Boundary Conditions and Calculation of Surface Values for the General Two-Dimensional Electromagnetic Induction Problem

L. J. Pascoe and F. W. Jones

(Received 1971 October 4)*

Summary

General boundary conditions for the problem of electromagnetic induction in a two-dimensional model of a conductor with an arbitrary sub-surface conductivity structure are considered. Program subroutines for both E-polarization and H-polarization cases are given. These boundary condition subroutines can be used to replace the previously presented subroutines and allow the solution of any conductivity configuration within the conducting region by use of the same numerical technique. An example of a particular model with a sub-surface step structure is illustrated. Also, an improved method of calculating the surface values of the tangential component of the H-field (E-case) and the tangential component of the E-field (H-case) at the surface of the conducting region is given for the numerical solution. This new method uses a derivative approximated from the true functional form of the fields instead of a linear approximation and may be applied when a layered or subsurface anomaly is modelled. Some general discussion of the numerical method is given.

1. Introduction

At present there is considerable interest in the solution of the problem of electromagnetic induction in the Earth and the local perturbations of the fields when a lateral inhomogeneity is encountered. Jones & Price (1970) considered a twodimensional problem with a conducting half-space made up of two quarter-spaces of different conductivity, and Jones & Price (1971) considered a surface or buried region of rectangular cross-section of one conductivity surrounded by a region of different conductivity. Jones & Pascoe (1971) extended this work to consider a region of arbitrary shape and of several conductivities surrounded by a region of different conductivity and gave computer programs for the numerical solution of this problem for both the E-polarization (E parallel to the strike of the structure) and the H-polarization (H parallel to the strike of the structure) cases.

The programs given by Jones & Pascoe (1971) may be used to consider long cylinders composed of several conductivities and of arbitrary cross-section embedded in a region of uniform conductivity, but cannot be used to solve the problem in which the surrounding region is not uniform. It is important to be able to solve the more general case in which the surrounding medium is a layered one and is not necessarily the same at great distances from the conductivity inhomogeneities on both sides. In

*Received in orginal form 1971 June 2.

the previous work (Jones & Pascoe 1971) it was necessary to place the sides of the mesh over which the equations were solved far enough away from any inhomogeneity so that a uniform conducting region could be assumed at these boundaries. It is also true in the more general case presented here that the sides of the mesh must be far from any vertical discontinuity in conductivity so that a horizontally layered medium may be assumed at these boundaries. The subroutines for the boundary conditions for the E-polarization and H-polarization cases which we now present can be used in place of the previous boundary condition subroutines (Jones & Pascoe 1971) and allow the solution of any conductivity configuration within the conducting region as long as the above condition is met.

2. The boundary conditions for layered media

Jones (1971) investigated the problem of induction in a two-layered Earth model with a general layer contact topography and derived analytic expressions for the boundary. However, the analytic expressions for the fields at the boundaries in terms of the conductivities and the depth to the interface became cumbersome even for this two-layered case. Therefore, to proceed to a situation which involves more than two layers, a different approach is taken.

(a) E-polarization

If we consider the same co-ordinate system as before, namely with the origin on the surface, x and y co-ordinates horizontal and the z co-ordinate vertically downward, (Jones & Pascoe 1971), then for a uniformly layered conducting region, $(\partial E_x/\partial y) = 0$ everywhere. The equation which must be solved,

$$\nabla^2 E_x = i\eta^2 E_x$$

where $\eta^2 = 4\pi\sigma\omega$ reduces to

$$\frac{\partial^2 E_x}{\partial z^2} = i\eta^2 E_x$$

This equation has the solution

$$E_x = D_1 \exp\left(-\eta z \sqrt{(i)}\right) + D_2 \exp\left(\eta z \sqrt{(i)}\right) \text{ for } \eta \neq 0$$

and

$$E_x = D_1 + D_2 z \text{ for } \eta = 0.$$

If we now consider Fig. 1 and assume that $E_{x|k}$ and $(\partial E_x/\partial z)_{|k}$ are known, then by using the proper functional form in region η_i and the boundary conditions [the continuity of E_x and the tangential component of H, $(\partial E_x/\partial z)$] at the horizontal interface, k, then the constants D_1 and D_2 may be evaluated for layer η_i . Once D_1 and D_2 are known, $E_{x|j}$ and $(\partial E_x/\partial z)_{|j}$ may be calculated. In this way a knowledge of E_x and $(\partial E_x/\partial z)$ on the lowest grid row allows the determination of E_x and $(\partial E_x/\partial z)$ for the remaining grid rows.

(b) H-polarization

For the H-polarization case a similar form of the solution is encountered:

$$H_x = D_1 \exp\left(-\eta z \sqrt{i}\right) + D_2 \exp\left(\eta z \sqrt{i}\right) \text{ for } \eta \neq 0$$

and

$$H_x = D_1 + D_2 z \text{ for } \eta = 0.$$

Again, if $H_{x|k}$ and $(\partial H_x/\partial z)_{|k}$ are known, the constants D_1 and D_2 may be determined by using the conditions of continuity of H and continuity of the tangential

$$H_x = D_1 + D_2 z$$
 for $\eta =$

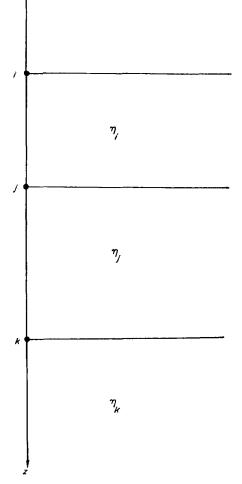


FIG. 1. Notation used to describe boundary of layered medium.

component of E on line k. After D_1 and D_2 are thus determined for η_j , we may calculate $H_{x|j}$ and $(\partial H_x/\partial z)_{|j}$ and proceed as described in the E polarization case.

It should be noted that to be certain that E_x (or H_x) remains finite as $z \to \infty$, we have set the value of E_x (or H_x) on the lowermost grid row according to

$$E_x = \exp(-\eta z \sqrt{i})$$

(or $H_x = \exp(-\eta z \sqrt{i})$;

that is $D_1 = 1$, $D_2 = 0$.

Also, in the *H*-polarization case, $H_x = H_0$ everywhere in the free-space region (Jones & Price 1970).

In the E-polarization case, it is necessary to take (Jones & Price 1970)

$$H_{y|1eft-hand surface} = H_{y|right-hand surface}$$

and also to place the upper boundary high enough to ensure that any perturbations in H due to discontinuities in the conductor are negligible there.

Furthermore, since the above applies for a horizontally layered conducting medium, we must ensure that the boundaries are far enough away from any vertical discontinuity so that this assumption holds.

3. The boundary value subroutines and example

Figs 2 and 3 give the boundary value subroutine for the *E*-polarization case and Figs 4 and 5 for the *H*-polarization case. In these subroutines complex variables are used directly, and the real and imaginary parts are separated at the end to accommodate the main program.

Fig. 6 gives the conductive configuration for the example illustrated. The model is that of a layered medium with a step discontinuity. The different conductivities are illustrated by the different letters.

Fig. 7 gives the *E*-polarization surface values of the three components, the phase and apparent resistivity. Fig. 8 is the solution for the *H*-polarization case. In the model illustrated, a slightly different method of calculating the surface values using a non-linear approximation of the functional form at the surface is employed.

FURTRAN	1V G	COMPI	LER BYCON	0	04-13-71	11:56.48	PAGE 0001
0001			SUBROUTINE BYCO	ND (N)			
0002			REAL K				
6003						CALE, FREQ, REGION	
0004						D2(40,2),RUUTI,E	NZ, EMNZ
0005		•	DIMENSION AETA(40,2), DIS	ST(41)		
		С С					
		c c	SET THE URIGIN I	FOR THE Z-	AXIS ON GRID	ROW 1	
0006		L	0107/11-0				
0008			DIST(1)=0.0				
0003		110	DO 110 I=2,41 DIST(I)=DIST(I-				
0000		110	ROUTI=CMPLX(1./		ASING TAD IN		
		C	RUGII-GREEATION	3441120111			
		č	DETERMINE AETA		ST AND PICHT	HOUNDARTES	
		č	CETENNIAL REIM		TT AND NEONE	BUUHDARIES	
0010		-	DO 120 I=N,40				
0011			AETA(1,1)=SQRT(REGIUNITA			
0012		120	AETA(1,2)=SURT(
		C					
		C	SET THE VALUES I	UF,E AND E	PRIME ON THE	LAST GRID ROW	
		C					
0013			E(41,1)=CEXP(-D				
0014			E(41,2)=CEXP(-D				
0015						1ST(41)+ALTA(40,	
0010		-	EPRIME(41,2)=-A	ETA(40,2)4	KJUTI+CEXP(-C)15T(41)#AETA(40,	2)+ROOT[]
		ç	CC1112 C 1 1 1 1 1 1				
		C C	SCLVE FUR REMAIL	NING BOUND	DARY VALUES		
6017		C	D(1, 1, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1,				
-0017 -0018			DC 13J J=1,2 DU 130 I=N.4J				
0019			ENZ=CEXP(DIst(4			00711	
0020			EMNZ=CEXP(-)IST				
0021						I, J) +ROUT I +ENZ-EP	WINFLAI-IAN.
			1J)*ENZ)/(2.*AET			101-10011-616-CT	NEWELVE EVILLE
0022						(41-I+N, J) +AETA(40-1+N.J)#R0
			10T1*E442)/(2.*A				
0023			ENZ=CEXP(UIST(4			UUTII	
0024			EMNZ=LEXP(-DIST	[40-I+N]#A	ETA(40-1+N, J)	#RUUTI)	
0025			E(40-1+N,J)=D1(
0026		130				I#D1(40-I+N,J)#EM	NZ+AETA(40-I
			1+N, J) * RUOTI * D21-	40-I+N,J)1	ENZ		
0027			L=N-1				
0023			DO 140 J=1,2				
0029			DU 140 I=1,L		WE #44 141 -11-0		
0030 0031			$D1(N-I,J) \neq E(N-I)$			1211N-1411	
0031			D2(N-I,J)=EPRIM E(N-I,J)=D1(N-I			L	
0032		140	EPRIME(N-1,J)=D1(N-1		191401211W#11		
~~ <u>~</u> ~		C 140					
		Ċ	NORMALISE TO IT	.0.0.01 01	THE SUBEACH	ON THE LEFT-HAND	-510+
		č	HUNHELDE IJ IA	tolotol Du	THE JUNEAUE	WH THE SETTMAND	
0034		•	RCUTI=E(N,1)				
0035			DG 150 I=1+41				
0030			E(1,1)=E(1,1)/R	JOTI			
0037		150	EPRIME(1,1)=EPK		0071		
			Fig 2 F-no	larization H	oundary condit	tion subroutine.	

FIG. 2. E-polarization boundary condition subroutine.

FURTRAN I	VG	COMPIL	ER	BYCOND	04-13-71	11:56.48	PAGE	0002
		с с с	AUJUST THE	RIGHT-HAND-SIDE	TU THE PROPER	VALUE		560 570 580
0033			RGOT1=EPRI	ME(N,2)/EPRIME(N	(, 1)			590
0039			DO 160 I=1					600
0040			E(1,2)=E(1					610
0041		160 C	EPRIME(I,2	=====RIME(I+2)/RE	110			620 630
		C C	SET THE BO	UNDARY OF F & G	AND INTERPOLATE	LINEARLY ACROS	S THE	GRID 640 650
0042			00 170 1=1	•41				660
0043			F(1,1)=REA					670
0044			F(1,41)=R5	AL(E(1,2))				680
0045			GII:1)=AIM	AG(E(I,1))				690
0046 0047			G(1,41)=A1 DIST(1)=0.	MAG(E(1,2))				700 710
0043			DU 130 I=2	-41				720
6.049		130	DIST(I)=01	ST(1-1)+H(1-1)				730
0050			DO 190 I=1	,41				740
0051			DFDY=(F(1,	41)-F(I,1)}/JIST	[(41)			750
0052			DGDY=(G(1,	41)-6(1,1))/0151	[(41)			760
0053			90 TAO 1=5	443				770
0054				.,1)+{UF0Y+D1ST(.				780
0055				[,1]+[UGDY#DI5T[.	17)			790
ひょうち			RETURN					800
0057			ENU					8104

TLTAL MEMOFY REQUIREMENTS ODIACL BYTES 11:57.05 4.502 RC=0

4. Calculation of the surface values

In the previous work (Jones & Pascoe 1971), it was found that some error was encountered in the calculation of E_y in the *H*-polarization case and H_y in the *E*-polarization case. This error is exhibited by a difference between the computed value of the apparent resistivity (ρ_A) on the surface over the uniform conducting regions at the extremities of the mesh and the value expected there.

Since for the H-polarization case

$$E_y = \frac{1}{4\pi\sigma} \frac{\partial H_x}{\partial z}$$

and for the E-polarization case

$$H_y = -\frac{1}{i\omega} \frac{\partial E_x}{\partial z}$$

(Jones & Price 1970), the components E_y and H_y were calculated by taking finite differences in the z direction. This approximation to the derivative is adequate when the grid spacing is not too large. However, a better approximation which is independent of the grid spacing and which uses the true form of the function can be applied.

For the conducting region, the usual method for approximating $(\partial E_x/\partial z)$ (or $(\partial H_x/\partial z)$) at the surface is by using a linear approximation to the derivative. For example, from Fig. 9 we would have

$$\frac{\partial F}{\partial z_{10}} \simeq \frac{\Delta F}{\Delta z_{10}} = \frac{F_1 - F_0}{z_1 - z_0},$$

where F equals E_x or H_x . This is a reasonable approximation to the derivative when the grid spacing is small, since the derivative is the value of this gradient in the limit as $z_1 \rightarrow z_0$.

FORTRAN	1V G	COMPIN	LER BYCOND	04-13-71	12+00.35	PAGE 0001
0001			SUBROUTINE BYCOND (N)	1		
0002			REAL K			
0003			COMMON F (41,41), G(41,			
0004			COMPLEX E(41,2),EPRIM		2(40,2),ROOTI,E	INZ , EMNZ
0005			DIMENSION AETA(41,2)	DIST(41)		
		C				
		C C	SET THE DRIGIN FOR TH	HE Z-AXIS ON GRID R	OW 1	
6006			DIST(1)=0.0			
0007			DO 110 1=2,41			
0003		110	DIST(I)=DIST(I-1)+K()			
0009			ROUTI=CMPLX(1./SQRT(2	2.),1./SQRT(2.)}		
		ç				
		C C	DETERMINE AETA FOR TH	IE LEFT AND RIGHT B	UUNDARIES	
0010			DG 120 I=N,40			
0011			AETA(I,1)=SURT(REGION			
0012		120	AETA(1,2)=SQRTIREGION			
0013			AETA(41,1)=AETA(40,1)			
0014		С	AETA(41,2)=AETA(40,2)	•		
		C	SET THE VALUES OF E	NO CONTRE ON THE L		
		6	_			
0015			E(41,1)=CEXP(-DIST(4)			
0015			E(41,2)=CEXP(-D1ST(4)			
0017			EPRIME(41,1) = -AETA(4)			
0013		~	EPRIME(41,2)=-AETA(40	D,2]*ROGTI*CEXP(-DI	ST(41)#AETA(40;	2) = ROOTIJ
		C	COLUM FOR DENATIVING			
		C C	SOLVE FOR REMAINING E	SCUNDARY VALUES		
0019		C I	DO 130 J=1,2			
0020			DO 130 I=1.40			
0021			ENZ=CEXP(DIST(41-1+N)	*AFTA(40-1+N.J)*RU	0711	
0022			EMNZ=CEXP(-DIST(41-I			
0023			01(40-1+N, J)=({E(41-)			AETA(40-1+N.
			1J)/AETA(41-I+N,J))**2 1GTI)}	2)*EPRIME(41-1+N.J)	*EN2)/(2. *AE TAU	40-1+N, J)+R0
0024			02(40-1+N, J)=((((AETA	(40-1+N.1)/AFTA(4)	-1+N.,)))##2)#FF	RINF(4)-I+N.
			1J)+EMNZ+E(41-1+N,J)+4			
			IRCGTI))			
0025			ENZ=CEXP (D	+AETA440-1+N.J)+RU	011)	
0025			EMNZ=CEXP(-DIST(40+14	NJ+AETA(40-1+N, J)+	ROOTIJ	
0027			E(40-1+N,J)=D1(40-1+N	,,J)*EMNZ+DZ(40-1+N	, J) *ENZ	
0028		130	EPRIME(40-I+N+J)=-AE1	[A{40+I+N;J}#RCUTI#	01(40-I+N,J)+E	INZ+AETA(40-1
			1+N,J}#ROUTI#D2(40-1+N	i,J)+ENZ		
0029			L=N-1			
0030			DO 140 J=1+2			
0031			DO 140 I=1,L			
0032			EPRIME(N-I,J)=0.0			
0033		140 C	E(N+I,J)=E(N+I+1,J)			
		C C	NCRMALISE TO (1.0,0.0)) ON THE SURFACE U	N THE LEFT-HAND	-SIDE
0034		-	RCOTI=E(N+1)			
0035			DO 150 I=1,41			

FIG. 4. H-Polarization boundary condition subroutine.

General two-dimensional electromagnetic induction problem

FORTRAN	IV G COMPIL	ER BYCOND	04-13-71	12:00.35	PAGE 0002
0036		E(1,1)=E(1,1)/ROUTI			540
0037	150	EPRIME(1,1)=EPRIME(1,	11/ROUTI		550 560
	с С	ACJUST THE RIGHT-HAND	-SIDE TO THE PRO	PER VALUE	570
	C				580
0038		ROOTI=E(N,2)/E(N,1)			590
0034		DU 160 I=1,41			600
0040		E(1,2)=E(1,2)/ROOTI			610
0041	160	EPRIME(I,2)=EPRIME(I,	2)/ROUTI		620
	C				630
	0 0 7	SET THE BOUNDARY OF F	L G AND INTERPOL	ATE LINEARLY ACA	
	Ċ				650
0042		DU 170 1=1+41			660
0043		F(I+1)=REAL(E(I+1))			670
0044		F(1,41)=REAL(E(1,2))			680
0045		G(1,1)=AIMAG(E(1,1))			690
0046	170	G(1,41)=A1MAG(E(1,2))			700
0047.		DIST(1)=0.0			710
0043		DO 180 1=2+41			720
0049	180	DIST(1)=DIST(I=1)+H{I	-1)		730
0650		DU 190 1=1+41			740
0051		DFDY=(F(1,41)-F(1,1))			750
0052		DGDY=[3[1,41}-6[1,1]]	/DIST(41)		760
0053		DC 190 J=2++0			770
0054		F([,J}=F([,1]+(UFUY*0			780
0055	140	G(1,J)=G(1,1)+(DGDY=D	1ST (J) }		790
0055		RETURN			800
0657		END			6104

TOTAL MEMORY REQUIREMENTS COLUBB BYTES

FIG. 5. H-polarization boundary condition subroutine.

However, in most instances, the grid spacing is such that the above is only a first approximation to the derivative. If we consider the true form of the function we may obtain a better numerical value for $(\partial F/\partial z)_{10}$. For Fig. 1 we have the usual functional form for the conducting region (η_1) :

$$F(z) = D_1 \exp(-\eta_1 z \sqrt{(i)}) + D_2 \exp(\eta_1 z \sqrt{(i)})$$

where D_1 and D_2 are constants.

If we know F_{10} and F_{11} , D_1 and D_2 may be calculated numerically. The value of $(\partial F/\partial z)_{10}$ may then be determined from

$$\frac{\partial F}{\partial z}|_{0} = -\eta_1 \sqrt{(i)} D_1 + \eta_1 \sqrt{(i)} D_2,$$

where the origin of the z-axis has been taken at the surface. This will give a more accurate value for $(\partial F/\partial z)_{10}$ over a uniformly stratified conducting region, and is likely to be at least as accurate as the linear approximation above regions where lateral discontinuities in conductivity occur. It must be applied with care near regions with discontinuities at the surface, since the above functional form may not necessarily apply near such regions.

5. The new surface value subroutine and comparison with the linear approximation

Figs 10 and 11 give the new surface value subroutine for the H-polarization case which may be used to replace the previous subroutine (Jones & Pascoe 1971) if the new approximation for the surface values is desired. The altered or inserted statements are those numbered 12-23. The E-polarization subroutine would require similar changes. Also, in the new H-polarization subroutine a statement (No. 35) is incorporated to indicate where a discontinuity exists at the surface.

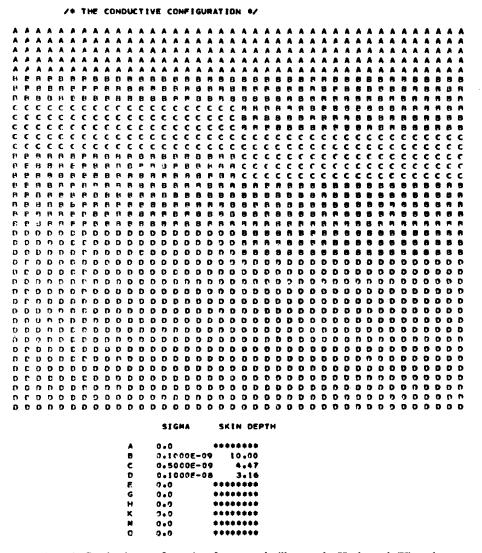


FIG. 6. Conductive configuration for example illustrated. Horizontal (H) and vertical (K) grid dimensions and skin depth are in multiples of scale (cm). Frequency used is 0.000253 Hz.

N J B X N

SCALF = 100000, FREQ = 0.000253

FIG. 6. Continued.

/# E-POLARISATION #/

/* FPS = 0.000130 PAXIBUM NO. OF ITERATIONS = 5000/

/* STOPPED ON ITERATION 238 4/

/* SURFACE VALUES */

	AME	AMMA	ANHZ	OPHASE	OPHAHY	DPHAHZ	APPRES
2	0.949	1.000	0.002	0.006	0.000	-2.743	0.466E 10
3	0.999	1.000	0.000	0.005	-0.001	-2.957	9.4655 10
4	0.9999	1.000	0.000	0.004	-0.001	-2.431	0.4656 10
5	0.4400	1.002	0.000	0.004	-0.001	-1.665	0.465E 10
6	0.4664	1.000	0.000	2.004	-0.001	-1.393	0.4665 10
7	0.9999	1.000	0.000	0.004	-0.002	-1.302	9.466E 10
8	1.000	1.000	0.000	0.004	-0.002	-1.273	9.466E 10
9	1.000	1+001	000+00	2.004	-2.002	-1.273	0.4665 10
10	1.000	1.001	0.000	0.004	-9.002	-1.291	0.466E 17
11	1.001	1.001	0.000	0.004	-0.005	-1.325	0.4665 10
12	1.001	1.001	0.000	0.004	-0.002	-1.173	0.466E 10
13	1.002	1.002	C.000	0.003	-0.003	-1.435	2.466E 10
14	1.002	1.005	0.000	0.003	-0.013	-1.507	9.466E 10
15	1.003	1.003	0.001	0.003	-0.004	-1.579	0.466F 10
15	1.004	1.004	0.001	0.002	-0.004	-1.641	0.466E 10
17	1.006	1.005	0.001	0+001	-9.005	-1.692	9.466E 10
18	1.008	1.09	0.003	-0.002	-0.007	-1.700	0.4665 10
19	1.015	1.015	80.00	-7.007	-2.011	-1.514	9.466E 10
20	1.038	1.030	0.030	-0.017	-0.012	-1.072	0.474E 10
21	1.137	1.093	0.052	-0.011	0.003	-0.849	0.5946 10
22	1.251	0.955	0+037	0.016	0.007	-0.838	0.779E 10
23	1.287	0.979	0.012	0.011	0.077	-1.227	0.806E 10
24	1.300	0.987	0.005	0.007	0.007	-1.473	0.809E 10
25	1.305	0.990	0.002	0.005	0.005	-1.566	0.809F 10
26	1.307	0.992	C+001	0.004	0.004	-1.599	0.609F [4
27	1.309	0.994	0.001	0.003	0.001	-1.620	0.909F 11
28	1.310	0.995	0.001	7.002	0.002	-1.617	0.809E 11
29	1+311	0.995	0.000	0.002	0,002	-1.548	0.809E 10
30	1.312	C . 996	0.000	0.001	0.001	-1.653	0.8097 10
31	1.312	6.096	0.000	0.001	0.071	-1.654	0.509E 10
32	1.313	0.996	0.000	2.001	0.001	-1+651	0.899E 10
33	1.313	0.097	0.000	2.000	0.001	-1.644	3.809F 19
34	1.313	0.997	0.000	0.000	0.000	-1.627	3.809E 10
35	1.314	0.997	0.000	0.000	0.000	-1.596	0.809E 10
36	1.314	0.993	0.000	-0.000	-0.000	-1+537	0.809E 10
37	1.315	0.998	0.000	-0.000	-0.033	-1.420	0.509E 10
38	1.315	0.999	0.000	-0.000	-9.000	-1.181	0.8096 10
39	1.316	0.949	0.000	-0.000	-0.000	-0.715	0.809F 10
40	1.317	0.999	0.001	0.0	0.0	0.0	0.810E 10

FIG. 7. E-polarization surface values. Amplitudes of components normalized, phase differences in radians, apparent resistivity in emu

/* FPR = 0.000100 PAXIFUN NO. OF ITERATIONS = - 800*/

STOPPED ON ITERATICS 167 4/

/* BURFACE VALUES */

	АРН	AMEA	ANE2	DPHASH	DPHAEY	DPHAE 2	APPRES
2	1.000	1.000	0.0	0.0	0.011	0.0	0.470E 10
3	3+000	1.000	0.0	0.0	0.011	0.0	0.470E 10
4	1.060	1.000	0.0	0.0	0.012	0.0	0.470E 10
5	1.000	1.000	0.0	0.0	3.012	0+0	0.470F 10
6	1.000	1.000	0.0	0.0	0.012	0.0	0.470C 10
7	1+000	1.000	0.0	3.0	0.012	0.2	0.470F 10
8	1.000	1.000	0.3	3.0	2.012	0.0	0.4705 10
9	1.000	0°c 33	0.0	9.0	0.012	0.0	0.470F 10
10	1.000	0.099	0.0	0.0	0.017	0.0	0.469F 10
11 -	1.000	0.9999	0.0	0.0	9.012	C+1	0.4695 13
12	1.000	0.693	0.0	0.0	0.017	0.0	0.469E 10
1.3	1.000	0.949	0.0	0.0	0.012	0.7	0.469F 10
14	1.000	n.947	0.7	9.0	0.012	0.0	0.4695 10
15	1.000	0.999	0.0	0.0	2.012	0.0	0.469F 10
16	1.000	0.979	0.0	0.0	0.012	0.0	0.469E 10
17	1.000	0.997	0.7	2.0	217.0	0.0	0.469E 10
14	1.000	0.999	0.0	0.0	0.011	0.0	0.469E 12
19	1.000	1.000	0.0	n. 0	0.011	0.0	0.470E 10
20	1.000	1.009	0.0	7.0	0+016	0.0	0.478E 10
21	1.000	1+166	0.0	0.0	0.055	0.0	0.639E 10
22	1.000	1.312	0+0	0.0	-0.011	0.0	0.0098 17
23	1.000	1.317	0.0	9+0	-0.001	0.0	0.8160 10
24	1.000	1.314	C + O	0.0	-0.000	0.0	0.817E 10
25	1.000	1+318	0.0	0.0	-0.037	·0 • 0	0.817F 10
26	1.000	1.314	0.0	0+0	-0.000	00	0.817F 10
77	1.000	1.318	0+0	2.0	-0.000	0.0	0+5175 10
24	1.000	1.318	0.0	U. 0	-0.000	0.0	0+817E 10
29	1.000	1+719	0.0	0.0	-0.007	0.0	0.0175 13
30	1.000	1.318	0.0	0.0	-0.000	0+0	0.417F 10
31	1.000	1.318	0+0	2.0	-0.000	0.0	0.6176 10
32	1.000	1.318	0.0	0.0	-0.000	0.0	0.4176 10
33	1.000	1.318	0.0	2+0	-0.007	0.0	0.917E 10
34 1	1.000	1:318	0+0	0.7	-0.000	0.0	0.617F 10
35	1.000	1.319	0.0	9.0	-0.000	0.0	0.817F 10
36	1.000	1.318	0.0	0.0	-0.000	P.0	0.517F 10
37	1.000	1.313	0.0	0.0	-0.000	0.0	0.8167 10
38	1.000	1.318	0.0	0.0	-0.000	0.0	0.816E 10
30	1.000	1.318	0.0	0.0	-0.000	0.0	0.516F 10
40	1.000	1.317	0.0	9.0	0.0	0.0	0.516F 10

FIG. 8. *H*-polarization surface values. Amplitudes of components normalized, phase differences in radians, apparent resistivity in emu.

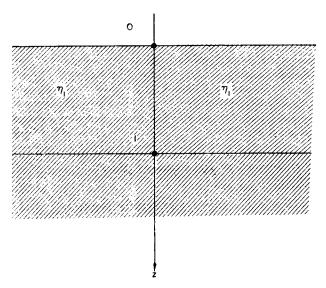


FIG. 9. Notation used to describe surface value calculations.

In Fig. 12 the surface values of apparent resistivity computed by the improved method (solid curves) are compared with the surface values obtained before (dashed curves), (Jones & Pascoe 1971). With the new calculation, the value of apparent resistivity near the boundaries of the mesh approaches the expected value for the uniform subsurface. In the previous calculations, the value of apparent resistivity differed by approximately 6 per cent in the *E*-polarization case and by approximately 11 per cent in the *H*-polarization case from the expected values. The profiles also show some change across the conductor surface when the new and old calculations are compared.

6. Dimensional considerations and the iterative procedure

The use of this new method of calculating surface values and the above considerations about accuracy, made it desirable to obtain a better 'feel' for the mode of solution and the relationship between the convergence criteria applied and the various parameters used. To do this, a uniform subsurface case was chosen and the model was run for various convergence conditions and grid-size to skin depth ratios for a uniform square grid. Since in the initialization procedure the boundary values are carried horizontally throughout the mesh, the number of iterations required to satisfy the convergence condition is a measure of the accuracy of the result. Fig. 13 shows a model constructed to illustrate the relationship between the number of iterations (proportional to the height of the rod; terminated at a maximum of 150 iterations), the residual (EPS) and the ratio of grid size to skin depth (GS/SD). It is seen that the iteration should be carried out when the grid size to skin depth ratio is small.

In the solution of the problem the equations are solved by the numerical iterative method over several conductive regions. In each region there is a basic functional form which sets limits on the grid spacing we can use there in order to accommodate the numerical difference equations. For example, in the free-space region the function is approximately linear in both directions and consequently a relatively large grid Downloaded from https://academic.oup.com/gij/article/27/2/179/732298 by U.S. Department of Justice user on 16 August 2022

FORTRAN IV	G COMPILER	SURFVL	04-29-71	09:20.03	PAGE 0001	
0001	SUB	ROUTINE SURFUL (L)			10
0002	REA	LK				20
£ 000			MEY(41), AMEZ(41).	DPHASH(41). DP	HAEY(41). DPH	30
0004		(41), APPRES(41)				40
			•41)•H(40)•K(40)•S	CALE .F REQ. REGIN	N(40+40)	50
0005		PLEX ROUTI+H0+H1+	DEFIVZ			55
	c					60
0006	c					70
0007		4.0*ATAN(1.0)				6(
0001		GA=2.0*PI*FREQ				90
0009		TE (6,140)				100
0010	##1 1=L	TF (6+150)				110
0010	۲=د د					120
0011		110 J=2.40				130
0012						
0012		AL=SQHT(REGION(I, AR=SQPT(REGIUN(I.				150
0013		AR=SUPT(REGION(1) A={AETAL+AETAP}/2				170
0015		TI=CMPLX(1./SQRT(160
0016		CMPLX(F(1.J).G(1.				190
0017		CMPLX(F(1+1+J)+G(200
0018			2 • 0 * H1 - H0 * { CE XP (AE		CENDI-ALTANK!	210
0010			ETA*K(1)*F00TI}-CE			220
0019		ASH(J)=ATAN2(G(I)		. AP (- AL A+ A (1 / + A		230
0020			G(DERIVZ).REAL(DEF			240
0021		AFZ(J)=0.0	GLUCRIVZJANCAL LUP	(1427)		250
0022		(J)=SQRT(F(1,J)**	24071 134433			260
0023			**2))*CA85(DERIVZ)			270
0024			(REGION(I.J)+RFGIO		///5/1.1411-6	290
0024	• • •)))**2+((G(1,J+1)-		• • • • • • • • •	300
0025			*((AMEY(J)/AMH(J))		+//////////////////////////////////////	310
VULJ	C C			****		320
	-	COMPONENTS AMEY	AND AMEZ ARE NORMA		FCT TO	334
		,	Y (POINT 2) AND PH			340
		CULATED RELATIVE				35
0026		= SQRT (AMEY(2) ++2+				36
0027		120 J=2,40				37
0028		Y(J)=AMEY(J)/AME				38
0029		Z(J)=AMEZ(J)/AME				390
0030		ASH(J)=DPHASH(J)-	DPHASH(40)			400
0031		AEY(J)=DPHAEY(J)-				41
0032	-	AEZ(J)=DPHAEZ(J)-				42
	c					430
0033	-	130 J=2+40				44
0034			J),AMEY(J),AMEZ(J)	.)PHASH(J).)PHA	EY(J).DPHAE7(450
		APPRES(J)				46
0035	16	(REGIDN(L, J-1).NE	.REGION(L.J)) WRIT	E (6,170)		464
0036		TINUE				468
0037		IND 3				47
0038	WRI	TE (3) F.G.H.SCAL	E, AMH, AMEY, AMEZ, DF	HASH. OPHAEY. OPH	AEZ, APPRES	48
0037		URN				49
	с					50
	č					510
	ĉ					52(

FIG. 10. H-polarization surface value subroutine.

FORTRAN	I۷	6 CO)	AP IL EP	SURFVL	24-29-71	09:20.03	PAGE 0002	
0041.		15)		(1H0, T9, 'AMH' . OPHAEZ', T81.	+ T21+ * AMEY* + T33+* AM • APPRES*//)	E7+,T45,+DPHAS	1. 157. DPHAE	540 550
0042		16	FURMAT	(1H +12+6(2X	F10.31.E12.3)			560
0043		17	D FORMAT	(1H++T95+D15	SCUNTINUITY")			565
0044			FND					\$7 0*

TOTAL MEMORY REQUIREMENTS CODERS BYTES

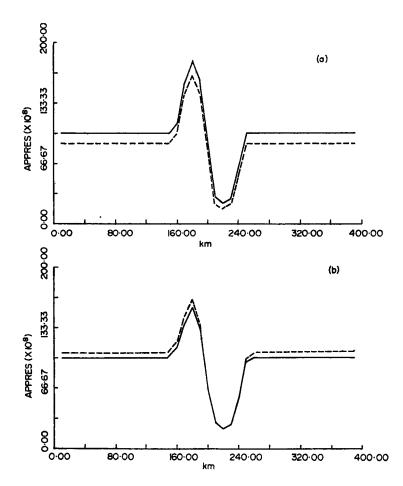


FIG. 12. Apparent resistivity profiles for the previous (dashed lines) calculation and the improved (solid lines) calculation (emu). (a) *H*-polarization. (b) *E*-polarization.

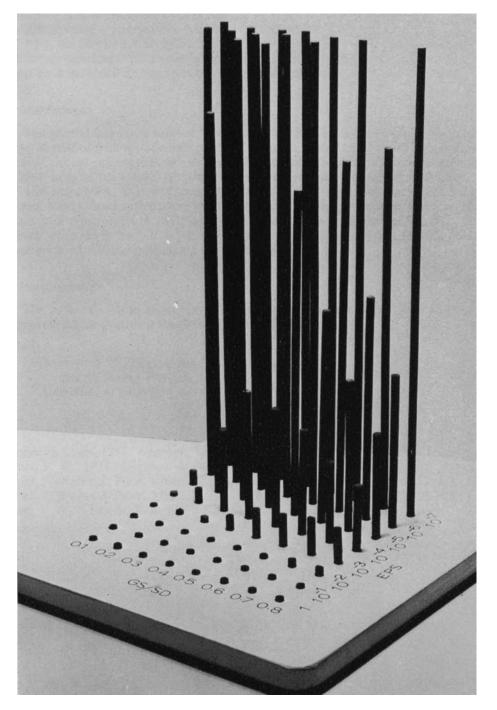


FIG. 13. Model constructed to investigate iteration procedure and relationship of various parameters.

spacing can be used. In the conducting regions we have taken the phenomenon as approximately linear in the horizontal direction, but exponential in the vertical direction. Therefore, in the conducting region, in order to fit the form of the function the grid spacing is restricted in the vertical direction.

Also, the solution is based on the assumption that as $y \to \pm \infty$, the subsurface is uniformly stratified. To accommodate this restriction in the model the boundaries must be several skin depths from any vertical discontinuity.

7. Conclusions

The general boundary subroutines as presented provide a two-dimensional model when combined with the previous program (Jones & Pascoe 1971) which is completely general, subject only to the restriction that a uniformly stratified subsurface is required at both sides of the mesh. Although the subsurface must be uniformly stratified at the two extremities, it is not necessary that both sides have identical stratification. In use, some consideration must be given to the relationship between grid size, skin depth and dimensions of the mesh when particular models are considered. This general program is flexible to use and provides a modelling technique which should be of considerable use in studying observed phenomena.

Acknowledgments

The authors wish to thank Dr J. A. Jacobs for his assistance. This work was supported by the National Research Council of Canada.

Department of Physics and the Institute of Earth and Planetary Physics, University of Alberta

References

Cagniard, Louis, 1953. Geophys., 18, 605–635. Jones, F. W., 1971. Geophys. J. R. astr. Soc., 22, 17–28. Jones, F. Walter & Price, Albert T., 1970. Geophys. J. R. astr. Soc., 20, 317–334. Jones, F. Walter & Price, Albert T., 1971. Geophys. J. R. astr. Soc., 22, 333–345. Jone., F. W. & Pascoe, L. J., 1971. Geophys. J. R. astr. Soc., 24, 3–30.