
Fig. 3. E-polarization boundary condition subroutine.

4. Calculation of the surface values

In the previous work (Jones \& Pascoe 1971), it was found that some error was encountered in the calculation of E_{y} in the H-polarization case and H_{y} in the E polarization case. This error is exhibited by a difference between the computed value of the apparent resistivity $\left(\rho_{\mathrm{A}}\right)$ on the surface over the uniform conducting regions at the extremities of the mesh and the value expected there.

Since for the H-polarization case

$$
E_{y}=\frac{1}{4 \pi \sigma} \frac{\partial H_{x}}{\partial z}
$$

and for the E-polarization case

$$
H_{y}=-\frac{1}{i \omega} \frac{\partial E_{x}}{\partial z}
$$

(Jones \& Price 1970), the components E_{y} and H_{y} were calculated by taking finite differences in the z direction. This approximation to the derivative is adequate when the grid spacing is not too large. However, a better approximation which is independent of the grid spacing and which uses the true form of the function can be applied.

For the conducting region, the usual method for approximating ($\partial E_{x} / \partial z$) (or $\left(\partial H_{x} / \partial z\right)$) at the surface is by using a linear approximation to the derivative. For example, from Fig. 9 we would have

$$
\frac{\partial F}{\partial z_{10}} \simeq \frac{\Delta F}{\Delta z{ }_{10}}=\frac{F_{1}-F_{0}}{z_{1}-z_{0}},
$$

where F equals E_{x} or H_{x}. This is a reasonable approximation to the derivative when the grid spacing is small, since the derivative is the value of this gradient in the limit as $z_{1} \rightarrow z_{0}$.

Fig. 4. H-Polarization boundary condition subroutine.

Fig. 5. H-polarization boundary condition subroutine.

However, in most instances, the grid spacing is such that the above is only a first approximation to the derivative. If we consider the true form of the function we may obtain a better numerical value for $(\partial F / \partial z)_{\left.\right|_{0}}$. For Fig. 1 we have the usual functional form for the conducting region ($\boldsymbol{\eta}_{1}$):

$$
F(z)=D_{1} \exp \left(-\eta_{1} z \sqrt{ }(i)\right)+D_{2} \exp \left(\eta_{1} z \sqrt{ }(i)\right)
$$

where D_{1} and D_{2} are constants.
If we know F_{10} and F_{11}, D_{1} and D_{2} may be calculated numerically. The value of $(\partial F / \partial z)_{10}$ may then be determined from

$$
\frac{\partial F}{\partial z_{10}}=-\eta_{1} \sqrt{ }(i) D_{1}+\eta_{1} \sqrt{ }(i) D_{2}
$$

where the origin of the z-axis has been taken at the surface. This will give a more accurate value for $(\partial F / \partial z)_{10}$ over a uniformly stratified conducting region, and is likely to be at least as accurate as the linear approximation above regions where lateral discontinuities in conductivity occur. It must be applied with care near regions with discontinuities at the surface, since the above functional form may not necessarily apply near such regions.

5. The new surface value subroutine and comparison with the linear approximation

Figs 10 and 11 give the new surface value subroutine for the H-polarization case which may be used to replace the previous subroutine (Jones \& Pascoe 1971) if the new approximation for the surface values is desired. The altered or inserted statements are those numbered 12-23. The E-polarization subroutine would require similar changes. Also, in the new H-polarization subroutine a statement (No. 35) is incorporated to indicate where a discontinuity exists at the surface.

	SIGMA	SKIM DEPTM
4	0.0	
B	0.1000E-09	10.00
C	0.3000E-09	4.47
0	0.1000E-08	3.16
E	0.0	
6	0.0	
H	0.0	
\mathbf{K}	3.0	
*	0.0	
0	0.0	

Fig. 6. Conductive configuration for example illustrated. Horizontal (H) and vertical (K ') grid dimensions and skin depth are in multiples of scale (cm). Frequency used is 0.000253 Hz .
0.0
0.0
0.0
0.0
0.0

SCALF $=1$ CRSOR. FREO $=0.000283$

```
CO PS = 0.00NITO MAXIMUM NO. OF ITERATICNS % 5nO%/
* STOPPFO ON ITERATION FIE *
```

* sumface values *

	AME	AMHY	AMME	Dphast	0Pnamy	DPMAMz	APpars	
2	0.9619	$1.0 n 05$	0.002	0.006	0.000	-2.743	9.4662	80
7	0.999	1.009	0.000	2.005	-0.001	-2.057	9.46s	10
4	0.999	1.000	0.000	0.004	-0.001	-2.431	0.tese	10
5	0.990	1.000	0.000	0.004	-0.001	-1.65s	$0.465{ }^{\text {c }}$	10
6	0.099	1.000	0.000	2.004	-0.001	-1.393	$0 .+6 e^{\text {a }}$	10
7	0.990	1.000	0.000	3.0004	-0.002	-1.302	T.466E	10
\cdots	1.00n	1.000	0.000	0.004	-0.002	-1.373	9.466E	10
9	1.000	1.001	0.000	2.004	-9.002	-1.27.	0.ather	15
10	1.000	1.001	0.090	0.004	-9.002	-1.291	0.46 EE	10
11	1.001	1.001	0.000	0.004	-0.002	-1. 325	0.06er	10
12	1.001	1.001	0.000	0.004	-0.002	-1. 173	$0.466 E$	10
13	1.002	1.702	c. 0000	0.003	-0.003	-1.4.35	9.466E	10
14	1.cnz	1.002	0.000	0.003	-0.0n3	-1. 407	ग. 6.605	10
19	1.003	1.003	0.001	0.003	-0.0.24	-1.579	0.4685	in
14	1.004	1.004	0.001	0.002	-0.004	-1.641	0.ABEE	10
17	1.nO6	1.005	0.001	0.001	-0.005	-1.642	D. Anse	10
18	1.006	2.009	0.003	-0,002	-0.007	-1.700	0.4665	10
19	1.015	1.015	O.COR	-0.007	-0.011	-1.914	9.ABSE	10
27	1.038	1.033	0.030	-0.017	-0.012	-1.0.072	0.4748	10
21	1.137	1.09:	0.052	-0.011	0.003	-0.849	0.5947	15
22	1.751	0.953	0.037	0.016	0.007	-0.838	0.779	10
23	1.287	0.979	0.012	0.011	0.027	-1.227	0. A06e	10
24	1.360	0.987	0.005	0.007	0.007	-1.473	0.809e	19
25	1.305	0.990	0.002	0.005	0.005	-1.566	0.A09F	10
23	1.307	0.902	c.nO1	0.004	0.004	-1.599	0.3097	$1{ }^{\prime}$
27	1.3095	0.094	0.001	0.003	0.001	-1.620	9.909F	17
? 8	1.310	0.995	$0 . n 01$	2.002	0.002	-1.617	O.n09E	11
29	1.311	0.995	0.000	2.002	0.002	-1.448	0.809E	1.7
30	1.312	c. 998	0.000	0.001	0.001	-1.653	0.809	10
11	1.312	C.0.36	0.000	0.001	0.071	-1.654	0.9096	10
$3 ?$	1.313	$0.8,96$	0.000	2.001	2.001	-1.051	O.ADSE	1)
33	1.313	0.097	0.000	2.00n	0.001	-1.044	3.809F	17
14	1.313	0.997	0.000	0.000	0.000	-1.627	3.809F	10
35	1.314	0.997	0.000	0.000	0.002	-1.596	0.8095	10
36	1.314	0.9 .97	0.000	-0.000	-0.000	-1.537	0.8095	10
37	1.315	0.909	0.000	-0.000	-0.072	-1.420	0.5098	10
39	1.315	0.909	0.700	-0.000	-2.000	-1.181	0.9095	10
37	1.314	0.940	0.000	-0.002	-0.07)	-0.715	0.809	10
40	1.317	0.993	0.001	0.0	0.0	0.0	O.bioe	10

Fig. 7. E-polarization surface values. Amplitudes of components normalized, phase differences in radians, apparent resistivity in emu
** burface valute *

$\mathrm{ANH}_{\mathbf{H}}$		AMFY	AnE2	DPHASH	OPhaFy	DPhatz	APPRRE
2	10nco	1.005	0.0	0.0	0.011	0.0	0.470 E 10
3	1.000	1.000	0.0	0.0	0.011	0.0	0.470 E 10
4	1.08 .0	1.000	0.0	0.0	0.012	0.0	0.670 E 10
\$	1.008	1.000	0.0	0.0	9.012	0.0	$0.070 F 10$
6	lorna	1.000	0.1	0.0	2.012	0.0	0.4700 in
7	lerce	1-6n	n.0	3.0	3.018	0.0	0.470 ce 10
\%	1 -nise	10000	0.3	3.0	2001\%	0.0	0.4700
7	1.non	0.699	0.9	0.0	0.012	0.0	0.470 c in
10	teone	0.79า	0.0	0.0	0.018	0.0	0.4697 in
11	1.000	0.999	0.0	0.0	0.017	c. 1	0.069519
12	1.non	0.999	0.7	0.7	0.012	0.0	0.469510
1.3	l.ano	0.9170	0.1	0.0	5.017	0.0	O.AB9F 10
14	$1 . n 00$	n.ges	0.1	9.0	0.012	0.0	0.469 ¢ 10
15	laran	0.999	0.0	0.0	9.012	0.0	0.46910
16	1-0nc	0.799	0.1	0.0	0.018	0.0	0.469 IO
17	1.00n	0.997	0.1	2.0	0.012	0.0	0.460E 10
10	1.090	0.997	0.0	$0 \cdot 0$	0.018	0.0	0.469 F 19
10	1-0no	1.007	0.1	0.0	n.01:	0.0	0.47OE In
20	1.roc	$1 . \cos$	0.7	1.0	0.016	0.0	0.47 FE 10
8.1	1.non	1.166	0.0	9.0	0.025	0.0	0.639710
27	1.0 onc	1.312	0.0	0.0	-0.011	0.0	0.nogr it
23	1.000	1.317	0.0	9.0)	- 0.002	0.0	0.016519
24	1.not	1.314	0.0	0.0	- 5.000	0.7	n.tile in
25	1 -nse	1.318	0.0	0.0	- 9.010	-0.0	O.A17F In
24	1.non	1.31H	0.0	5.0	-1.005	0.0	0.E17F in
77	1.nac	1.318	0.0	3.0	-0.005	0.0	Q.hitr in
24	1.0ne	1.318	0.0	0.0	- 5.070	0.0	Donite In
29	1.nne	1.313	0.0	0.0	-0.000	0.0	O.A17 in
10	$1 . n 00$	1.314	0.0	0.0	-0.00\%	0.0	nomitf in
31	1.nat	1.318	0.0	0.0	-10.079	0.0	0.tilf in
38	1.nco	1.31\%	0.0	0.0	-0.000	0.0	0.417 c
33	1.000	1.31 A	0.0	200	-0.05\%	0.0	0.4178 l
34	1.000	1.38 A	0.0	0.0	-D.con	0.0	$0.617 \% 10$
35	10r9n	1.319	0.0	9.0	-0.0ns	0.0	0.817F 10
36	1 1.nor	1.718	0.0	4.0	-0.000	$0 \cdot 0$	0.\#17\% 10
37	1 ¢fan	1.313	0.0	0.0	-0.009	0.0	O.R165 in
34	1.eno	1.318	0.1	0.0	-0.7n0	0.0	O-B16E In
31	$1 \cdot 700$	1.318	0.0	0.0	- 0.000	0.0	$0.516 F 10$
40	10 aly	1.717	0.9	0.0	0.0	0.0	0.916F in

Fig. 8. H-polarization surface values. Amplitudes of components normalized, phase differences in radians, apparent resistivity in emu.

Fig. 9. Notation used to describe surface value calculations.

In Fig. 12 the surface values of apparent resistivity computed by the improved method (solid curves) are compared with the surface values obtained before (dashed curves), (Jones \& Pascoe 1971). With the new calculation, the value of apparent resistivity near the boundaries of the mesh approaches the expected value for the uniform subsurface. In the previous calculations, the value of apparent resistivity differed by approximately 6 per cent in the E-polarization case and by approximately 11 per cent in the H-polarization case from the expected values. The profiles also show some change across the conductor surface when the new and old calculations are compared.

6. Dimensional considerations and the iterative procedure

The use of this new method of calculating surface values and the above considerations about accuracy, made it desirable to obtain a better 'feel' for the mode of solution and the relationship between the convergence criteria applied and the various parameters used. To do this, a uniform subsurface case was chosen and the model was run for various convergence conditions and grid-size to skin depth ratios for a uniform square grid. Since in the initialization procedure the boundary values are carried horizontally throughout the mesh, the number of iterations required to satisfy the convergence condition is a measure of the accuracy of the result. Fig. 13 shows a model constructed to illustrate the relationship between the number of iterations (proportional to the height of the rod; terminated at a maximum of 150 iterations), the residual (EPS) and the ratio of grid size to skin depth (GS/SD). It is seen that the iteration should be carried out when the grid size to skin depth ratio is small.

In the solution of the problem the equations are solved by the numerical iterative method over several conductive regions. In each region there is a basic functional form which sets limits on the grid spacing we can use there in order to accommodate the numerical difference equations. For example, in the free-space region the function is approximately linear in both directions and consequently a relatively large grid

Fig. 10. \boldsymbol{H}-polarization surface value subroutine.

0041.	150	FIIRMAT		540
		1Y＊T大゙り＊		550
0042	160	FGRMAT	（1H，12，6（2x，F10．3），［12．3）	560
0043	170	FORMAT	（1H＋＊T95．＇DISCUNTINUITY＊）	565
0044		FND		673\％

TOTAL MF HORY RFOUIPLMENTS OOOFBB GYTFS

Fig．11． \boldsymbol{H}－polarization surface value subroutine．

Fig．12．Apparent resistivity profiles for the previous（dashed lines）calculation and the improved（solid lines）calculation（emu）．（a）H－polarization．（b）E－polariza－ tion．

Downloaded from https://academic.oup.com/gji/article/27/2/179/732298 by U.S. Department of Justice user on 16 August 2022
Fig. 13. Model constructed to investigate iteration procedure and relationship of various parameters.
spacing can be used. In the conducting regions we have taken the phenomenon as approximately linear in the horizontal direction, but exponential in the vertical direction. Therefore, in the conducting region, in order to fit the form of the function the grid spacing is restricted in the vertical direction.

Also, the solution is based on the assumption that as $y \rightarrow \pm \infty$, the subsurface is uniformly stratified. To accommodate this restriction in the model the boundaries must be several skin depths from any vertical discontinuity.

7. Conclusions

The general boundary subroutines as presented provide a two-dimensional model when combined with the previous program (Jones \& Pascoe 1971) which is completely general, subject only to the restriction that a uniformly stratified subsurface is required at both sides of the mesh. Although the subsurface must be uniformly stratified at the two extremities, it is not necessary that both sides have identical stratification. In use, some consideration must be given to the relationship between grid size, skin depth and dimensions of the mesh when particular models are considered. This general program is flexible to use and provides a modelling technique which should be of considerable use in studying observed phenomena.

Acknowledgments

The authors wish to thank Dr J. A. Jacobs for his assistance. ${ }^{-}$This work was supported by the National Research Council of Canada.

Department of Physics and the Institute of Earth
and Planetary Physics,
University of Alberta

References

Cagniard, Louis, 1953. Geophys., 18, 605-635.
Jones, F. W., 1971. Geophys. J. R. astr. Soc., 22, 17-28.
Jones, F. Walter \& Price, Albert T., 1970. Geophys. J. R. astr. Soc., 20, 317-334.
Jones, F. Walter \& Price, Albert T., 1971. Geophys. J. R. astr. Soc., 22, 333-345.
Jone., F. W. \& Pascoe, L. J., 1971. Geophys. J. R. astr. Soc., 24, 3-30.

[^0]: *Received in orginal form 1971 June 2.

