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We derive the boundary condition for the Dirac equation corresponding to a tight-binding model on a

two-dimensional honeycomb lattice terminated along an arbitrary direction. Zigzag boundary conditions result

generically once the boundary is not parallel to the bonds. Since a honeycomb strip with zigzag edges is

gapless, this implies that confinement by lattice termination does not, in general, produce an insulating

nanoribbon. We consider the opening of a gap in a graphene nanoribbon by a staggered potential at the edge

and derive the corresponding boundary condition for the Dirac equation. We analyze the edge states in a

nanoribbon for arbitrary boundary conditions and identify a class of propagating edge states that complement

the known localized edge states at a zigzag boundary.

DOI: 10.1103/PhysRevB.77.085423 PACS number�s�: 73.21.Hb, 73.22.Dj, 73.22.�f, 73.63.Bd

I. INTRODUCTION

The electronic properties of graphene can be described by

a difference equation �representing a tight-binding model on

a honeycomb lattice� or by a differential equation �the two-

dimensional Dirac equation�.1,2 The two descriptions are

equivalent at large length scales and low energies, provided

that the Dirac equation is supplemented by boundary condi-

tions consistent with the tight-binding model. These bound-

ary conditions depend on a variety of microscopic properties

determined by atomistic calculations.3

For a general theoretical description, it is useful to know

what boundary conditions on the Dirac equation are allowed

by the basic physical principles of current conservation and

�presence or absence of� time reversal symmetry—

independent of any specific microscopic input. This problem

was solved in Refs. 4 and 5. The general boundary condition

depends on one mixing angle � �which vanishes if the

boundary does not break the time reversal symmetry�, one

three-dimensional unit vector n perpendicular to the normal

to the boundary, and one three-dimensional unit vector � on

the Bloch sphere of valley isospins. Altogether, four real pa-

rameters fix the boundary condition.

In the present paper, we investigate how the boundary

condition depends on the crystallographic orientation of the

boundary. As the orientation is incremented by 30°, the

boundary configuration switches from armchair �parallel to

one-third of the carbon-carbon bonds� to zigzag �perpendicu-

lar to another one-third of the bonds�. The boundary condi-

tions for the armchair and zigzag orientations are known.6

Here, we show that the boundary condition for intermediate

orientations remains of the zigzag form, so that the armchair

boundary condition is only reached for a discrete set of ori-

entations.

Since the zigzag boundary condition does not open up a

gap in the excitation spectrum,6 the implication of our result

�not noticed in earlier studies7� is that a terminated honey-

comb lattice of arbitrary orientation is metallic rather than

insulating. We present tight-binding model calculations to

show that, indeed, the gap ��exp�−f���W /a� in a nanorib-

bon at crystallographic orientation � vanishes exponentially

when its width W becomes large compared to the lattice

constant a, characteristic of metallic behavior. The ��1 /W

dependence characteristic of insulating behavior requires the

special armchair orientation �� a multiple of 60°�, at which

the decay rate f��� vanishes.

Confinement by a mass term in the Dirac equation does

produce an excitation gap regardless of the orientation of the

boundary. We show how the infinite-mass boundary condi-

tion of Ref. 8 can be approached starting from the zigzag

boundary condition, by introducing a local potential differ-

ence on the two sublattices in the tight-binding model. Such

a staggered potential follows from atomistic calculations3

and may well be the origin of the insulating behavior ob-

served experimentally in graphene nanoribbons.9,10

The outline of this paper is as follows. In Sec. II, we

formulate, following Refs. 4 and 5, the general boundary

condition of the Dirac equation on which our analysis is

based. In Sec. III, we derive from the tight-binding model the

boundary condition corresponding to an arbitrary direction of

lattice termination. In Sec. IV, we analyze the effect of a

staggered boundary potential on the boundary condition. In

Sec. V, we calculate the dispersion relation for a graphene

nanoribbon with arbitrary boundary conditions. We identify

dispersive �propagating� edge states which generalize the

known dispersionless �localized� edge states at a zigzag

boundary.11 The exponential dependence of the gap � on the

nanoribbon width is calculated in Sec. VI both analytically

and numerically. We conclude in Sec. VII.

II. GENERAL BOUNDARY CONDITION

The long-wavelength and low-energy electronic excita-

tions in graphene are described by the Dirac equation

H� = �� , �2.1�

with Hamiltonian

H = v�0 � �� · p� , �2.2�

acting on a four-component spinor wave function �. Here, v

is the Fermi velocity and p=−i	� is the momentum operator.

Matrices �i ,
i are Pauli matrices in valley space and sublat-

tice space, respectively �with unit matrices �0 ,
0�. The cur-
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rent operator in the direction n is n ·J=v�0 � �� ·n�.
The Hamiltonian H is written in the valley isotropic rep-

resentation of Ref. 5. The alternative representation H�

=v�z � �� ·p� of Ref. 4 is obtained by the unitary transforma-

tion

H� = UHU†, U =
1

2 ��0 + �z� � 
0 +
1

2 ��0 − �z� � 
z.

�2.3�

As described in Ref. 4, the general energy-independent

boundary condition has the form of a local linear restriction

on the components of the spinor wave function at the bound-

ary,

� = M� . �2.4�

The 4�4 matrix M has eigenvalue 1 in a two-dimensional

subspace containing �, and without loss of generality, we

may assume that M has eigenvalue −1 in the orthogonal

two-dimensional subspace. This means that M may be cho-

sen as a Hermitian and unitary matrix,

M = M†, M2 = 1. �2.5�

The requirement of the absence of current normal to the

boundary,

���nB · J��� = 0, �2.6�

with nB a unit vector normal to the boundary and pointing

outward, is equivalent to the requirement of anticommutation

of the matrix M with the current operator,

�M,nB · J	 = 0. �2.7�

That Eq. �2.7� implies Eq. �2.6� follows from ���nB ·J���
= ���M�nB ·J�M���=−���nB ·J���. The converse is proven

in Appendix A.

We are now faced with the problem of determining the

most general 4�4 matrix M that satisfies Eqs. �2.5� and

�2.7�. Reference 4 obtained two families of two-parameter

solutions and two more families of three-parameter solu-

tions. These solutions are subsets of the single four-

parameter family of solutions obtained in Ref. 5,

M = sin ��0 � �n1 · �� + cos ��� · �� � �n2 · �� , �2.8�

where � ,n1 ,n2 are three-dimensional unit vectors, such that

n1 and n2 are mutually orthogonal and also orthogonal to nB.

A proof that Eq. �2.8� is indeed the most general solution is

given in Appendix A. One can also check that the solutions

of Ref. 4 are subsets of M�=UMU†.

In this work, we will restrict ourselves to boundary con-

ditions that do not break the time reversal symmetry. The

time reversal operator in the valley isotropic representation is

T = − ��y � 
y�C , �2.9�

with C the operator of complex conjugation. The boundary

condition preserves the time reversal symmetry if M com-

mutes with T. This implies that the mixing angle �=0, so

that M is restricted to a three-parameter family,

M = �� · �� � �n · ��, n � nB. �2.10�

III. LATTICE TERMINATION BOUNDARY

The honeycomb lattice of a carbon monolayer is a trian-

gular lattice �lattice constant a� with two atoms per unit cell,

referred to as A and B atoms �see Fig. 1�a��. The A and B

atoms separately form two triangular sublattices. The A at-

oms are connected only to B atoms and vice versa. The tight-

binding equations on the honeycomb lattice are given by

��A�r� = t��B�r� + �B�r − R1� + �B�r − R2�� ,

��B�r� = t��A�r� + �A�r + R1� + �A�r + R2�� . �3.1�

Here, t is the hopping energy, �A�r� and �B�r� are the elec-

tron wave functions on A and B atoms belonging to the same

unit cell at a discrete coordinate r, while R1= �a
3 /2,

−a /2�, R2= �a
3 /2,a /2� are lattice vectors, as shown in Fig.

1�a�.
Regardless of how the lattice is terminated, Eq. �3.1� has

the electron-hole symmetry �B→−�B, �→−�. For the long-

wavelength Dirac Hamiltonian �Eq. �2.2��, this symmetry is

translated into the anticommutation relation

H
z � �z + 
z � �zH = 0. �3.2�

Electron-hole symmetry further restricts the boundary matrix

M in Eq. �2.10� to two classes: zigzaglike ��= ẑ, n= ẑ� and

armchairlike ��z=nz=0�. In this section, we will show that

the zigzaglike boundary condition applies generically to an

arbitrary orientation of the lattice termination. The armchair-

like boundary condition is only reached for special orienta-

tions.

A. Characterization of the boundary

A terminated honeycomb lattice consists of sites with

three neighbors in the interior and sites with only one or two

neighbors at the boundary. The absent neighboring sites are

indicated by open circles in Fig. 1 and the dangling bonds by

thin line segments. The tight-binding model demands that the

FIG. 1. �a� Honeycomb lattice constructed from a unit cell �gray

rhombus� containing two atoms �labeled A and B�, translated over

lattice vectors R1 and R2. Panels �b�–�d� show three different peri-

odic boundaries with the same period T=nR1+mR2. Atoms on the

boundary �connected by thick solid lines� have dangling bonds �thin

dotted line segments� to empty neighboring sites �open circles�. The

number N of missing sites and N� of dangling bonds per period is

�n+m. Panel �d� shows a minimal boundary, for which N=N�=n

+m.
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wave function vanishes on the set of absent sites, so the first

step in our analysis is the characterization of this set. We

assume that the absent sites form a one-dimensional super-

lattice, consisting of a supercell of N empty sites, translated

over multiples of a superlattice vector T. Since the boundary

superlattice is part of the honeycomb lattice, we may write

T=nR1+mR2 with n and m non-negative integers. For ex-

ample, in Fig. 1, we have n=1, m=4. Without loss of gen-

erality, and for later convenience, we may assume that m

−n=0 �mod 3�.
The angle � between T and the armchair orientation �the

x axis in Fig. 1� is given by

� = arctan� 1


3

n − m

n + m
�, −

�

6
� ��

�

6
. �3.3�

The armchair orientation corresponds to �=0, while �
=� /6 corresponds to the zigzag orientation. �Because of

the � /3 periodicity, we only need to consider ����� /6.�
The number N of empty sites per period T can be arbi-

trarily large, but it cannot be smaller than n+m. Likewise,

the number N� of dangling bonds per period cannot be

smaller than n+m. We call the boundary minimal if N=N�

=n+m. For example, the boundary in Fig. 1�d� is minimal

�N=N�=5�, while the boundaries in Figs. 1�b� and 1�c� are

not minimal �N=7, N�=9, and N=5, N�=7, respectively�. In

what follows, we will restrict our considerations to minimal

boundaries, both for reasons of analytical simplicity12 and

for physical reasons �it is natural to expect that the minimal

boundary is energetically most favorable for a given orienta-

tion�.
We conclude this subsection with a property of minimal

boundaries that we will need later on. The N empty sites per

period can be divided into NA empty sites on sublattice A and

NB empty sites on sublattice B. A minimal boundary is con-

structed from n translations over R1, each contributing one

empty A site, and m translations over R2, each contributing

one empty B site. Hence, NA=n and NB=m for a minimal

boundary.

B. Boundary modes

The boundary breaks the two-dimensional translational

invariance over R1 and R2, but a one-dimensional transla-

tional invariance over T=nR1+mR2 remains. The quasimo-

mentum p along the boundary is therefore a good quantum

number. The corresponding Bloch state satisfies

��r + T� = exp�ik���r� , �3.4�

with 	k=p ·T. While the continuous quantum number k

� �0,2�� describes the propagation along the boundary, a

second �discrete� quantum number � describes how these

boundary modes decay away from the boundary. We select �
by demanding that the Bloch wave �Eq. �3.4�� is also a so-

lution of

��r + R3� = ���r� . �3.5�

The lattice vector R3=R1−R2 has a nonzero component

a cos ��a
3 /2 perpendicular to T. We need ����1 to pre-

vent ��r� from diverging in the interior of the lattice. The

decay length ldecay in the direction perpendicular to T is

given by

ldecay =
− a cos �

ln���
. �3.6�

The boundary modes satisfying Eqs. �3.4� and �3.5� are

calculated in Appendix B from the tight-binding model. In

the low-energy regime of interest �energies � small compared

to t�, there is an independent set of modes on each sublattice.

On sublattice A, the quantum numbers � and k are related by

�− 1 − ��m+n = exp�ik��n, �3.7a�

and on sublattice B, they are related by

�− 1 − ��m+n = exp�ik��m. �3.7b�

For a given k, there are NA roots �p of Eq. �3.7a� having

absolute value �1, with corresponding boundary modes �p.

We sort these modes according to their decay lengths from

short to long, ldecay��p�� ldecay��p+1� or ��p�� ��p+1�. The

wave function on sublattice A is a superposition of these

modes,

��A� = 
p=1

NA

�p�p, �3.8�

with coefficients �p such that ��A� vanishes on the NA miss-

ing A sites. Similarly, there are NB roots �p� of Eq. �3.7b�
with ��p���1, ��p��� ��p+1� �. The corresponding boundary

modes form the wave function on sublattice B,

��B� = 
p=1

NB

�p��p� , �3.9�

with �p� such that ��B� vanishes on the NB missing B sites.

C. Derivation of the boundary condition

To derive the boundary condition for the Dirac equation,

it is sufficient to consider the boundary modes in the k→0

limit. The characteristic equations �Eqs. �3.7a� and �3.7b��
for k=0 each have a pair of solutions �=exp�2i� /3� that

do not depend on n and m. Since ���=1, these modes do not

decay as one moves away from the boundary. The corre-

sponding eigenstate exp�iK ·r� is a plane wave with wave

vector K= �4 /3��R3 /a2. One readily checks that this Bloch

state also satisfies Eq. �3.4� with k=0 �since K ·T=2��n
−m� /3=0 �mod 2���.

The wave functions �Eqs. �3.8� and �3.9�� on sublattices A

and B in the limit k→0 take the form

��A� =�1eiK·r +�4e−iK·r + 
p=1

NA−2

�p�p, �3.10a�

��B� =�2eiK·r +�3e−iK·r + 
p=1

NB−2

�p��p� . �3.10b�

The four amplitudes ��1 ,−i�2 , i�3 ,−�4��� form the

four-component spinor � in the Dirac equation �Eq. �2.1��.
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The remaining NA−2 and NB−2 terms describe decaying

boundary modes of the tight-binding model that are not in-

cluded in the Dirac equation.

We are now ready to determine what restriction on � is

imposed by the boundary condition on ��A� and ��B�. This

restriction is the required boundary condition for the Dirac

equation. In Appendix B, we calculate that, for k=0,

NA = n − �n − m�/3 + 1, �3.11�

NB = m − �m − n�/3 + 1, �3.12�

so that NA+NB=n+m+2 is the total number of unknown

amplitudes in Eqs. �3.8� and �3.9�. These have to be chosen

such that ��A� and ��B� vanish on NA and NB lattice sites,

respectively. For the minimal boundary under consideration,

we have NA=n equations to determine NA unknowns and

NB=m equations to determine NB unknowns.

Three cases can be distinguished �in each case, n−m=0

�mod 3��.
�1� If n�m, then NA�n and NB�m+2, so �1=�4=0,

while �2 and �3 are undetermined.

�2� If n�m, then NB�n and NA�m+2, so �2=�3=0,

while �1 and �4 are undetermined.

�3� If n=m, then NA=n+1 and NB=m+1, so ��1�= ��4�
and ��2�= ��3�.

In each case, the boundary condition is of the canonical

form �= �� ·�� � �n ·��� with the following.

�1� �=−ẑ, n= ẑ if n�m �zigzag-type boundary condition�.
�2� �= ẑ, n= ẑ if n�m �zigzag-type boundary condition�.
�3� � · ẑ=0, n · ẑ=0 if n=m �armchair-type boundary con-

dition�.
We conclude that the boundary condition is of zigzag type

for any orientation T of the boundary, unless T is parallel to

the bonds �so that n=m and �=0 �mod � /3��.

D. Precision of the boundary condition

At a perfect zigzag or armchair edge, the four components

of the Dirac spinor � are sufficient to meet the boundary

condition. Near the boundaries with larger period and more

complicated structure, the wave function �Eq. �3.10�� also

necessarily contains several boundary modes �p ,�p� that de-

cay away from the boundary. The decay length � of the slow-

est decaying mode is the distance at which the boundary is

indistinguishable from a perfect armchair or zigzag edge. At

distances smaller than �, the boundary condition breaks

down.

In the case of an armchairlike boundary �with n=m�, all

the coefficients �p and �p� in Eqs. �3.10a� and �3.10b� must

be nonzero to satisfy the boundary condition. The maximal

decay length � is then equal to the decay length of the

boundary mode �n−1 which has the largest ���. It can be

estimated from the characteristic equations �Eqs. �3.7a� and

�3.7b�� that ���T�. Hence, the larger the period of an arm-

chairlike boundary, the larger the distance from the boundary

at which the boundary condition breaks down.

For the zigzaglike boundary, the situation is different. On

one sublattice, there are more boundary modes than condi-

tions imposed by the presence of the boundary, and on the

other sublattice, there are less boundary modes than condi-

tions. Let us assume that sublattice A has more modes than

conditions �which happens if n�m�. The quickest decaying

set of boundary modes sufficient to satisfy the tight-binding

boundary condition contains n modes �p with p�n. The

distance � from the boundary within which the boundary

condition breaks down is then equal to the decay length of

the slowest decaying mode �n in this set and is given by

� = ldecay��n� = − a cos �/ln��n� �3.13�

�see Eq. �3.6��.
As derived in Appendix B for the case of large periods

�T�≫a, the quantum number �n satisfies the following sys-

tem of equations:

�1 + �n�m+n = ��n�n, �3.14a�

arg�1 + �n� −
n

n + m
arg�− �n� =

n

n + m
� . �3.14b�

The solution �n of this equation and hence the decay length �
do not depend on the length �T� of the period but only on the

ratio n / �n+m�= �1−
3tan �� /2, which is a function of the

angle � between T and the armchair orientation �see Eq.

�3.3��. In the case n�m when sublattice B has more modes

than conditions, the largest decay length � follows upon in-

terchanging n and m.

As seen from Fig. 2, the resulting distance � within which

the zigzag-type boundary condition breaks down is zero for

the zigzag orientation ��=� /6� and tends to infinity as the

orientation of the boundary approaches the armchair orienta-

tion ��=0�. �For finite periods, the divergence is cut off at

���T�≫a.� The increase of � near the armchair orientation

is rather slow. For ��0.1, the zigzag-type boundary condi-

tion remains precise on the scale of a few unit cells away

from the boundary.

FIG. 2. Dependence on the orientation � of the distance � from

the boundary within which the zigzag-type boundary condition

breaks down. The curve is calculated from formula �3.14� valid in

the limit �T��a of large periods. The boundary condition becomes

precise upon approaching the zigzag orientation �=� /6.
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Although the presented derivation is only valid for peri-

odic boundaries and low energies, such that the wavelength

is much larger than the length �T� of the boundary period, we

argue that these conditions may be relaxed. Indeed, since the

boundary condition is local, it cannot depend on the structure

of the boundary far away; hence, the periodicity of the

boundary cannot influences the boundary condition. It cannot

also depend on the wavelength once the wavelength is larger

than the typical size of a boundary feature �rather than the

length of the period�. Since for most boundaries both � and

the scale of the boundary roughness are of the order of sev-

eral unit cells, we conclude that the zigzag boundary condi-

tion is, in general, a good approximation.

E. Density of edge states near a zigzaglike boundary

A zigzag boundary is known to support a band of disper-

sionless states,11 which are localized within several unit cells

near the boundary. We calculate the one-dimensional density

of these edge states near an arbitrary zigzaglike boundary.

Again, assuming that the sublattice A has more boundary

modes than conditions �n�m�, for each k, there are NA�k�
−NA linearly independent states �Eq. �3.8��, satisfying the

boundary condition. For k�0, the number of boundary

modes is equal to NA=n− �m−n� /3, so that for each k, there

are

Nstates = NA�k� − n = �m − n�/3 �3.15�

edge states. The number of the edge states for the case when

n�m again follows upon interchanging n and m. The density

� of edge states per unit length is given by

� =
Nstates

�T�
=

�m − n�

3a
n2 + nm + m2
=

2

3a
�sin �� . �3.16�

The density of edge states is maximal �=1 /3a for a perfect

zigzag edge and it decreases continuously when the bound-

ary orientation � approaches the armchair one. Equation

�3.16� explains the numerical data of Ref. 11, providing an

analytical formula for the density of edge states.

IV. STAGGERED BOUNDARY POTENTIAL

The electron-hole symmetry �Eq. �3.2��, which restricts

the boundary condition to being either of zigzag type or of

armchair type, is broken by an electrostatic potential. Here,

we consider, motivated by Ref. 3, the effect of a staggered

potential at the zigzag boundary. We show that the effect of

this potential is to change the boundary condition in a con-

tinuous way from �=�z �
z� to �=�z � �� · �ẑ
�nB���. The first boundary condition is of zigzag type,

while the second boundary condition is produced by an infi-

nitely large mass term at the boundary.8

The staggered potential consists of a potential VA= +�,

VB=−� on the A sites and B sites in a total of 2N rows

closest to the zigzag edge parallel to the y axis �see Fig. 3�.
Since this potential does not mix the valleys, the boundary

condition near a zigzag edge with a staggered potential has

the form

� = − �z � �
z cos � + 
y sin ��� , �4.1�

in accord with the general boundary condition �Eq. �2.10��.
For �=0,� we have the zigzag boundary condition, and for

�=� /2, we have the infinite-mass boundary condition.

To calculate the angle �, we substitute Eq. �3.10� into the

tight-binding equation �Eq. �3.1�� �including the staggered

potential at the left-hand side� and search for a solution in the

limit �=0. The boundary condition is precise for the zigzag

orientation, so we may set �p=�p�=0. It is sufficient to con-

sider a single valley, so we also set �3=�4=0. The remain-

ing nonzero components are �1eiK·r��A�i�eiKy and �2eiK·r

��B�i�eiKy, where i in the argument of �A,B numbers the unit

cell away from the edge and we have used that K points in

the y direction. The resulting difference equations are

− ��A�i� = t��B�i� − �B�i − 1��, i = 1,2, . . . ,N ,

�4.2a�

��B�i� = t��A�i� − �A�i + 1��, i = 0,1,2, . . . ,N − 1,

�4.2b�

�A�0� = 0. �4.2c�

For the �1 ,�2 components of the Dirac spinor �, the

boundary condition �Eq. �4.1�� is equivalent to

�A�N�/�B�N� = − tan��/2� . �4.3�

Substituting the solution of Eq. �4.2� into Eq. �4.3� gives

cos � =
1 + sinh���sinh�� + 2N�/t�

cosh���cosh�� + 2N�/t�
, �4.4�

with sinh �=� /2t. Equation �4.4� is exact for N≫1 but it is

accurate within 2% for any N. The dependence of the param-

eter � of the boundary condition on the staggered potential

strength � is shown in Fig. 4 for various values of N. The

boundary condition is closest to the infinite mass for � / t

�1 /N, while the regimes � / t≪1 /N or � / t≫1 correspond

to a zigzag boundary condition.

V. DISPERSION RELATION OF A NANORIBBON

A graphene nanoribbon is a carbon monolayer confined to

a long and narrow strip. The energy spectrum �n�k� of the nth

FIG. 3. Zigzag boundary with V= +� on the A sites �filled dots�
and V=−� on the B sites �empty dots�. The staggered potential

extends over 2N rows of atoms nearest to the zigzag edge. The

integer i counts the number of unit cells away from the edge.
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transverse mode is a function of the wave number k along the

strip. This dispersion relation is nonlinear because of the

confinement, which also may open up a gap in the spectrum

around zero energy. We calculate the dependence of the dis-

persion relation on the boundary conditions at the two edges

x=0 and x=W of the nanoribbon �taken along the y axis�.
In this section, we consider the most general boundary

condition �Eq. �2.10��, constrained only by time reversal

symmetry. We do not require that the boundary is purely a

termination of the lattice but allow for arbitrary local electric

fields and strained bonds. The conclusion of Sec. III that the

boundary condition is either zigzaglike or armchairlike does

not apply therefore to the analysis given in this section.

The general solution of the Dirac equation �Eq. �2.1�� in

the nanoribbon has the form ��x ,y�=�n,k�x�eiky. We impose

the general boundary condition �Eq. �2.10��,

��0,y� = ��1 · �� � �n1 · ����0,y� , �5.1a�

��W,y� = ��2 · �� � �n2 · ����W,y� , �5.1b�

with three-dimensional unit vectors �i, ni, restricted by

ni · x̂=0 �i=1,2�. �There is no restriction on �i.� Valley isot-

ropy of the Dirac Hamiltonian �Eq. �2.2�� implies that the

spectrum does not depend on �1 and �2 separately but only

on the angle � between them. The spectrum depends, there-

fore, on three parameters: the angle � and the angles �1, �2

between the z axis and the vectors n1, n2.

The Dirac equation H�=�� has two plane wave solu-

tions ��exp�iky+ iqx� for a given � and k, corresponding to

the two �real or imaginary� transverse wave numbers q that

solve �	v�2�k2+q2�=�2. Each of these two plane waves has a

twofold valley degeneracy, so there are four independent so-

lutions in total. Since the wave function in a ribbon is a

linear combination of these four waves and since each of

Eqs. �5.1a� and �5.1b� has a two-dimensional kernel, these

equations provide four linearly independent equations to de-

termine four unknowns. The condition that Eqs. �5.1a� and

�5.1b� have nonzero solutions gives an implicit equation for

the dispersion relation of the nanoribbon,

cos �1 cos �2�cos � − cos2  � + cos � sin �1 sin �2 sin2  

− sin �sin cos � + sin � sin��1 − �2�� = 0, �5.2�

where �2=4W2��� /	v�2−k2� and cos =	vk /�.

For �1=�2=0 and �=�, Eq. �5.2� reproduces the tran-

scendental equation of Ref. 6 for the dispersion relation of a

zigzag ribbon. In the case �1=�2=� /2 of an armchairlike

nanoribbon, Eq. �5.2� simplifies to

cos � = cos � . �5.3�

This is the only case when the transverse wave function

�n,k�x� is independent of the longitudinal wave number k. In

Fig. 5, we plot the dispersion relations for several different

boundary conditions.

The low-energy modes of a nanoribbon with �� ��	v �k�
�see panels �a�–�d� of Fig. 5� have an imaginary transverse

momentum since q2= �� /	v�2−k2�0. If �q� becomes larger

than the ribbon width W, the corresponding wave function

becomes localized at the edges of the nanoribbon and decays

in the bulk. The dispersion relation �Eq. �5.2�� for such an

edge state simplifies to �=	v �k �sin �1 for the state localized

near x=0 and �=−	v �k �sin �2 for the state localized near x

=W. These dispersive edge states with velocity v sin � gen-

eralize the known11 dispersionless edge states at a zigzag

boundary �with sin �=0�.
Inspection of the dispersion relation �Eq. �5.2�� gives the

following condition for the presence of a gap in the spectrum

of the Dirac equation with arbitrary boundary condition: ei-

ther the valleys should be mixed ���0,�� or the edge states

at opposite boundaries should have energies of opposite sign

�sin �1 sin �2�0 for �=� or sin �1 sin �2�0 for �=0�.
As an example, we calculate the band gap for the stag-

gered potential boundary condition of Sec. IV. We assume

that the opposite zigzag edges have the same staggered po-

tential, so that the boundary condition is

��0,y� = + �z � �
z cos � + 
y sin ����0,y� , �5.4a�

��W,y� = − �z � �
z cos � + 
y sin ����W,y� .

�5.4b�

The dependence of � on the parameters �, N of the staggered

potential is given by Eq. �4.4�. This boundary condition cor-

responds to �=�, �1=�2=�, so that it has a gap for any

nonzero �. As shown in Fig. 6, ���� increases monotonically

with � from the zigzag limit ��0�=0 to the infinite-mass

limit ��� /2�=�	v /W.

VI. BAND GAP OF A TERMINATED HONEYCOMB

LATTICE

In this section, we return to the case of a boundary formed

purely by termination of the lattice. A nanoribbon with zig-

zag boundary condition has zero band gap according to the

Dirac equation �Fig. 5�a��. According to the tight-binding

FIG. 4. Plot of the parameter � in the boundary condition �Eq.

�4.1�� at a zigzag edge with the staggered potential of Fig. 3. The

curves are calculated from Eq. �4.4�. The values �=0 and �=� /2

correspond, respectively, to the zigzag and infinite-mass boundary

conditions.
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equations, there is a nonzero gap �, which, however, van-

ishes exponentially with increasing width W of the nanorib-

bon. We estimate the decay rate of ��W� as follows.

The low-energy states in a zigzag-type nanoribbon are the

hybridized zero energy edge states at the opposite bound-

aries. The energy � of such states may be estimated from the

overlap between the edge states localized at the opposite

edges, �= �	v /W�exp�−W / ldecay�. In a perfect zigzag rib-

bon, there are edge states with ldecay=0 �and �=0�, so that

there is no band gap. For a ribbon with a more complicated

edge shape, the decay length of an edge state is limited by �,

the length within which the boundary condition breaks down

�see Sec. III D�. This length scale provides the analytical

estimate of the band gap in a zigzaglike ribbon,

��
	v

W
e−W/�, �6.1�

with � given by Eqs. �3.13� and �3.14�.
The band gap of an armchairlike ribbon is

� = �	v/W�arccos�cos �� �6.2�

�see Eq. �5.3� and panels �e� and �f� of Fig. 5�. Adding an-

other row of atoms increases the nanoribbon width by one-

half of a unit cell and increases � by K ·R3=4� /3, so the

product �W in such a ribbon is an oscillatory function of W

with a period of 1.5 unit cells.

To test these analytical estimates, we have calculated

��W� numerically for various orientations and configurations

of boundaries. As seen from Fig. 7, in ribbons with a

nonarmchair boundary, the gap decays exponentially

�exp�−f���W /a� as a function of W. Nanoribbons with the

same orientation � but different period �T� have the same

decay rate f . As seen in Fig. 8, the decay rate obtained nu-

merically agrees well with the analytical estimate f =a /� fol-

lowing from Eq. �6.1� �with � given as a function of � in Fig.

2�. The numerical results of Fig. 7 are consistent with earlier

studies of the orientation dependence of the band gap in

FIG. 5. Dispersion relation of nanoribbons with different bound-

ary conditions. The large-wave number asymptotes ���=	v�k� of

bulk states are shown by dashed lines. Modes that do not approach

these asymptotes are edge states with dispersion ���=	v�k sin �i�.
The zigzag ribbon with �=� and �1=�2=0 �a� exhibits dispersion-

less edge states at zero energy �Ref. 11�. If �1 or �2 are nonzero, ��b�
and �c�� the edge states acquire linear dispersion, and if

sin �1 sin �2�0, �c� a band gap opens. If � is unequal to 0 or � �d�,
the valleys are mixed which makes all the level crossings avoided

and opens a band gap. ��e� and �f�� Armchairlike ribbons with �1

=�2=� /2 are the only ribbons having no edge states.

θ

∆
[h̄

v
/W

]

π/2π/4
0
0

1

3

2

FIG. 6. Dependence of the band gap � on the parameter � in the

staggered potential boundary condition �Eq. �5.4��.

FIG. 7. Dependence of the band gap � of zigzaglike nanorib-

bons on the width W. The curves in the left panel are calculated

numerically from the tight-binding equations. The right panel shows

the structure of the boundary, repeated periodically along both

edges.
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nanoribbons,7 but the exponential decrease of the gap for

nonarmchair ribbons was not noticed in those studies.

For completeness, we show in Fig. 9 our numerical results

for the band gap in an armchairlike nanoribbon ��=0�. We

see that the gap oscillates with a period of 1.5 unit cells, in

agreement with Eq. �6.2�.

VII. CONCLUSION

In summary, we have demonstrated that the zigzag-type

boundary condition �=�z �
z� applies generically to a

terminated honeycomb lattice. The boundary condition

switches from the plus sign to the minus sign at the armchair

orientation �=0 �mod � /3�, when the boundary is parallel to

1 /3 of all the carbon-carbon bonds �see Fig. 10�.
The distance � from the edge within which the boundary

condition breaks down is minimal �=0� at the zigzag orien-

tation �=� /6 �mod � /3� and maximal at the armchair ori-

entation. This is the length scale that governs the band gap

���	v /W�exp�−W /�� in a nanoribbon of width W. We

have tested our analytical results for � with the numerical

solution of the tight-binding equations and find good agree-

ment.

While the lattice termination by itself can only produce

zigzag- or armchair-type boundary conditions, other types of

boundary conditions can be reached by breaking the

electron-hole symmetry of the tight-binding equations. We

have considered the effect of a staggered potential at a zigzag

boundary �produced, for example, by edge magnetization3�
and have calculated the corresponding boundary condition. It

interpolates smoothly between the zigzag and infinite-mass

boundary conditions, opening up a gap in the spectrum that

depends on the strength and range of the staggered potential.

We have calculated the dispersion relation for arbitrary

boundary conditions and found that the edge states which are

dispersionless at a zigzag edge acquire a dispersion for more

general boundary conditions. Such propagating edge states

exist, for example, near a zigzag edge with staggered poten-

tial.

Our discovery that the zigzag boundary condition is ge-

neric explains the findings of several computer

simulations11,13,14 in which the behavior characteristic of a

zigzag edge was observed at nonzigzag orientations. It also

implies that the mechanism of gap opening at a zigzag edge

of Ref. 3 �production of a staggered potential by magnetiza-

tion� applies generically to any ��0. This may explain why

the band gap measurements of Ref. 10 produced results that

did not depend on the crystallographic orientation of the na-

noribbon.
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APPENDIX A: DERIVATION OF THE GENERAL

BOUNDARY CONDITION [EQ. (2.8)]

We first show that the anticommutation relation �Eq.

�2.7�� follows from the current conservation requirement

ϕ

f
(ϕ

)

π/60

1

2

FIG. 8. Dependence of the gap decay rate on the orientation � of

the boundary �defined in the inset of Fig. 2�. The dots are the fits to

numerical results of the tight-binding equations; the solid curve is

the analytical estimate �Eq. �6.1��.

FIG. 9. Dependence of the band gap � on the width W for an

armchair ribbon �dashed line� and for a ribbon with a boundary of

the same orientation but with a larger period �solid line�. The curves

are calculated numerically from the tight-binding equations.

FIG. 10. These two graphene flakes �or quantum dots� both have

the same zigzag-type boundary condition: �=�z �
z�. The sign

switches between ! and � when the tangent to the boundary has an

angle with the x axis which is a multiple of 60°.
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�Eq. �2.6��. The current operator in the basis of eigenvectors

of M has the block form

nB · J = � X Y

Y† Z
�, M = �1 0

0 − 1
� . �A1�

The Hermitian sub-block X acts in the two-dimensional sub-

space of eigenvectors of M with eigenvalue 1. To ensure that

���nB ·J���=0 for any � in this subspace, it is necessary

and sufficient that X=0. The identity �nB ·J�2=1 is equivalent

to YY†=1 and Z=0; hence, �M ,nB ·J	=0.

We now show that the most general 4�4 matrix M that

satisfies Eqs. �2.5� and �2.7� has the four-parameter form

�Eq. �2.8��. Using only the Hermiticity of M, we have the

16-parameter representation

M = 
i,j=0

3

��i � 
 j�cij , �A2�

with real coefficients cij. Anticommutation with the current

operator brings this down to the eight-parameter form

M = 
i=0

3

�i � �ni · �� , �A3�

where the ni’s are three-dimensional vectors orthogonal to

nB. The absence of off-diagonal terms in M2 requires that the

vectors n1 ,n2 ,n3 are multiples of a unit vector ñ which is

orthogonal to n0. The matrix M may now be rewritten as

M = �0 � �n0 · �� + ��̃ · �� � �ñ · �� . �A4�

The equality M2=1 further demands n0
2+ �̃

2=1, leading to

the four-parameter representation �Eq. �2.8�� after redefini-

tion of the vectors.

APPENDIX B: DERIVATION OF THE BOUNDARY MODES

We derive the characteristic equation �Eqs. �3.7a� and

�3.7b�� from the tight-binding equation �Eq. �3.1�� and the

definitions of the boundary modes �Eqs. �3.4� and �3.5��. In

the low-energy limit � / t"a / �T�, we may set �→0 in Eq.

�3.1�, so it splits into two decoupled sets of equations for the

wave function on sublattices A and B,

�B�r� + �B�r − R1� + �B�r − R2� = 0, �B1a�

�A�r� + �A�r + R1� + �A�r + R2� = 0. �B1b�

Substituting R1 by R2+R3 in these equations and using the

definition �Eq. �3.5�� of �, we express ��r+R2� through ��r�,

�B�r + R2� = − �1 + ��−1�B�r� , �B2a�

�A�r + R2� = − �1 + ���A�r� . �B2b�

Equations �3.5� and �B2� together allow to find the boundary

mode with a given value of � on the whole lattice,

�B�r + pR2 + qR3� = �q�− 1 − ��−p�B�r� , �B3a�

�A�r + pR2 + qR3� = �q�− 1 − ��p�A�r� , �B3b�

with p and q arbitrary integers. Substituting ��r+T� into Eq.

�3.4� from Eq. �B3� and using T= �n+m�R2+nR3, we arrive

at the characteristic equation �Eqs. �3.7a� and �3.7b��.
We now find the roots of Eqs. �3.7a� and �3.7b� for a

given k. It is sufficient to analyze the equation for sublattice

A only since the calculation for sublattice B is the same after

interchanging n and m. The analysis of Eq. �3.7a� simplifies

in polar coordinates,

�1 + ��m+n = ���n, �B4�

�m + n�arg�− 1 − �� − k − n arg��� = 2�l , �B5�

with l=0,1,2, . . .. The curve defined by Eq. �B4� is a

contour on the complex plane around the point �=−1 which

crosses points �=−1 /2 i
3 /2 �see Fig. 11�. The left-hand

side of Eq. �B5� is a monotonic function of the position on

this contour. If it increases by 2��l on the interval between

two roots of the equation, then there are �l−1 roots inside

this interval. For k=0, both �− and �+ are roots of the char-

acteristic equation. So, in this case, the number NA of roots

lying inside the unit circle can be calculated from the incre-

ment of the left-hand side of Eq. �B5� between �− and �+,

NA =
1

2�
��n + m�

2�

3
+ n

2�

3
� − 1 = n −

n − m

3
− 1.

�B6�

Similarly, on sublattice B, we have �upon interchanging n

and m�

NB = m −
m − n

3
− 1. �B7�

The same method can be applied to calculate �n. Since

there are n−1 roots on the contour defined by Eq. �B4� be-

tween �n and �
n
*, the increment of the left-hand side of Eq.

�B5� between �
n
* and �n must be equal to 2��n−1��2�n

�for �T��a�, which immediately leads to Eq. �3.14� for �n.

Re(λ)

Im(λ)

0−1

FIG. 11. Plot of the solutions of the characteristic equations

�Eqs. �B4� and �B5�� for n=5, m=11, and k=0. The dots are the

roots, the solid curve is the contour described by Eq. �B4�, and the

dashed circles are unit circles with centers at 0 and −1.
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