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Accurate computation of the far-field sound along with the near-field source terms associated with a free
shear flow requires that the Navier-Stokes equations be solved using accurate numerical differentiation and
time-marching schemes, with nonreflecting boundary conditions. Nonreflecting boundary conditions have been
developed for two-dimensional linearized Euler equations by Giles. These conditions are modified for use with
nonlinear Navier-Stokes computations of open flow problems. At an outflow, vortical structures are found to
produce large reflections due 1o nonlinear effects; these reflection errors cannot be improved by increasing the
accuracy of the linear boundary conditions. An exit zone just upstream of an outflow where disturbances are
significantly attenuated through grid stretching and filtering is developed for use with the nonreflecting
boundary conditions; reflections from vortical structures are decreased by 3 orders of magnitude. The accuracy
and stability of the boundary conditions are investigated in several model flows that include sound radiation by
an energy source in a uniformly sheared viscous flow, the propagation of vortices in a uniform flow, and the

spatial evolution of a compressible mixing layer.

I. Introduction

OMPUTATION of both the far-field sound and near-

field source terms associated with a turbulent free shear
flow allows the sound generation process to be studied di-
rectly, that is, without modeling the source terms. The far-
field sound may be measured experimentally, but the source
terms for acoustic analogies, which are a function of an un-
steady flowfield, are difficult to measure. In theoretical aero-
acoustics, source terms are modeled and the far-field sound
predicted. By solving the full unsteady Navier-Stokes equa-
tions, however, both the far-field sound and the near-field
hydrodynamics are known, and such computations may then
be used to validate theories and study the detailed physics of
sound generation. Such knowledge will ultimately provide
noise control strategies based on fundamental physics rather
than empirical correlations.

Computations of free shear flows using the unsteady, com-
pressible Navier-Stokes equations have been performed for
some time. Typically, however, little effort is made to resolve
the acoustic waves whose energy is many orders of magnitude
smaller than the hydrodynamic field. In a recent review arti-
cle, Crighton! cites three sources of difficulty in directly re-
solving the acoustic waves in Navier-Stokes computations: the
large extent of the acoustic field compared with flowfield, the
very small energy of the acoustic field compared with the
flowfield, and the possibility that numerical discretization it-
self may act as a more significant source of sound than the
continuous flowfield that is approximated. A fourth difficulty
is the posing of the free space boundary conditions appropri-
ate for the acoustic far field at an artificial computational
boundary a finite distance away from the source region. These
artificial boundaries not only must be appropriate for nonre-
flection of acoustic waves but also in certain regions must
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provide for inflow and outflow of the hydrodynamic field. We
have considered a variety of model problems to directly ad-
dress these issues. The present numerical method was used by
the authors to study the scattering of sound waves by a com-
pressible vortex.? In addition, the same method was used by
Mitchell et al.? to compute the sound produced by a pair of
corotating vortices, and a similar method was used by Lele
and Ho* to compute the sound generated by a temporally
evolving (periodic in the streamwise direction) compressible
mixing layer. These previous computations gave good agree-
ment with predictions based on acoustic analogies. The
boundary conditions that were used, however, were accurate
only for waves propagating in a single known direction at the
computational boundary. In more general flows, such as free
shear flows, such boundary conditions are not accurate. Since
the directivity of the generated sound is not known in advance,
boundary conditions accurate for incident waves over a range
of angles are necessary. Inaccuracies also arise from the pas-
sage of large-scale vortical structures through the outflow.
These difficulties can prevent the direct computation of sound
generation by turbulent free shear flows by producing spuri-
ous acoustic waves of larger magnitude than the sound gener-
ated by the actual hydrodynamic sources. In this paper, we
devote our attention to resolving these problems through the
derivation of nonreflecting boundary conditions suitable for
computations of spatially evolving free shear flows. We apply
our techniques to several model problems: the sound radiated
by an energy source in a uniformly sheared viscous flow, the
propagation of vortices in a uniform flow, and the evolution
of a two-dimensional spatially evolving mixing layer forced at
its fundamental frequency.

II. Numerical Issues and Boundary Conditions

The fully compressible unsteady Navier-Stokes equations
along with the equation of continuity and energy are to be
solved numerically. For simplicity, the fluid is assumed to be
a calorically perfect gas, with constant molecular properties.
To accurately resolve the propagation of the acoustic waves,
finite difference and time-marching schemes that have low
numerical dissipation and accurately represent the dispersion
relation for the inviscid equations are required. To this end, a
sixth-order-accurate compact finite difference scheme’ is cho-
sen for evaluating spatial derivatives. This scheme has low
dissipation and near spectral representation of the dispersion
relationship. When spatial derivatives near the computational
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boundaries are needed, a third-order-accurate compact
scheme biased toward the interior nodes is used.’ An explicit
fourth-order Runge-Kutta time advancement is used to give
low amplitude and phase errors of traveling wave solutions.
The model flows considered have infinite extent in both spatial
dimensions, and therefore finite artificial computational
boundaries are introduced. The concept of nonreflecting
boundary conditions proposed by Enquist and Majda®’ and
subsequently modified by others?-!?2 is used. Nonreflecting
boundary conditions are typically derived for a linear system
of hyperbolic equations, and hence boundary conditions for
the linearized Euler equations such as those presented by
Giles'>" need to be modified. In what follows, we restrict our
attention to the case where the flow is everywhere subsonic.
Consider the two-dimensional Navier-Stokes equations writ-
ten in terms of the primitive variables, u, v, p, and p,

—+A— +B— =d (1)

where ¥ and v are the velocities in the x and y directions
relative to the speed of sound at some fixed reference location
a., p i8 the density relative to the density at the reference
location p., p is the pressure relative to p,ca’, u is the
solution vector (p u v p], vis a vector containing the viscous
terms (not written here for brevity), and

(u p 0 0
0 u 0 1/p
A =
0 0 u 0 g8
0 v 0 u
(v 0 p 0
0 v 0 0
B = 2
0 0 1/p (2b)
¥0 0 o v )

Now, assume that the flow is linearized about a time-invari-
ant reference flow at the boundaries. The reference flow is not
required to be an exact solution of the Navier-Stokes equa-
tions but is assumed to be ‘‘close’’ to a steady solution, such
that the deviation between it and a steady laminar (or
‘“‘mean’’) solution is small. Therefore, let

u=ug(x,y)+u’(x,y,1) 3)
which, upon substitution into Eq. (1) and neglecting terms of

second order and higher in u’ gives

£+ £+Ba"—l+C'—'+S 4
o " ox P ou’' =v 0 4)

where §q is a source term depending on the chosen reference
flow,

So=do— Ag—— — Bo— (5)

and where

Ao = (62)
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If the reference flow is chosen to be uniform, then Co= 8, =0
and in the absence of viscous effects, the system of Eq. (4)
reduces to the linearized Euler equations considered in Refs. 6
and 12. In two dimensions, exactly nonreflecting boundary
conditions may be derived in Fourier space by modifying the
dispersion relation for the linear equations to prohibit wave
propagation for waves with components of their group veloc-
ity directed into the computational domain. This modified
dispersion relation is nonlinear, and thus the exactly nonre-
flecting physical space boundary conditions are necessarily
nonlocal in both space and time (in one dimension, they are
local). To produce local boundary conditions, the dispersion
relation is expanded in a Taylor series (alternative expansions
are also possible®) for small values of k,/w, where &; is the
spatial frequency in the direction parallel to the computational
boundary, and w is the temporal frequency. A resulting hier-
archy of boundary conditions is reported by Giles.'>"* The
boundary conditions are written in terms of the one-dimen-
sional characteristic variables, ¢, which are (for a boundary
that is aligned with a line x = const)

=P 0 0 1
c Po p'
c 0 0 Vypopo O || u’
= 3 & 0 VypoPo 0 4 1 B @
4 0 —=VYPoPo 0 0)p’

Physically, the four one-dimensional characteristic variables
can be interpreted as the amplitude of entropy and vorticity
waves (¢, and ¢,, respectively) that convect across the compu-
tational boundary with the component of the reference flow
velocity normal to the boundary and acoustic waves that prop-
agate downstream and upstream relative to the velocity nor-
mal to the boundary (c; and cy4, respectively).

For inflow the following boundary conditions are consid-
ered.

BCI1:

(451 0

ol =0 8)

Cy 0
BCI2:
=) 0 0 0 0 I
d; ol [°
| 40 v Gt G-u|d |2 |,
dc; G — U 2 2 | % 0
7 0 2 Vo 0 Cy

)

For outflow the following boundary conditions are consid-
ered.
BCO1:

cy=0 (10)
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BCO2:

%4( 0 (ap + ug)/2 0 i
at Po 7t Mk » ay | &

0 (11)
BCO3:

a(.'4 a 2
— +(0 1o 0 vp) — =0 (12)
ay

at

where ay = Vypo/po. We have actually changed the first equa-
tion of BCI2 from the specification of Giles'?:

dc, ac,
pricd S — =0
% + v 3 (13)

Both equations give the same accuracy in terms of reflection
coefficients.

Numerically, the outgoing characteristic variables (i.e., ¢4 at
an inflow and ¢,, ¢;, and ¢y at an outflow) must also be
computed. Typically this is accomplished by extrapolating
their value from the interior node points or by computation
via the full equations using one-sided finite differences to
approximate the spatial derivatives. We choose the latter ap-
proach in the problems considered here. To do this, the trans-
formation given by Eq. (7) is applied to the linearized equa-
tions (4). The equations are advanced in time with a fourth-
order Runge-Kutta scheme as in the interior of the domain,
whereas the spatial derivatives use a third-order Padé scheme
biased toward the interior nodes given by Lele.?

The aforementioned boundary conditions of Eqs. (8-13) are
written for a plane boundary aligned with a coordinate axis.
The derivirtives transverse to the boundary that appear in the
boundary conditions are finite differenced in the same manner
as described earlier, that is, with a sixth-order Padé scheme in
the interior of the boundary and the third-order biased scheme
at the corners. A significant practical problem that we do not
consider in detail is the posing of the boundary conditions at
corner points in computational domains. In what follows, we
have chosen to apply the preceding boundary conditions at an
angle that bisects the two coordinate directions at the corner,
as is suggested by Enquist and Majda.®

One way to measure accuracy of the preceding boundary
conditions is with reflection coefficients, which are defined as
the ratio of a particular incoming (reflected) wave to a partic-
ular outgoing wave. At an inflow, for example, there are three
reflection coefficients: acoustic to entropy, acoustic to vortic-
ity, and acoustic to acoustic. At an outflow, there are also
three reflection coefficients: entropy to acoustic, vorticity to
acoustic, and acoustic to acoustic. For the boundary condi-
tions BCI1 and BCOI, all of the reflection coefficients except
those involving entropy are proportional to ©(k,/w) (they are
therefore known as first-order boundary conditions or, alter-
natively, zeroth-order conditions since the dispersion relation
for this case is truncated to zeroth order). The reflection
coefficient involving entropy is 0 for BCI1 and BCOI!. The
acoustic-acoustic reflections generated when BCI2 or BCO2 is
used are zero to O(k,/w) (Ref. 4), whereas they are zero to
O(ks;/w)? for BCO3. The vorticity-acoustic reflection for
BCO2 is proportional to (k;/w), whereas it is 0 for BCO3. The
previous statements are only correct to the extent that the
disturbances u ‘ are indeed small such that the linearization in
Egs. (4) is accurate.

In applying the boundary conditions of Eqs. (8-12) to flows
where the reference flow is not uniform, we use the local v:.lue
of the reference flow u,, and it is therefore assumed that the

perturbation field varies on a length scale much shorter than
the reference field. This assumption can be violated in a vari-
ety of situations, and therefore we have devoted a significant
amount of attention to establishing the accuracy of the
boundary conditions empirically. Additionally, we note that
using boundary conditions BCI1 and BCI2 for the inflow
boundary in Navier-Stokes solutions represents a significant
departure from commonly used methods where, typically, the
full instantaneous velocities and, say, temperature are fixed
for all time. In the current formulation, the inflow conditions
are set only approximately by the reference flow and are
allowed to fluctuate to allow upstream propagating acoustic
waves to leave the computational domain. If the overall sys-
tem is stable, then the reference inflow conditions u, are
modified only to the extent that the mean of the upstream
propagating disturbances is nonzero; this should typically be
quite small.

III. Stability and Accuracy of Boundary Conditions

The analysis performed by Giles!2!3 shows that the bound-
ary conditions BCI11, BCI2, BCOI1, BCO2, and BCO3 are well
posed for the continuous Euler equations linearized about a
uniform mean flow, u, = const, for a single computational
boundary. Similar boundary conditions were also studied by
Gustaffson,'! who claims that they are at least weakly ill posed
in the sense of Kreiss.!* Even if they are well posed, well-
posedness for the more general nonlinear problem with multi-
ple boundaries is not guaranteed.'’ Even if the problem is well
posed, instabilities may arise when the continuous system is
discretized.

Numerical experiments of random perturbations added to a
uniform mean flow show that the perturbations are damped
over time and that the solution relaxes to the uniform mean
flow to round-off accuracy as long as the Courant-Friedricks-
Levy (CFL) number is suitably small. (In fact, the stability
limit CFL < 1.4 predicted by a stability analysis of the current
scheme for a one-dimensional periodic advection equation
given in Ref. 5 was reasonably well obeyed.) However, pertur-
bations in sheared flow (which will be described shortly) with
boundary conditions BCI2 and BCO2 or BCO3 are not
damped, and the L, norm of the solution eventually grows
exponentially in time. Since this instability is apparently due to
the shear, the usual analytical stability analyses that depend on
constant coefficient equations are not particularly useful.

For guidance in stabilizing the numerical scheme for flows
with mean shear, a full matrix linear stability analysis is per-
formed. By full matrix analysis we mean the computation of
the eigenstructure of the matrix M that results when the entire
numerical scheme for two-dimensional problems (including
boundary conditions) is written in the form

amnt'=Ma" (14)

where 4”7 is a vector of the spatially discretized values of
primitive variables u ' at time level . The matrix M is a square
N x N matrix, where N = N, X N, X 4, and therefore deter-
mining its eigensystem is only possible for small numbers of
grid points. Also, M is a function of the reference flow u,, the
choice of spatial-differencing and time-marching schemes, the
boundary conditions, and the particular grid resolution and
time step used. The observed instability indicates that M will
have at least one eigenvalue with magnitude greater than one.
The uniformly sheared viscous reference flow is given by

Po (1 = (v = D)PrS*?/2]~!
Uy M + Sy
Uy = - (15)
Vo 0
Po 17y

where S is the shear rate, and M is the Mach number at y = 0.
The computational domain for Eq. (15) is rectangular, extend-
ing from 0 to Xuax in X and from — ypax tO + Ymas in y. Note
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that Eq. (15) is an exact solution of the compressible Navier-
Stokes equations, but to avoid nonphysical negative tempera-
tures, S < 2.582/y. (for vy = 1.4 and Pr = 1.0).

The eigenvalues of M were found using a double precision
eigenvalue routine with iterative refinement on the CRAY
Y-MP computer. The accuracy of the eigenvalues was checked
in two ways. The computed eigenvectors and eigenvalues were
used to recompute the matrix, which was compared with the
original matrix M, and the numerical solutions for unstable
cases were compared with the predicted most unstable eigen-
vector. We believe the eigenvalues quoted next are accurate to
(at least) the precision reported.

When S =0, Eq. (15) is a uniform flow, and the eigenvalues
of M are found to have magnitude less than 1 for any of the
boundary conditions of Egs. (8-12), as long as the CFL re-
striction is obeyed. When S # 0, using BCI1 and BCO1 also
gives eigenvalue magnitudes less than I. However, when BCI2
and BCO2 or BCO3 are used, eigenvalues with magnitude
greater than 1 are obtained. Figure |1 shows a typical plot of
the eigenvalue magnitudes in the complex plane for the case
Ne=N, =17, yox=1, Xpax=2, Pr=1.0, S=0.125,
M =0.375, and At = 0.004, with BCI2 and BCO2. The maxi-
mum eigenvalue magnitude for this case is 1.000020.

To stabilize the shear flow computations, damping terms
are added to the left-hand side of boundary conditions BCI2
and BCO2 or BCO3. For the inflow, the damping term is of
the form

00 0 0

(4]
00 0 0 . (16)
0 0 /2 —¢/2 4

Cq

whereas for the outflow it is of the form

©0e2e2)|€ an

The form of these terms is chosen so that they drive the flow
toward ¢ = 0 or equivalently toward the reference flow u,. For
small ¢, the additional term causes the magnitude of the reflec-
tion coefficients discussed earlier to be changed only for the
reflected acoustic wave at the inflow and outflow; the order of
vortical and entropic reflections at the outflow remains the
same. The additional reflected acoustic wave is proportional
to e. Ideally, the value of e should be small with respect to the
reflection errors that arise from the truncation of the modified
dispersion relation, so that the nonreflecting properties of the
boundary conditions are not significantly degraded.

Damping terms similar to the ones proposed earlier were
included in the boundary condition treatments of Poinsot and
Lele'® and Rudy and Strikwerda,!” who discuss a physical
interpretation and the parametric dependence of the constant
¢ and show that the value of the constant scales with the
inverse of length of the computational domain in the direction
normal to the boundary; i.e., larger domains require smaller
amounts of damping.

When Eqs. (16) and (17) are added to BCI2 and BCO?2, the
resulting maximum eigenvalue magnitude of M is less than 1
for a suitably large value of ¢. Figure 2 shows that maximum
eigenvalue magnitude as a function of e for the same case as
Fig. 1. The threshold value of ¢ above which stable numerical
schemes are obtained is about 0.001 for this case. Numerical
experiments on the shear flow with e > 0.001 indicate that the
CFL limit predicted by the simple periodic one-dimensional
advection equation analysis is once again roughly obeyed.

We note that the preceding matrix stability analysis was
performed to demonstrate that the proposed damping is a

viable way to remove the observed instability in the computa-
tions. It should not be interpreted as a general stability analy-
sis of the current scheme and is not particularly useful for
predicting CFL restrictions due to its large computational
expense. Similarly, the value of e quoted earlier is valid only
for the particular parameters used. We do not recommend this
particular value of € for other problems, since the dependence
of € on the relevant physical and numerical parameters was not
thoroughly investigated. In the remainder of the test cases
considered, we have used a larger amount of damping, ¢ =
0.05, which we find to be a fairly robust value in that stability
is achieved for all of the problems we have considered.

To investigate the accuracy of the higher order boundary
conditions discussed earlier, both with and without the damp-
ing, the generation of acoustic waves by a source in the uni-
formly sheared viscous flow is computed. Acoustic waves are
generated by placing a quadrupole time harmonic energy
source in the center of the computational domain. A sche-
matic diagram of the flow and computational domains used is
shown in Fig. 3. In both the x and y directions, grid points
were used, which gives approximately 40 grid points per
acoustic wavelength, which is sufficient resolution to keep the
discretization errors much smaller than the errors due to the
approximations in the boundary conditions. The CFL number
for the computation was 0.7. For several different boundary
conditions Fig. 4 shows a comparison of pressure fluctuations
produced by the source after several wavelengths of the gener-
ated sound have crossed the computational boundary: 1)
higher order inflow and outflow (BCI2 and BCO2) with e = 0,

1.0

0.57

Inag()
o
S

0.25 0.50 0.75 1.00 1.25

Real(A)

Fig. 1 Location of the eigenvalues of M in the complex plane; the
solid line is the unit circle.

[Alniez

0.000 0.005 0.010

€

Fig. 2 Maximum eigenvalue magnitude as a function of the damping
parameter e.
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U=0.625 I

U=0.375 5A/3 101/3
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| Small Domain

U=0,125

Large Domain

Fig. 3 Schematic diagram of quadrupole sound generation in uni-
formly sheared flow.

a) b) c)

Fig. 4 Comparison of boundary conditions; the top row shows iso-
contours of pressure fluctuations, and the bottom row shows isocon-
tours of the error in pressure fluctuations: a) BCI2, BCO2, ¢ = 0;
b) BCI2, BCO2, ¢ = 0.05; and c) BCI1 and BCO1. Contour levels in
the top row are min = —5 X 10-5 max = 5 X 10-5, and increment
= 5% 10-6, and in the bottom row they are min = —5x 105, max
= §% 10-9%, and increment =5 x 10-7,

2) BCI2 and BCO2 with € = 0.05, and 3) first-order inflow and
outflow (BCI1 and BCOI1). The instantaneous pressure fields
are plotted in the top row of the figure, and the difference
between the top row and the ‘‘exact solution’” is plotted in the
bottom row. The exact solution is obtained from a computa-
tion performed on the larger computational domain, where
reflection errors from the boundaries have not had sufficient
time to contaminate the solution inside the smaller box size.
The reflection errors for BCI2 and BCO2 are an order of
magnitude smalier than the reflection errors from BCI1 and
BCOIl. The effect of the additional damping terms on the
waves is apparently very small.

After some time, the energy source is turned off to deter-
mine the boundary conditions’ ability to aliow the flow to
return to the steady reference flow. Figure 5 shows the root
mean square streamwise velocity fluctuation (averaged over
the computational domain) as a function of time (note the iog
scale in the figure) after the source has been turned off. An
exponential type of instability is evident for BCI2 and BCO2
with e¢ = 0, whereas the fluctuations die off to machine zero
when the damping is used. It is interesting to note that the rate
of the exponential growth of the unstable scheme is nearly 1
when time is normalized with the time it takes a particie to
traverse the computational domain. This suggests a feedback
resonance between the inflow and outflow boundaries as the
mechanism for the instability. We will have more to say about
this feedback in connection with the spatially evolving mixing
layer considered in Sec. V.

1V. Propagation of Vortices in Uniform Flow

We next consider the propagation of a vortex in a uniform
flow, as it traveis through the computational outflow
boundary. This problem is chosen to test how the boundary
conditions discussed earlier handle a large convecting distur-
bance that violates the linearity assumed in the boundary
condition derivation. The computations are initialized with a
compact, zero circulation vortex'® in the center of the compu-
tational domain. The vortex then convects with the uniform
flow and eventually travels through the outflow boundary,
generating a reflected acoustic wave. In both-the x and y
directions, 200 grid points were used for this computation,
and the CFL number was 0.7. Figure 6 shows this process for
a computation where the outflow conditions BCO3 were used.
It is clear that the outflow boundary condition is satisfactory
for the vorticity (hydrodynamic) fieid, but it is inadequate for
the acoustic field.

We have run this test for both boundary conditions BCO2
and BCO3, varying the amplitude of the vortex relative to the
uniform flow. The results are shown in Fig. 7, where the
maximum amplitude of the dilatation in the reflected acoustic
wave is piotted against the amplitude of the incident vortex
(defined as the maximum vorticity in the vortex). According to
the previous discussion of reflection coefficients, BCO2
should produce a reflection that is proportional to (k;/w)
times the incident vortex. Since (k;/w) is held fixed as the
amplitude varies, Fig. 7 gives a linear variation of the reflected
acoustic wave amplitude with the incident vortex amplitude
for BCO2. According to the analysis, BCO3 should produce
no vortex-acoustic reflection, but Fig. 7 shows a reflected
acoustic wave that is proportional to the square of the ampli-

)

rmas

-

oL
L

!

log(u
.

10 A N S SN

10 :

A& 2

19 5 10 15
Normalized Tine

Fig.5 Comparison of boundary conditions, decay of streamwise
velocity fluctuations in uniformly sheared flow after acoustic source is
turned off. Time is normalized by the average time for a particle to
traverse the computational domain: —, BCI2, BCO2, and ¢ =
0.05; - ---, BCI2, BCO2, and ¢ = 0.

Increasing Time —

1@ @ @€

|@iCI e 4

Fig. 6 Acoustic wave reflection by vortex propagating through out-
flow boundary. In the top row, the isocontours of vorticitly are
min = —0.1, max =0.8, and increment = 0.05. In the bottom row,
the isocontours of the dilatation are min = —0.01, max = 0.01, and
increment = 0.001.

|
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tude of the incident vortex. This is due to nonlinear effects
that are neglected in the boundary condition treatment. Since
the two curves for BCO2 and BCO3 approach each other for
large vortex amplitudes, there is no advantage to the more
accurate boundary condition when the outflowing distur-
bances are not small compared with the reference flow. Typi-
cally the sound radiated by flow structures is many orders of
magnitude smaller than the hydrodynamic fluctuations, and a
reflection of the magnitude given by Fig. 7 would completely
obscure the sound generation process.

We now proceed to modify the outflow boundary condi-
tions to reduce the magnitude of the acoustic reflection due to
the passage of large vortical disturbances. One approach that
has been successful in direct numerical simulations of hydro-
dynamic fields (see, for example, Rai and Moin'®) is the use of
an exit zone, where the grid becomes coarse in the downstream
direction, and filtering and/or artificial viscosity are used to
damp disturbances as they propagate through the coarse
mesh. Typically this approach is coupled with a crude
boundary condition at the downstream boundary of the exit
zone, such as the specification of the pressure, and extrapola-
tion of the other flow variables. The exit zone works as fol-
lows: disturbances that are propagating downstream into the
region of grid stretching become less well resolved. Upwind/
downwind biased differentiation schemes have the property of
significantly attenuating disturbances that are poorly resolved
on the computational mesh, and so the disturbances are signif-
icantly damped before they interact with the downstream com-
putational boundary. Similarly, a nonbiased differentiation
scheme can be used if the field is low pass filtered in the region
of the grid stretching, such that unresolved disturbances are
attenuated.

There are two potential problems with such an approach.
First, the least resolved disturbances can propagate upstream;
it is thus possible that the solution upstream will become
contaminated with small wavelength disturbances. Second,
grid stretching produces acoustic waves that propagate both
upstream and downstream.

Consider, for example, the following grid-stretching
scheme. Let the variable s represent a uniform grid that ex-
tends from O to Sp.x, With N grid points (including the end-
points). Let As be grid spacing in s [such that s, =
(N — 1)As] and let the initial physical domain grid spacing
also be also equal to As. Let x, and xm. be the desired
coordinates of the end of the physical domain and the com-
plete length of the computational domain, respectively. Fi-
nally, let Ax, and Axne, be the (stretched) grid spacing at x,
and x..., respectively. The physical coordinate x is given by

Ax,
X =5+ —= fue?t -5 4 1] (18)
oAs
0
10 | [
| I
2?10 |
Y ' "
$ o | 7
g5 10 =3
= 2 o= |
B v N et
og 10 - /]
© ] |
SR A
:.a < 10 / |
L |
10 7 |
‘0-‘ T T
10? 10? 10" 10°

Amplitude of Incident Vortex

Fig. 7 Reflected acoustic wave as a function of the amplitude of the
incident vortex: —, BCO3; - - - -, BCO2.

Without Exit Zone

a)

With Exit Zone

/i

Fig.8 Propagation of a vortex in uniform flow, M = 0.5; compari-
son of computations with and without exit zones on x-¢ diagrams.
Shown are contours of a) pressure without exit zone, b) vorticity
without exit zone, c) pressure with exit zone, and d) vorticity with exit
zone. Boldface letters refer to specific events mentioned in the text.
All computations with BCI2 and BCO3. Contours: pressure—
min = 71.368, max = 71.459, increment = 0.007; vorticity—min =
—2.0, max=0.8, increment = 0.4.

c) T d) z

where
i Smax[] + (AXmax/As)] = Xmax (19)
=
(Axmax/As)
e €n(AXpmax/64) (20)
S' ez Xp
. @1

2

The parameter 6 controls how much the grid has been
stretched by x,, the end of the physical domain. The closer 6
is to 0, the more uniform the mesh is in the physical region.
We have used 6 = 0.00001, which gives a very smooth transi-
tion to the coarser mesh in the region near x = xpux.

We chose to filter the solution in the exit zone. An explicit
filter of the form

fi=a@)fi + b)) fisr + i) + e Sfiva+ fi-2) (22)

where f,- is the filtered field at point s;; and the coefficients a,
b, and c vary smoothly (with the ratio of the local grid spacing
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Fig.9 Propagation of a vortex in uniform flow, M = 0.5; compari-
son of computations with and without exit zones on x-f diagrams.
Shown are contours of a) dilatation without exit zone, b) dilatation
with exit zone (levels: min = — 0.02, max =0.02, increment = 0.002),
and c¢) contours of dilatation including exit zone (levels: min
= =0.0002, max =0.0002, increment = 0.00002). Boldface letters re-
fer to specific events mentioned in the text.

to the initial grid spacing) from their values of 1, 0, and 0,
respectively, in the physical region to 5/8, 1/4, and —1/12 at
the end of the exit zone. This filter preserves at least second-
order accuracy at all points in the exit zone but significantly
attenuates poorly resolved disturbances throughout only the
exit zone. We have used the following functions for the coeffi-

cients:
_3.3 b @)x —x) ||
a(X)—8+ s{e"p[” —n B (23a)
2
b(x)= 3 [1 =a(x)] (23b)
c(x) = é [a(x)—1] (23¢c)

where x, is the value of x where the ratio of the local grid
spacing to the initial grid spacing is 1.25. These particular
coefficients provide filtering throughout the exit zone only.
Any of the boundary conditions BCO1, BCO2, or BCO3
can be used at the end of the exit zone without modification.
To test the exit zone method, computations of vortex prop-
agation in uniform flow were made on a domain with exit zone
and compared with the computations discussed in the previous

section. The results are presented in Figs. 8 and 9, in the form
of x-t diagrams that allow the reflection process to be seen
clearly. The quantities shown in the figures are first integrated
in the direction normal to the vortex propagation, and then
isocontours are plotted in the x-r plane. Note that the integra-
tion in the normal direction produces no overall cancellation
of waves, since the waves (as well as the vortex) are symmetric
about the line x = 0. Sample characteristic path lines for both
convective and propagating acoustic disturbances are shown
in Fig. 8. Figure 8 shows the same pressure and vorticity
contours for computations both with and without the exit
zone. The convection of the vortex with the uniform flow is
clearly seen in both the vorticity and pressure contours (the
pressure is lower than ambient in the core of the vortex). This
event is labeled as a in the figure. As the vortex reaches the end
of the domain for the case without the exit zone, a large
acoustic reflection is generated, which can be seen in the
pressure contours (event b). At the contour levels shown in the
figure, no reflection is evident for the computation with the
exit zone.

The dilatation field is shown in Fig. 9 for both computa-
tions. The acoustic reflection from the vortex is evident for the
case without the exit zone (event ¢). Multiple reflections con-
tinue as the time increases (events d and e). Shown in Fig. 9¢
is the dilatation field for the exit zone computation, but with
contour levels 100 times smaller than in Fig. 9b. In Fig. 9¢, the
contours are also drawn in the exit zone, and the time scale has
been expanded. At the smaller contour levels, an initial acous-
tic transient that propagates out from the initial vortex loca-
tion (event f) is evident. This initial acoustic transient dies off
sharply as it reaches the region of grid stretching and filtering
(event g), without generating any appreciable propagating dis-
turbance. As the vortex convects into the region of grid
stretching and filtering, large dilatational disturbances are
created (event h), and they are attenuated as they propagate
further toward the end of the exit zone (event k). An upstream
propagating acoustic wave is also created that travels into the
physical domain (event m). The magnitude of this disturbance
is quite small, about 3 orders of magnitude smaller than the
reflected acoustic wave (event ¢) for the case without the exit
zone. It is clear that the exit zone feature should be used when
disturbances whose amplitude is not small compared with the
reference flow are present.

We note that the additional cost for the exit zone for the
proceeding problem is high, requiring roughly as many grid
points in the exit zone as in the physical region. In general,
however, the region need only be slightly larger than the
largest flow structures which convect into it. Therefore, for
spatially evolving shear flow computations, where the physical
domain is generally much longer than the flow structures, the
relative cost of the exit zone is small.

V. Two-Dimensional Mixing Layer

We now proceed to apply the methods developed in the
previous sections to computations of a planar spatially evolv-
ing compressible mixing layer. We start our computation with
a reference flow uy, which is a solution to the laminar
boundary-layer equations. This solution is determined by solv-
ing the Blasius equation with a shooting scheme described by
Sandham and Reynolds.? For some of the computations, the
solution is forced at the inlet by eigenfunctions determined by
linear stability analysis of the laminar flow.?° The reference
flow pressure is uniform, and the temperature ratio across the
layer is taken to be I. In what follows, lengths are normalized
by the initial vorticity thickness of the layer 6, (normalized to
1 in the computations). The velocities and density are normal-
ized by the value of the streamwise velocity U, and density p,
on the high-speed side of the layer, respectively.

At the computational boundaries in the normal (y) direc-
tion, there is inflow due to entrainment by the layer. The
deviations from the reference flow are likely to be small at the
inflow boundaries (both at the streamwise inflow boundary
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Fig. 10 Change in average u, v, p, and p in computational domain
as a function of time: ——, U; cseveser, V) === =, p; —.—,p (lines for
p and p fall directly on top of one another). Mixing layer with
streamwise length of x = 605,. The small bump in the curves near
tay/6, = 160 is due to the passage of the startup vortex through the
outflow boundary.
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Fig. 11 Change in average u, v, p, and p in computational domain
as a function of time: ——, U; ceveeers, ¥} — ===, p; —+—,p (lines for
p and p fall directly on top of one another). Mixing layer with
streamwise length of x = 105,.
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Fig. 12 Comparison of boundary conditions, mixing layer. Same parameters as before, except x, = 555,. Contour levels: dilatation—
min = -3 X 10-4, max=3 x 10-4, and increment =3 x 10-%; vorticity—min= —0.25, max= —0.01, and increment =0.03. The T is one

period of the fundamental frequency.

and the normal boundaries), owing solely to acoustic fluctua-
tions, and therefore BCI2 is applied at these boundaries. At
the outflow boundary, large flow structures must pass through
the computational boundary, and therefore BCO3 is used in
combination with the exit zone discussed in the previous sec-
tion.

One problem that has been noted?! in computing spatially
evolving mixing layers (or indeed any convectively unstable
flow) is self-forcing due to the coupling between the instabili-
ties of the flow and the reflection process at the inflow/out-
flow boundaries. In addition to ‘‘physical”’ reflections that
occur at artificial computational boundaries, artificial compu-
tational boundaries also produce short wavelength ‘‘saw-
tooth”’ reflections due to modifications in finite difference
schemes necessary near and at the boundary. These reflections
have been studied in detail by Vichnevetsky and Pariser? and
Vichnevetsky.?® By physical reflections, we mean smooth re-
flections produced by the inexactness of the nonreflecting
boundary conditions. The sawtooth waves produced at the
boundaries propagate upstream at speeds that can be greater
than the sonic velocity and interact with the upstream

boundary, which reflects them as smooth, physical waves.!*
For flows that do not amplify or damp physical distur-
bances as they propagate downstream, a numerical scheme
can only be stable if the physical wave produced by the inter-
action of the sawtooth wave at the inflow has a smaller ampli-
tude than the wave that originally produced the sawtooth wave
at the outflow. In other words, the overall *‘reflection coeffi-
cient’’ must be less than 1. For convectively unstable flows,
however, the smooth wave produced at the inflow may grow
substantially, depending on its wavelength. Thus the product
of the reflection coefficient and the total amplification of the
disturbance as it convects through the computational domain
must be less than 1. If this condition is not met, the mixing
layer becomes self-forced, and the convective instability of the
flow is turned into a global instability of the numerical method
that has the appearance of a physically plausible solution.
The presence of such an instability may be tested by deter-
mining whether a computation fails to relax to steady state in
the absence of continuous forcing. The initial conditions are
not an exact solution to the Navier-Stokes equations and thus
provide the initial disturbance for the instability. Figure 10
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shows the change in the average values of u, v, p, and p in the
computational domain as a function of time for one such
computation. The Mach number of the high-speed stream is
0.5, the velocity ratio across the layer is 0.5, and the Reynolds
number, Re = (U, — Uy)é,/d,, is § x 102, The domain extends
to 608, in the streamwise direction, which is long enough for
a 0.1% disturbance (relative to the reference velocity U,) at the
most unstable frequency to saturate before convecting out of
the domain. The domain extends to + 5§, in the normal direc-
tion, and 601 x 101 grid points are used. The CFL number
was, again, 0.7 (a similar computation with less resolution,
401 x 75 grid points, gave nearly identical results). The solu-
tion is apparently relaxing to steady state since the oscillations
are damping over time. Figure 11 shows a computation on a
shorter domain, extending to 108, (with 101 X 101 grid
points), which relaxes to steady state much more rapidly. The
damping parameter ¢ was 0.05 for both cases.

The necessity of the exit zone is also demonstrated by the
mixing-layer computations. The parameters of the runs are the
same as before, except that the physical domain extends to
556,, for both cases. The computations are forced by the linear
eigenfunctions corresponding to the most unstable frequency,
at an amplitude of 0.1% at the inflow. Figure 12 shows a time
series of plots of both the vorticity and dilatation for two runs,
with and without exit zones. The time series shown corre-
sponds to the time when the first vortex created by the eigen-
function forcing reaches the outflow boundary for the case
without the exit zone. The time increment between each suc-
cessive frame in Fig. 12 is one period of the most unstable
frequency. Although the vorticity for the two runs appears to
be identical, a large reflection is clearly evident in the contours
of dilatation for the computation without the exit zone. The
amplitude of the reflection is of the same order of magnitude
as the maximum dilatation of the structures. It is obvious that
such a strong acoustic reflection would obliterate any sound
waves that the structures might produce. On the other hand,
the reflection is not seen for the computation with the exit
zone (and does not appear at later times that are not shown in
the figure).

VI. Summary

In previous studies by Colonius et al.,2 Mitchell et al.,? and
Lele and Ho,* accurate computations of aerodynamic sound
generation and the scattering of sound were performed for
some model aeroacoustic problems. The results showed good
agreement with both aeroacoustic theory and experimental
evidence. In this paper we have described modifications to our
numerical scheme and to the nonreflecting boundary condi-
tions derived by Giles'>!? to extend the method to allow accu-
rate computations of free shear flows with inflow/outflow
type boundaries.

To produce stable numerical schemes in the presence of
shear, damping terms must be added to the boundary condi-
tions. The amount of damping necessary to stabilize the sys-
tem was found to be small and does not significantly alter the
nonreflecting properties of the boundary conditions.

The accuracy of the outflow boundary condition, in terms
of acoustic reflections from vortical disturbances, is con-
trolled by nonlinear effects rather than the accuracy of the
linear nonreflecting boundary condition for disturbance am-
plitudes expected in typical shear flow computations. An exit
zone region where disturbances are significantly attenuated
through grid stretching and filtering is developed. The use of
such an exit zone is found to reduce the magnitude of acoustic
reflections by 3 orders of magnitude for the flows studied.
Computations of spatially evolving mixing layers without such
an exit zone are shown to have acoustic reflections that com-
pletely obscure any other sound that may be produced by the
flow. The current numerical method and boundary conditions
were found to give stable results for computations of spatially
evolving mixing layers; numerical self-excitation of the layer
did not occur.
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