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Abstract

A large number of mathematical models are expressed as differential equations.
Such models are often derived through a slowly-varying approximation under the
assumption that the domain of interest is arbitrarily large; however, typical solu-
tions and the physical problem of interest possess finite domains. The issue is:
what are the correct boundary conditions to be used at the edge of the domain for
such model equations? Centre manifold theory [24] and its generalisations may
be used to derive these sorts of approximations, and higher-order refinements, in
an appealing and systematic fashion. Furthermore, the centre manifold approach
permits the derivation of appropriate initial conditions and forcing for the models
[25, 7]. Here I show how to derive asymptotically-correct boundary conditions
for models which are based on the slowly-varying approximation. The dominant
terms in the boundary conditions typically agree with those obtained through phys-
ical arguments. However, refined models of higher order require subtle corrections
to the previously-deduced boundary conditions, and also require the provision of
additional boundary conditions to form a complete model.

1. Introduction

A vitally important role of mathematics is in the description and analysis ol
models of dynamical processes. Recently, centre manifold theory [3], and its
generalisation to invariant manifolds [20, 26], has shown how we can ratio-
nally deduce "simplified" low-dimensional models from very detailed, high-
dimensional dynamical prescriptions. This new invariant manifold approach
is extremely appealing for a number of reasons; in particular, it enables a
systematic refinement of the approximation [23] (sometimes to the extent of
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[2] Boundary conditions for approximate differential equations 55

showing convergence [16, 27]), it provides correct initial conditions for the
model given any initial condition for the original dynamical system [25], and
it enables us to transform suitably a forcing of the original dynamics into a
forcing fit for the model equations [7]. Thus this rational approach leads to
complete modelling approximations.

However, many important dynamic models, although of low dimension
when compared to the original, are still of infinite dimension—in which case
they are expressed as partial differential evolution equations. Some well-
known examples include: the Taylor model
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of shear dispersion [34, 16]; the Kuramoto-Sivashinsky [15, 31] equation
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which models flame fronts, interfacial shear dynamics, directional solidifica-
tion and weakly two-dimensional turbulence [1]; the Boussinesq
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and Kortweg-deVries
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equations for long waves in water [36] and in other media; beam equations
governing the flexure of a thin beam [27], and in particular, Rayleigh's equa-
tion
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for the bending [11, page 320] and Love's equation
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for longitudinal waves [11, page 326]; the Ginzburg-Landau equation

dA . nd A y, ,.2

as might arise in convection [21, 29] and which, in a complex form, describes
the nonlinear evolution of a dispersive wave-train [36, page 601] when it is
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called the nonlinear Schrodinger equation (for deep-water waves, a fourth-
order refinement has been calculated by Dysthe [9] and corrected by Janssen
[14]). Invariant manifold theory can place these models, all based on slow
variations in space, on a rational basis [24]. However, for these "continuum"
models, not only do we have to provide the correct initial conditions and
forcing, but we also have to provide appropriate boundary conditions at the
extremes of the domain of interest. Using the concept of invariant manifolds
to do this rationally for such one-dimensional continuum equations is the
subject of this paper.

To date, apart from evading the problem altogether by assuming an infinite
domain, most boundary conditions used for these models have fallen into one
of three categories. Frequently, researchers studying the dynamics of these
models choose to use periodic boundary conditions, [15, 31, 1] for example.
A more common procedure is to allow only boundaries in the original prob-
lem which fit neatly into the scheme of the asymptotic approximation, [4, 29]
for example. The above two choices are forced by the inability of primitive
asymptotic schemes, such as the method of multiple scales, to embrace the
presence of typical physical boundaries. The third category are boundary
conditions based on physical principles. Frequently the actual conditions at
the ends of the physical domain do not fit the modelling approximations;
inhomogeneous boundary conditions being outstanding examples. In these
cases, heuristic arguments supply suitable boundary conditions for the model.
An example is the boundary conditions to be used with beam theory for the
idealisations of free, fixed or pinned ends. The lack of attention paid to the
derivation of boundary conditions to be used with these continuum models
has meant that some fascinating and important aspects of modelling have
been by-passed.

It is occasionally possible to use a spectral transformation in the spatial
variable to derive boundary conditions for some idealised conditions at the
edge of the physical domain. For example, I have done this for beam theory
[27]. However, in practice the physical conditions at the boundary are rarely
ideal and the spectral approach cannot be applied. In contrast, the approach
which I describe here is quite general.

As an introductory example, I have presented in Section 2 a simple instance
of the general argument for the physically important linear problem of shear
dispersion in a channel. There I derive boundary conditions for both the
second-order Taylor model (1) of dispersion and a third-order refinement.

The essence of a rational derivation of boundary conditions is to under-

2With difficulty, matched asymptotics can derive some boundary conditions. Cross et al. [8]
have done this for two-dimensional convective rolls; however their analysis was necessarily a
linear one near the boundary, and yet needed to be of high-order in the interior.
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[4] Boundary conditions for approximate differential equations 57

stand a little of the dynamics of the boundary layers which exist near the
boundaries of the domain of interest. To use the concepts and techniques
developed in dynamical systems theory we must interchange the role of space
and time by imagining that the spatial variable x is a "time-like" variable and
reducing the true time t to the status of a parameter. Consequently, bound-
ary layers become exponential transients decaying towards the modelled slow
variations in the interior. Thus, in Section 3.1, some boundary conditions
for a model may be found by appropriately projecting the conditions of the
end onto the centre manifold of the model—a technique that for temporal
evolution is explained in [25]. Further boundary conditions for the model
may be obtained by recognising, Section 3.2, that any rapid exponential tran-
sients in the model do not model physical modes of the original dynamics and
so additional conditions should be used to eliminate them. That these two
principles are generally sufficient to supply the requisite boundary conditions
for a low-dimensional model is then established in Section 3.3.

An enormously wide variety of dynamical models is addressed in the gen-
eral discussion of Section 3. Some further issues of this approach are dis-
cussed in Section 4. In particular, the relation between ill-posed (unstable)
models and the rational derivation of boundary conditions is examined.

2. Entry and exit conditions for shear dispersion

Consider the situation of some material, a tracer, being released into a
channel and then dispersing as it is swept downstream. As an example of
this process, consider the channel and the physical mechanisms of advection
and cross-stream diffusion as shown in Figure 1 (see page 58), where I take
the advection velocity to be proportional to

u{y) = \{\-y
2
).

The tracer is relatively quickly spread across the channel and thus the usual
aspect of interest is the long-term evolution of how the tracer is distributed
along the channel—a problem in one spatial dimension. The evolution of the
tracer concentration in the long term is then modelled [34] by describing the
evolution of the cross-stream average concentration via a partial differential
equation in time and the along-channel distance x . The question of interest
which is addressed in this introductory example is: what are the boundary
conditions which are needed at the inlet, x = 0, and at the outlet, x = L,
of the channel in order to solve the model partial differential equation?

Smith [33] has already considered this problem and my treatment of it is
similar to his. However, there are several important differences: I simplify
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FIGURE 1. A channel of long length L and the dominant physical mechanisms which lead
to shear dispersion of tracer along the channel.

the analysis considerably through performing it to a consistent order of ap-
proximation: I extend the analysis to the third-order Taylor model (which
models accurately the development of the skewness of the tracer distribu-
tion); and I put the analysis in a context which is useful for the later general
arguments about the derivation of appropriate boundary conditions.

In order to keep the analysis as simple as possible I non-dimensionalise y

with respect to the half channel width b, time with respect to a cross-channel
diffusion time, b

2
 /K , and x with respect to the length, Ub

2
/K , which is the

downstream advection distance in a cross-channel diffusion time. Thus the
governing differential equation expressing conservation of the tracer is

dc . .dc d
2
c dc _ , ,

a? = -
U{y)

dx-
 +

 ^ s u c h t h a t - = Oony = ± l , (9)

in non-dimensional variables. Note that sometimes it will be useful to put
results in terms of physical quantities. Also note that in typical geophysical
applications, the cross-stream mixing, K , is very small and so the time and
streamwise-length scales are very large. One consequence of this disparity in
the scales is that the effects of streamwise diffusion are very small and hence
it has been neglected. However, a short discussion of its influence, when
present, is given at the end of Section 3.1.

2.1. The interior: two centre manifold models The Taylor model of the long-
term dispersion in a channels relies on the combined action of velocity shear
and cross-stream mixing to smooth the tracer distribution. When the tracer
distribution is smooth enough, it is nearly constant across the channel and
only varies slowly along the channel. Such a smooth tracer distribution need
only hold in the interior (with respect to x) of the channel; that is, it need
only hold far away from the effects of the ends at x = 0 and x = L where
conditions may cause "boundary layers" to occur between the ends and the
smooth interior distribution. In this subsection, I investigate the dynamics
of the tracer in the interior and in the boundary layers.
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[6] Boundary conditions for approximate differential equations 59

Defining C(x, t) to be the cross-stream average concentration, centre
manifold theory may be used [16] to show that the long-term evolution of
the tracer is given by

c(x, y, t) = C + j ^ ( - 1 5 / + 3 0 / - 7 ) | ^

~
 29)

J7
 +

 '"
(10)

where the mean concentration evolves according to

dC dC nd
2
C d

3
C , _ 2 4

-Z7--1T- +
D—i+

e—T + --- where D = — - and E = . (11)
df dx ax2 ax 1°5 17325

Abstractly, (10) describes the centre manifold, invariant under the dynamics
(9), on which the evolution takes place according to (11). This centre man-
ifold approximation to the dynamics only holds far away from each of the
ends, as it is based, in one view, on being able to analyse the integral Fourier
transform in x of (9) [24]. Observe the dots at the end of these expressions—
these denote that in principle the expressions extend indefinitely, involving
terms with indefinitely many spatial derivatives of C. That these infinite
sums converge in some sense has been demonstrated by Mercer & Roberts
[16]. The second-order Taylor model (1) is found by just truncating these
sums to the first two terms which appear on the right-hand sides. The task
is then to solve the second-order version of the partial differential equation
(11), whence the details of the corresponding tracer concentration are given
by (10). However, what are the appropriate boundary conditions to be used
at the ends of the channel, x - 0 and x = L ? Furthermore, when one may
include more and more terms in (10-11) to form a more and more refined
model of the dispersion, what are the necessary boundary conditions of the
resultant higher and higher order partial differential equation?

These questions first lead us to consider in detail how the tracer concen-
tration makes the transition from whatever the actual end conditions are, to
the smooth interior distribution. Physically, we know that the tracer is swept
downstream and, in the absence of streamwise diffusion, the conditions at
the exit x = L cannot affect the tracer in the channel—the distribution of
the tracer is solely determined by the upstream conditions at x = 0. To see
this expressed in the mathematics, I follow Smith [33] and take the Laplace
transform of the governing equation (9), assuming for simplicity that initially
there is no tracer in the channel, to deduce

dc 1 d
2
c 1

dx u(y) dy
2
 u(y)

pc (12)
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where transformed quantities are denoted by ~ and the Laplace transform
is denned by f(p) = /0°° f(t)e~

pl
 dt. In this form the equation looks like an

evolution equation, with x playing the role of a "time-like" variable, which
we may integrate from the two ends into the interior of the channel.

Now, the dependence upon the "true time" is represented by the parameter
p of the Laplace transform. Provided the applied conditions at the ends of
the channel are not varying rapidly in time, then the only significant values
of p are small values corresponding to relatively slow variations (in time) in
the tracer concentration c; thus the second term on the right-hand side of
(12) should be thought of as a small perturbation term. Within dynamical
systems theory this is best accomplished by imagining p to be an independent
variable satisfying the trivial evolution equation

whence the term pc/u(y) is interpreted as a small nonlinear term. Linearly
(in this new sense) the evolution from the ends into the interior is governed
by

dc 1 d
2
c . , dc

such that ^— = 0 on y = ± 1,
u(y) dyi ™ " dy

The operator on the right-hand side has a discrete spectrum of A = 0 (twice),
- a , , - a 2 , - a 3 , - a 4 , . . . where the an are the eigenvalues of a Sturm-
Liouville problem with the numerically obtained values (via the NAG rou-
tine D02KAF) a, = 3.4144, a2 = 12.2535, a3 = 26.4406, a4 = 45.9679,
etc.

Thus, in integrating the system (12-13) from the entry to the channel,
x = 0, towards the interior, I apply centre manifold theory [3] and deduce
that for all sufficiently small p and for all "initial" conditions, c = co(y) at
x = 0, the system evolves exponentially quickly to a smooth two-dimensional
centre manifold which is conveniently parameterised by p and C (the cross-
stream average of c)—the exponential approach is roughly like that of the
slowest linear transient, namely exp(-a ,x) , and physically this occurs on
a length scale of Ub /K . The centre manifold and the evolution thereon
represents the long-term shear dispersion which takes place in the interior
of the channel; that is, it forms an alternative description of the dynamics
of the interior low-dimensional model (11). Using techniques described by
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Coullet & Spiegel [6] and Roberts [23], I find the centre manifold to be

^ / + 3 0 / - 7 ) p C

on which the evolution takes place according to (13) and

These may also be obtained by reversion of (11) which is then substituted
into (10).

The above equations (14-15) model the x-evolution in the interior. The
question is: what value of C should be used at x — 0 to integrate (15), in
order for (14) to match accurately the exact solution of (12) in the interior?
I have previously resolved [25] the general problem of finding the correct
initial conditions to use for a low-dimensional model. Applying the methods
developed therein (the analysis is very similar to that appearing in Section 6 of
[25]) I find the correct initial condition for the x-evolution to be C(0) = Co

where

2

in which cQ(y) is the prescribed distribution of tracer across the entrance to
the channel, the overbar denotes a cross-stream average, and where

w2(y) = 15523200 (51975/ - 226380/ + 200970/ + 69300/ - 21881).

Physically (16) is reasonable—the dominant terms in the equation are Co =
uc0 which just asserts that the tracer flux, 1CO, into the channel across
x = 0 for the centre manifold model is equal to that uc0, for the exact
system. However, this systematic approach shows that there are corrections
to this simple physical principle in the presence of the time dependencies
represented by the p factors. The initial condition (16) for the x-evolution
provides, upon inversion of the Laplace transform, one boundary condition
for the original centre manifold evolution equation (11). For example, upon
ignoring all terms of order p

2 or higher and inverting (16), I deduce the
boundary condition

o + Z) ["^oO'. o - y

https://doi.org/10.1017/S0334270000007384 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007384


62 A. J. Roberts [9]

for the centre manifold evolution at the entry, where * denotes the convo-
lution f(t) * g(t) = /o'/(T)g(f - x)dx. A feature of interest, as also noted
by Smith [33], is that the boundary condition exhibits a memory of earlier
conditions at the entry. Due to the convolutions with exp(-t/D), this mem-
ory fades on a time of D = 2/105 times a cross-channel diffusion time—it
is only when the actual entry conditions vary extremely slowly in time that
the classic, easily understood entry condition, that C0{t) « uco(y, t), is re-
covered.

Similarly, the conditions at the exit x — L also have to be considered
rationally from a dynamical viewpoint—physically we know that the con-
ditions at x = L have no upstream influence. The transition from the end
condition to the interior is governed by (12); but now integrating from x — L
to the interior is in the negative x-direction, that is, — x is "time-like". Thus
the appropriate linearisation for small p is

dc 1 d
2
c . . dc „

- -r— = r^r —T s u c n that —- = 0 on y = ± 1,
dx u(y) Qy dy

~d%
 = 0

-

The operator on the right-hand side has a discrete spectrum of (the negative
of that for the x — 0 end) k = 0 (twice), +a, , +a2, +a3, ... . Thus, upon
integrating upstream into the channel there are the two modes with zero
growth-rate which correspond to the interior's centre manifold, and there are
the exponentially growing modes. Since there are no exponentially decaying
modes, there are no modes which must be exponentially close to zero in
the interior in order to make a bounded transition from the interior to the
exit, and so there are no special conditions which the interior solution has to
match. Instead, we rely on the evolution far upstream to produce a smoothly
varying interior solution right up to the exit.

2.2. The second-order Taylor model Taylor [34] argued that the dispersion
of tracer in the channel could be modelled by the structurally stable, one-
dimensional, advection-diffusion equation (1) which we now recognise as
being the leading terms in the asymptotic expression (11). But what are the
boundary conditions on the cross-stream average tracer C(x, t) ? Physically,
the difficulty lies in the term Dd

2
C/dx

2 which introduces an upstream dif-
fusion, and hence an upstream influence, which is not in the posed original
system (9). This need not matter significantly as the model equation only
applies to tracer concentrations C(x, t) which are sufficiently smooth, in
which case the downstream advection dominates. However, this second-order
derivative term does introduce possible exponential transients or boundary
layers which have no physical counterpart and which should not be allowed.
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[10] Boundary conditions for approximate differential equations 63

The Laplace transform of (1) gives

Again we view this as an evolution equation in the "time-like" variable x.

The solutions for small p correspond to the slowly-varying solutions on the
centre manifold. However, there are two types of solutions e** for small p :
X{ = —p + Dp H which are slowly-varying in x and thus are the desired

variations; and the undesirable X2 = 1/D+p- Dp
2
 -\ which gives a rapid

and unphysical variation. At the entry to the channel the rapidly growing
solution e*

2
* will not be present as otherwise there will be rapid variations

in the interior; thus there is no need to include any condition to attempt to
eliminate this solution. However, near the exit the unphysical solution e

 2
*

decays exponentially as x is decreased from L into the interior and so can
give rise to a rapid transient; the only way to avoid this is to eliminate this
decaying solution by requiring that

Writing this to the same order of accuracy as

dC _ p g
dx ~ 1 + Z>/>

and inverting the Laplace transform, I deduce the approximate exit condition

_ „ _ * * _ a t x = L. (20)

This exit-condition is of a similar form to the equation (7.3) obtained by
Smith [33]3; its main feature is the presence of the convolution, which again
indicates a memory effect on the time scale of a cross-channel diffusion time.
It is only for extremely slow time variations that the right-hand side is very
small, to give the exit condition as dominantly dC/dx w 0.

To summarise, the second-order Taylor model of shear dispersion, equa-
tion (1), should be solved with the entry condition (17), which ensures that
the model is accurate after the entry transients have disappeared, and the
exit condition (20), which ensures that the exit does not have an upstream
influence.

2.3. The third-order model A feature of dispersion in rivers is the persistent
skewness of the concentration profile resulting from a point release. However,

3Smith gives a more complicated expression, but the two are equivalent to second-order accuracy
in the slow variations.
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64 A. J. Roberts [11]

the Taylor model can only predict a normal distribution; to predict skewness,
a more refined model is needed [5]. Using centre manifold theory this is
achieved simply by retaining one more term in the asymptotic expansions—
in this subsection, I consider the third-order evolution equation formed from
the terms explicitly shown in (11) which describe the evolution on the centre
manifold (10).

The Laplace transform of (11) gives

which for small p governs the slowly-varying solutions on the centre mani-
fold. However, there are now three types of solutions e

1
* for small p : the

desired slowly-varying solution with A, = -p + Dp
2 H ; and two rapidly

varying solutions with A2 « 36.4212 and k3 « -118.9212. At the entry to
the channel the rapidly growing solution e

x
*

x will not be present, as other-
wise there would be rapid variations in the interior; however, the unphysical
solution e

x
*

x may be present as a transient—thus we need a condition at the
entry to eliminate this component. To obtain this, write (21) as a set of lin-
ear first-order differential equations, find the left-eigenvector corresponding
to A3, and hence deduce

where A3 « -118.9212 + 0.2345p + 0.00348 \p
2
.

(22)

This is not a simple condition to invert; however, if the time variations are
extremely slow, then it may be easily inverted to give the entry condition

-0.02746^-5 + 1 ^ = 0 atx = 0. (23)
dx

2
 dx

Conversely, near the exit there will be no e
 yX component in the solution,

as it would mean that there were large and rapid variations in the interior;
however, the unphysical solution e

x
*

x may be present as a transient—thus,
as for the second-order model, we need a condition at the exit to eliminate
this component. As immediately above we can ensure this by requiring

(24)

where A2 « 36.4212 + 0.7655/7 - 0.01986/?2.

If time variations are extremely slow then this may be easily inverted to give

0 . 0 0 8 4 0 9 ^ + 1 ^ = 0 a t x = L. (25)
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[12] Boundary conditions for approximate differential equations 65

To summarise: the third-order model of shear dispersion in a channel,
given by (11), should be solved subject to the three boundary conditions, two
at the entry and one at the exit, given by the inverse Laplace transforms of
(16), (22) and (24). These boundary conditions generally involve memory
integrals. For example, the entry condition (16) will of necessity involve
a memory effect due to convolutions with the inverse Laplace transform of
(1 + 2p/105 + 29/?2/40425)-', namely with

exp(-385//29) sin(34.89580.

These memory effects apparently decay quite rapidly (at least for this specific
problem), but still on a time scale of a cross-channel diffusion time. It is most
important to realise that these boundary conditions should not be simplified
without good reason: (16) is the dominant condition which ensures that the
prediction of the model in the interior of the channel will accurately match
that of the original system (9); however, it will only do this if the model has
no entry transients which is what (22) ensures. In contrast, the exit condition
(24) may be cautiously relaxed, thus introducing an unsightly boundary layer
at the exit, as there is no exit condition relevant to the interior which would
be affected by such a boundary layer.

3. Rational derivation of boundary conditions

Consider the wide class of problems which are broadly similar to the shear
dispersion problem discussed in the previous section. Similar in the sense
that, no matter how complicated the fine details may be, the essential dynam-
ics of long-term importance may be captured by a one-dimensional model.

Suppose that the one dimension of long-term interest is aligned along the
x-axis with 0 < x < L being the physical domain. Let the unknown dynam-
ical variables in the problem be denoted by u(x, /) where any dependence
upon transverse coordinates (e.g. y in shear dispersion where u denotes
c(y)) or upon fast-space scales is implicit in the symbol u. Also suppose,
for the sake of working with something definite, that the governing equation
for the full dynamics, including all the fine detail of no interest, is governed
by an autonomous differential equation of the form

2 + ( ) , (26)

where the operators 2Cn do not contain any dependence upon the longitudi-
nal variable x (they just operate on the uninteresting transverse or fine-scale
structure) and where ^ ( i i ) are the nonlinear terms. In any particular prob-
lem there could be higher-order x-derivatives on the right-hand side (or it
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could be only first-order as in (9)); I leave the necessary modifications of the
following arguments to those who encounter such problems. Further, sup-
pose that the operator Jt?Q has an eigenspace of importance: either because it
has some eigenvalues with zero real-part and the rest with negative real-part
(as in shear dispersion where the eigenvalues with zero real-part are precisely
zero) in which case (26) possesses an exponentially attractive centre manifold
of interesting solutions; or because it has some zero eigenvalues and the rest
non-zero (as in beam theory [27]) in which case (26) possesses a sub-centre
manifold [30], or "slow" manifold, of solutions varying slowly in x and t.

For case of exposition, let the interesting solutions be based on eigenvalues
which are precisely zero (cases when this requirement is relaxed are discussed
in Section 4.2) and call the corresponding invariant manifold, whether it be
centre or sub-centre, the slow manifold.

Letting the low-dimensional variable s(x, t) parameterise locations on the
slow manifold, u = v(s), the evolution on the manifold forms the rational
model [24] and will be governed by an asymptotic evolution equation of the
form

~ = &os + 3? I?- + 3?2^4 + ^3 ̂ 4 + • • • + (nonlinear terms). (27)

Some examples given in the Introduction are the Taylor model of shear
dispersion (11), the Kuramoto-Sivashinsky equation, the beam equations,
the Korteweg-deVries equation, the Boussinesq equations, and the Ginzburg-
Landau equation. The frequently glossed over difficulty in all of these models
is the provision of appropriate boundary conditions, at the extremes of the
physical domain, for any given truncation of the sum of ^-derivatives on the
right-hand side of the model. The principles of a rational method to derive
the necessary boundary conditions will now be explained.

3.1. Considerations of the original dynamics The method relies on applying
some modern dynamical systems theory, not to the time evolution of the
system, but to the spatial evolution. This is done through treating the lon-
gitudinal coordinate x as a "time-like" variable. Mielke [17, 18, 19] and
Eckmann & Wayne [10] have also used the space variable x as a "time-like"
independent variable in applications of centre manifold theory; but this is the
first to also incorporate the true time, albeit as a perturbing influence, and
to consider the implications of having a finite domain. The most appealing
way to do this is to remove explicit reference to the true time by taking the
Laplace transform, f(p) = /0°° f{t)e~

pt
 dt, of the equations and then writing

the equations in terms of the "phase-space" variables, here u and u' = | * .
Taking the Laplace transform of (26) and adjoining an equation to reflect
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that p is a constant gives

if--

This is in the form of an autonomous dynamical system in the variable U =
(p, u, u')T with linear terms given by the operator

3? =
ro o o
0 0 /
n — 9* — 9

and with nonlinear terms (0, 0, pn - JV )T .
Equation (28) governs the evolution in the longitudinal variable x in the

presence of slow time variations; in particular, it governs the evolution from
the ends, x = 0 and x = L, into the interior. Thus the evolution into
the interior depends critically upon the spectrum of Sf. In addition to
the one zero eigenvalue due to the adjoined equation dp/dx = 0 , there
will be at least as many zero eigenvalues of Sf as there are of J2^. For
example, if there are no advection terms, J&^du/dx, in the original (26)
then 5? will have one more than twice as many zero eigenvalues as does
5?0. Thus, there also exists a centre manifold [3] of the spatial evolution
(28). Since the slow manifold model in the interior, equation (27), depends
directly upon the zero eigenvalues of J*?o and their associated properties, the
centre manifold of the spatial evolution (28) and its properties are closely
tied to those of the model (27)—they are just different descriptions of the
same dynamics (recall, in shear dispersion, that (15) is the reversion of (11)).
Now, the operator S? will possess some eigenvalues with positive real-part
and some eigenvalues with negative real-part;4 based on these eigenvalues
there exists a corresponding unstable manifold and a corresponding stable
manifold respectively [12, §3.2]. There also exist combination manifolds
such as the centre-stable manifold. These manifolds are drawn schematically
in Figure 2 (see page 68).

Upon integrating from an end into the interior we presume that the inte-
rior solution is slowly-varying and so the trajectory must lie entirely within
the centre-stable manifold. If this were not so then the trajectory would
become unbounded exponentially quickly, as is illustrated by the two trajec-
tories drawn in Figure 2. Strictly, in a finite-length domain, the trajectory

4 Here I will ignore the degenerate case when some of the eigenvalues are non-zero pure imaginary
numbers.
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two possible
trajectories

stable
manifold

boundary
condition

centre-stable
manifold

centre
manifold

FIGURE 2. A schematic drawing of the centre, stable, unstable and centre-stable manifolds
of a dynamical system. Boundary conditions (dashed) restrict how the jc-evolution starts; but
only those points, labelled A , on the centre-stable manifold are significant.

need only start exponentially close to the centre-stable manifold so that it
stays bounded in the domain of interest [0, L]; however, in the arguments
which I present, the domain, although finite, is assumed long enough so that
being "exponentially close", with a difference exp(-aL) for some a , is ef-
fectively the same as being "equal". Now, the boundary conditions of the
original problem at the end under consideration, homogeneous or not, linear
or nonlinear,

, u, u'] = b(t) or transformed B[u ,u] = b

restricts the jc-evolution to start somewhere in a specific set of points in the
state space; this set of points is drawn schematically as the broken line in
Figure 2. The restriction of having to start in the centre-stable manifold is in
addition to the boundary conditions of the original problem (26). Thus the
possible "initial" conditions for the x-evolution into the interior are found by
the intersection of the original applied boundary conditions and the centre-
stable manifold (shown schematically as the point A in the figure). But we
are only concerned with the interior, and not at all concerned with any expo-
nential transients. Using techniques to find the appropriate initial condition
for a centre manifold model from the initial condition for a high-dimensional
dynamical system [25] we may project the set of "initial" conditions for the
x-evolution (represented by A in the figure) onto appropriate conditions for
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the centre manifold model of (28). But this centre manifold model is inti-
mately linked to the model (27) for the original (26) and so this projection
gives a set of boundary conditions for the low-dimensional model (27).

In the example of shear dispersion discussed in the previous section the
above considerations were particularly simple. At the entry x = 0 and in-
tegrating in the positive x direction there was no unstable manifold—the
entire state space is the centre-stable manifold. Thus the only aspect of the
above argument that was needed was to project the given entry concentration
of tracer onto the centre manifold, as is achieved by (16) or its approximate
version (17). At the exit x — L we have to integrate in the negative x direc-
tion and hence there is no stable manifold. Since there is no exit condition to
apply, the above argument says that the entire centre manifold is a valid state
at the exit. Thus, from these particular considerations, there is no boundary
condition for the exit.

It is interesting to note the changes in the argument if the example of
dispersion in a channel is modified by including the along-stream diffusion
term, tcd

2
c/dx

2
. Due to the differential scaling of the down-stream and

cross-stream coordinates this introduces a perturbing term of ed c/dx into
(9) where e = {K/Ub)

2 is typically very small. Such a second-order term in
x effectively doubles the dimensionality of the x-evolution in the manner of
(28) discussed above. The downstream decaying modes used in Section 2.1
are barely affected by the perturbing term; thus there is no qualitative effect
at the entry, there is only a small quantitative perturbation. However, intro-
duced are a whole range of new modes which decay very rapidly upstream,
on a length scale of e. These, together with the neutral modes, form the basis
for a centre-stable manifold at the exit. Then the freedom to be anywhere on
the centre-stable manifold at x = L is countered by the boundary conditions
at the exit (for example, some fixed concentration) so that, after projecting
the possibilities onto the centre manifold (10), there are enough degrees of
freedom left to cover the entire centre manifold. Hence, even in the presence
of this along-stream diffusivity, the exit still provides no boundary condition
for the centre manifold model (11).

3.2. Considerations of the model dynamics From analysing the dynamics of
the original system (26) we may derive a fixed number of boundary conditions
which are appropriate for the model. In the example of shear dispersion, I
derived one such boundary condition, namely (16). However, in general the
model partial differential equation (27) is any fixed truncation of an asymp-
totic sum of derivatives of higher and higher order—and, as the order of the
approximation is increased, more and more boundary conditions are required
to make a well-posed model problem (as seen in Sections 2.2 and 2.3).
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These additional boundary conditions come from an analysis of the spatial
transients of the model which, in general, have no physical relevance. Again
the most appealing way to proceed is to take the Laplace transform of the
model equation (27), in whatever truncation or equivalent asymptotic form
is to be used, to give

ds 8
K
s

§
>

os + &lT^ + --- + &K —z =ps- (nonlinear terms), (29)

where (imagine adjoining dp/dx = 0) we treat the right-hand side as small
nonlinear terms. If the slow manifold (parameterised by s) is /-dimensional
then (29) is equivalent to a coupled system of KI first-order differential equa-
tions in the "time-like" variable x. Such a dynamical system, as shown
schematically in Figure 3, will itself possess an /-dimensional slow manifold
(which I will take to be the centre manifold5), together with stable and unsta-
ble manifolds, as it is integrated from an end into the interior of the physical
domain.

Generalising the arguments of Section 2.3, the exponentially growing so-
lutions which are characteristic of the unstable manifold are certainly not
desirable, as they cause rapidly varying solutions in the interior. However,
provided that boundary conditions are applied at the other end which cause
the solution to be reasonable, then these rapidly increasing modes will not
occur to any significant extent, and hence there is no need to insist on their
removal at the end under consideration. Conversely, the exponentially decay-
ing solutions which are characteristic of the stable manifold do not cause any
problem in the interior. However, their transient decay is typically unphys-
ical and thus should be removed from the solutions of the model equation.
Thus additional boundary conditions for the model come from requiring that
it lie in the centre-unstable manifold of (29), as only then will it not have
unphysical boundary layers near each end. The fact that the exponentially-
growing solutions contained in the centre-unstable manifold actually do not
occur is due to the boundary conditions at the opposite end of the domain-
thus with these boundary conditions the solutions to (27) will lie in, or at
least exponentially close to, the slow manifold, and the solutions will also lie
(almost) in the centre manifold of the asymptotically equivalent (29) (as I
have indicated by one of the trajectories in Figure 3).

These considerations lead to the exit condition (20) for the second-order
Taylor model of shear dispersion discussed in Section 2.2. Similarly for the
more refined third-order model of shear dispersion discussed in Section 2.3,

If the slow manifold of the model is not the entire centre manifold, due to some pure imaginary
eigenvalues of the operator on the left-hand side of (29), then, as I will argue in Section 4.3, the
model equation is not well-posed in that it possesses unphysical temporal behaviour.
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centre-unstabl
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manifold
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FIGURE 3. A schematic drawing of the centre, stable, unstable and centre-unstable mani-
folds of a dynamical system. Two trajectories are drawn; one showing an undesirable transient
behaviour off the centre-unstable manifold.

these considerations lead to the different exit condition (24) and to an extra
entry condition (22).6

3.3. Some dimensional book-keeping It is instructive to comment on the
dimensions of the various manifolds mentioned above. In discussing the di-
mensions, I shall only consider the dimensionality at any fixed x, or equiva-
lently as if there were no x dependence. Furthermore, I shall only contem-
plate the generic case.

Suppose that the original system (26) is A^-dimensional; that is, u(x, t)

evolves with x and f i n a space of N dimensions. This is the dimensionality
of the detailed structure, most of which is ignored in the slow manifold
model. For example, in shear dispersion the original dimensionality is Â  =
oo as the cross-stream concentration is a continuous function of y. If the
highest x-derivative in the original system is of order k [k = \ for the shear
dispersion equation (9), and k = 2 for the form (26) discussed earlier in

6An alternative principle is that any set of boundary conditions is allowed which, when pro-
jected as an initial condition, projeas to the same conditions as the projection of the boundary
conditions for the original system. This principle permits (unphysical) boundary layers in the
model, but only those which evolve into the correct interior solutions.
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this section) then we would need to have a total of kN boundary conditions
specified to make the original a well-posed problem.

Further suppose that the slow manifold, and hence the parameter s(x, t),

is /-dimensional. In the shear dispersion example the (slow) centre manifold,
parameterised by the cross-stream average concentration, has dimension / =
1. To analyse the spatial transients, the original system is transformed to a set
of kN first-order differential equations, analogous to (28) and ignoring the
extra dimension introduced by the artifice of adjoining dp/dx = 0. Unless
S?x in (28) has some special degeneracy, the set of equations will possess a
centre manifold which is also of dimension / , as exhibited by (14-15) in
the shear dispersion example. The evolution, of (28) say, in the positive x

direction then must give a stable manifold of some dimension m and an
unstable manifold of some dimension n where

l + m + n = kN. (30)

Since the evolution in the negative x direction, from the end x — L back
into the interior, is the reverse of this then the stability of these invariant
manifolds is reversed and it has an unstable manifold of dimension m and a
stable manifold of dimension n ? Thus the centre-stable manifold at x = 0
has dimension m + I while that at x = L has dimension n + I; a total
number of degrees of freedom, for having smooth solutions in the interior,
of m+n+2l = kN+l by (30). Thus the additional kN boundary conditions
of the well-posed original problem reduces this to / degrees of freedom to be
split between the two ends. At each end, the set of allowed initial conditions
has to be projected onto an /-dimensional centre manifold (2/ dimensions
in all) and so we derive a total of / boundary conditions for the model (27)
through the consideration of the dynamics of the full system as explained in
Section 3.1.

The analysis of the dimensionality of the dynamics of any truncated ver-
sion of the model (27) is similar. Suppose the model is truncated to order K ;
that is, the highest spatial derivative term is d

K
s/dx

K
 . When considered as

a dynamical system in the "time-like" variable x, equation (29), the model
will have a dimensionality of KI . Under the assumption that the operator
&y is generic, the model will have a centre manifold of dimension / . Upon
considering the evolution in the positive JC direction the model will have a
stable manifold of dimension fi and an unstable manifold of dimension v

where

l + fl + V = Kl. (31)

7It is possible, in the presence of spatial inhomogenities, that this mirror symmetry does not
hold. In such a case I would expect that some sort of transition would occur in the interior
(maybe a phase transition) which would have to be considered carefully.
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Conversely the evolution in the negative x direction will generally have an
unstable manifold of dimension n and a stable manifold of dimension v .

Thus the centre-unstable manifold of the model at the end x = 0 will have
dimension l+v, while that at JC = L will have dimension l+fi. Insisting that
the model's solution lie in these centre-unstable manifolds is thus equivalent
to specifying n constraints at the end x = 0 and v constraints at x — L.

Thus the principle of eliminating rapid boundary layers in the model, as
explained in Section 3.2, gives a total of n + v boundary conditions. These
would be used together with the / boundary conditions derived earlier to
give a well-posed boundary value problem for the model (27).

4. Miscellany

There are a number of issues in this discourse on boundary conditions
which are worth commenting upon.

4.1. Shun the Laplace transform Throughout this paper so far I have always
resorted to taking the Laplace transform of the governing equations. This
was done so that the time variations could be implicitly represented by the
parameter p, and that slow variations in time correspond to solutions with
small p. Upon taking the Laplace transform an appeal to the rigorous the-
ory of centre manifolds [3], and other associated manifolds, could easily be
done. However, after all the analysis is performed, the only actual role of the
parameter p (introduced by the transformation) is to act as a "place-holder"
for the operation of differentiating with respect to time. Other than this, the
Laplace transformation does nothing but make the execution of the analysis
more complicated; for example, by turning multiplicative nonlinearities into
awkward convolutions. Thus the whole analysis should be simplified, both in
detail and appeal, by not taking the Laplace transform and instead treating
d/dt as if it was the small quantity p.

The gain is that there are significantly less complicating details and the
analysis deals with the original, physically meaningful quantities, rather than
transformed quantities. This is particularly important where the original
problem naturally has time variations in it, in which case the Laplace trans-
form would be extremely awkward to deal with; without transformation the
analysis is straightforward as can be seen in the analogous case for spatial
variations in shear dispersion [16]. The only loss is in the immediate rigour
of the analysis. But since the resulting expressions are exactly equivalent,
this apparent lack of rigour in the non-transformed analysis merely reflects
the current lack of a fully developed theory. I leave the development of such
rigorous theory to those with a suitable background in analysis.
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4.2. Models based on an invariant manifold The above arguments for the
derivation of the correct boundary conditions have been for the case of a
model based on the slow manifold of the dynamics. These models and
their derivations are the easiest to understand. However, a rational ap-
proach to approximating dynamics should not be limited to this case. For
example, a model dominated by oscillating solutions (propagating waves)
is obtained from modes which have a growth-rate with zero real-part but
non-zero imaginary-part. Furthermore, as I have previously argued [26], ef-
fective approximations may be rationally based even when including some
modes which are exponentially decaying [22, 32]. These modes form the
basis of an invariant manifold. Indeed, this is related to the idea of inertial
manifolds [35] which have been proved to exist in some strongly dissipa-
tive systems. In essence, which of the modes are kept, to form the basis of
the low-dimensional model, depends upon the important time-scale. Modes
which decay rapidly are irrelevant, while those which evolve on a time-scale
comparable to that of interest, albeit an exponential decay, should be kept—
thus the dividing time-scale between those modes included in the model and
those which are not should be determined by the use to which the model is
to be put.

The essence of the above derivation of appropriate boundary conditions
will still hold for such invariant manifold approximations. By definition,
there are a certain set of modes, those of the relevant slower evolution or
the oscillation, which will be modelled accurately by the invariant manifold.
Upon transferring the viewpoint from the temporal evolution to the spatial
evolution, these same modes should be recognisable both in the original sys-
tem and in the low-dimensional invariant manifold model. In the above they
were recognised by the zero eigenvalues in the spatial evolution equations.
Thus we should be able to construct the analogue of the centre-stable mani-
fold of the original system and then project the intersection of this with the
actual boundary condition onto the analogue of the centre manifold. These
form boundary conditions for the model which ensure that the spatial evo-
lution in the interior matches that of the original system. For the remaining
boundary conditions which may be needed for higher-order differential mod-
els a distinction should be able to be drawn between the physically accurate
modes and the other exponential, physically irrelevant modes. Thus bound-
ary conditions may be found which eliminate unphysical boundary layers
near each end. These two types of boundary conditions form the requisite
set for the approximation.

4.3. Ill-posed models For high-order differential models, an essential part of
the argument given in Section 3.2 is that the centre manifold of the spatial
evolution view of the model, (29), is the same as the slow manifold of the spa-
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tial evolution view of the original system, (28). Only then will denying expo-
nential transients give enough boundary conditions for the model. However,
this does not always occur—sometimes the centre manifold of the model has
modes in addition to the physically relevant ones.

An example of this is seen in the Boussinesq approximation for long waves
in water which is given by equations (3-4) [36, page 461] for water of height
y = hQ + rj(x, t) above a flat bottom and with average horizontal velocity
u(x, t). The Boussinesq approximation is a refinement of the long-wave
approximation

dr\ . du n , du dn n .._.
^ + ^ 0 and ^ + ^ = 0 (32)

in that it incorporates the leading-order effects of dispersion, through the
l£^o§4 term, and nonlinear dynamics, though the terms j^(f]u) and w§^ .
Its basis is the two modes, waves travelling to the right and waves trav-
elling to the left, which evolve slowly when the waves are of long wave-
length (small wavenumber). To derive boundary conditions for the Boussi-
nesq equations (3-4) we should investigate the linearised spatial evolution
for modes which evolve slowly in time; that is, substitute a solution propor-
tional to exp(pt + Ax) and, ignoring terms multiplied by p as being small,
observe solutions only for X = 0 (twice) and for X = ±iy/3/h0 . The two zero
eigenvalues correspond to the slow manifold of the long wave approximation.
The two pure-imaginary eigenvalues correspond to unphysical modes which
we need to eliminate from the solution by imposing appropriate boundary
conditions. But, because they are not exponential, it will be difficult for
boundary conditions imposed at the ends of the domain to do this.

The linearised temporal evolution shows that these modes are linked to
the presence of unphysical instabilities in the Boussinesq equations. Lin-
earising the equations (3-4) and substituting solutions with wavenumber k

and growth-rate a, that is, proportional to exp(txf + ikx), we find the rela-
tion

a — ±iy

For genuinely long waves, small k, this gives the dispersion relation

which is asymptotically correct, having an error O(k
5
) when compared to

the exact dispersion relation of w = ±Jgkta.nh(kh0). However, the finite
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wavenumber behaviour of the Boussinesq equations is dramatically wrong.
For wavenumbers |A:| > ho/V3 the growth-rate a is no longer pure imagi-
nary, characteristic of the physical waves, but is instead real with one growth-
rate of the pair positive and the other being negative—for high wavenumbers
there is an unphysical instability in the model. In principle, this need not
matter; all we need to do to eliminate these temporally-unstable modes is to
impose a condition of boundedness on the solution at large time, in place
of extra boundary conditions at either end. In practice, such a condition
is impractical to implement. Instead the usual preferred path is to change
the model equations with the aim of maintaining the asymptotic validity for
long waves, while removing the unstable behaviour at finite wavenumber.
Boussinesq favoured the system [36, page 462]

which is obtainable from (3-4) by recognising that the dominant mechanisms
are expressed in the leading approximation (32) and this shows the above
transformation to be asymptotically correct. The dispersion relation of the
new system (33-34) is

which was wavelike behaviour for all wavenumbers, albeit it inaccurate for
large wavenumbers.8 Furthermore, equations (33-34) are of lower-order in
spatial derivatives and need only two boundary conditions at the extremes
of the physical domain. These two boundary conditions will come from the
consideration of the slow manifold in the original dynamics as outlined in
Section 3.1.

The Korteweg-deVries equation for uni-directional long waves, equation
(5), has a similar problem in that the spatial evolution of the model has
eigenvalues A = 0, corresponding to the long waves being modelled, and the
pure imaginary A = ±iy/co/y, which correspond to unphysical modes. Once
again the arguments developed in Section 3.2 to provide boundary conditions
for this model will not apply. The corresponding dispersion relation for
linearised waves is

(O = k(c0-yk
2
)

which, while not unstable for high wavenumbers, has finite wavenumber
waves, \k\ > y/cjy, travelling in the wrong direction. Despite the many

8Similar considerations in beam theory lead to the mixed derivatives in Rayleigh's equation (6)
and in Love's equation (7).
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fascinating exact solutions of (5), Benjamin et al. [2] have maintained that
for modelling purposes it is desirable to modify the equation to the asymp-
totically equivalent

In this form the model has spatial eigenvalues X — 0 , corresponding to the
long waves, and A ~ c^/iyp), corresponding to an unphysical mode. The
arguments of Section 3.2 may then apply and this unphysical mode could be
eliminated by imposing the correct boundary condition.

The relevant characteristics of the above two examples are typical. Con-
sider a Kth order truncated linearised version of the general model evolution
equation (27). The spatial evolution away from the ends is obtained by sub-
stituting s = vexp(/?f + Xx) to obtain the eigen-problem

p v = S ? ( A ) v = (S?o + X&1+X
2
&2 + --- + X

K
&K)v (36)

for eigenvalues X and eigenvectors v. The slow manifold approximation is
based on the extreme slow evolution obtained by taking p = 0. Thus the
modes in the spatial evolution are determined by the characteristic equation
det[^(A)] = 0. The assumption in Section 3.2 is that this has roots which
are either zero (corresponding to the slow manifold) or have strictly non-zero
real part; problems arise if there exist pure imaginary roots—the arguments
of Section 3.2 will not work if it has roots A = ±ico. However, in this case the
left-hand side of the characteristic equation may be factored to det[.f (A)] =
(A2 + (0

2
)f(X). Then, when we consider the temporal evolution of the model

(27), by trying solutions proportional to exp(o7 + ikx) and obtaining the
characteristic equation d.t\[&{ik) - al] = 0 for the growth-rate a as a
function of wavenumber k, it is apparent that a = 0 at wavenumber k =

±(o. Thus the growth-rate, a(k), must change sign at the finite wavenumber
co; consequently the high wavenumber behaviour of the model is opposite
to the low wavenumber behaviour for which the model is derived. Hence
the model is at least ill-adapted to the original problem, as in the Korteweg-
deVries equation (5), and may be intractably unstable, as in the Boussinesq
equations (3-4). In such cases the model should be changed to one with
better temporal behaviour, and simultaneously the difficulty in obtaining the
appropriate boundary conditions will be overcome; that this is reasonably
common is evidenced by other equations in the Introduction which have
mixed derivatives.

What if the spatial evolution eigenproblem (36) has roots which are nearly
pure imaginary, say A = 6 ± io) for some small 6 ? By itself this would
similarly produce an undesirable change in the temporal growth-rate a.
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However, many problems have reflectional symmetry in the x direction and
such a pair of eigenvalues could not occur in isolation; the pair must occur
in a quadruplet X = ±6 ± iw. In this case the characteristic equation may
be factored to

det[^(A)] = (A2 - 20/1 + 6
1
 + <o

2
){X

2
 + 28X + 6

1
 + oi

2
)f{X) = 0,

whence the temporal growth-rate near the critical wavenumber of k = ±co is

where g(X) is related to the trace of &{X). Since the expression in square
brackets is never zero as k is varied, the growth-rate does not change sign, the
model is reasonably well behaved, and the arguments in Section 3.2 provide
the model with appropriate boundary conditions.

Another model equation which is based on the slowly-varying approxima-
tion is the Kuramoto-Sivashinsky equation (2) [15, 31]. Linearly, its temporal
evolution is determined by growth-rates a = k

2
{\ - k

2
/A

2
) which displays

instability for low wavenumbers; it is the presence of the nonlinearity trans-
forming "energy" to the strongly dissipative high wavenumbers which permits
bounded solutions of relevance to the original physical systems from which
it is derived. This equation apparently displays the problematical change
in sign of the growth-rate which accompanies pure imaginary modes in the
spatial evolution. Indeed this is the case, the eigenvalues of the p = 0 spatial
evolutions are X = 0 (twice) and A = ±iA; consequently the arguments in
Section 3.2 cannot be applied to give boundary conditions. In this sort of
circumstance, the correct procedure is to realise that all four of these spatial
modes must form the basis of the dynamical model. This may be achieved
in the derivation of the Kuramoto-Sivashinsky equation (2) either by imag-
ining A is "small" (I /A is to be large when compared with the ignored
dynamical length-scales) in which case the model is a slow manifold model,
or by forming an invariant manifold model, as mentioned in the previous
sub-section, which is based on these four modes. In either case the appro-
priate four boundary conditions for the fourth-order Kuramoto-Sivashinsky
equation will be obtained by the considerations of the original dynamics, as
discussed in Section 3.1; it is only when the Kuramoto-Sivashinsky equation
is modified by including terms of higher-order than four that the arguments
in Section 3.2 would be needed.

5. Conclusion

Given the prevalence of continuum models based on the slowly-varying
approximation, the issue of finding the appropriate boundary conditions is
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important but frequently overlooked. The centre manifold approach to de-
riving rational models provides a technique to obtain asymptotically correct
boundary conditions; other techniques of approximation generally cannot do
this.

Here I have concentrated exclusively on models with one spatial dimen-
sion. The foundation of the approach is to investigate the evolution in the
boundary layers near either end of the physical domain of interest. This is a
fairly complicated procedure, but other work that I have done in the last few
years suggests that, in general, these complications are unavoidable.

The outstanding challenge now is to derive rationally boundary conditions
for mathematical models which are set in two or three spatial dimensions; for
example, the evolution of a convective planform [28], and the Navier-Stokes
equation, respectively.
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