
Boundary Conditions for Limited-Area Ensemble Kalman Filters

Ryan D. Torn1 & Gregory J. Hakim

University of Washington, Seattle, WA

Chris Snyder2

National Center for Atmospheric Research, Boulder, CO

Submitted to Monthly Weather Review

January 5, 2005

1Corresponding Author:
Ryan D. Torn
Department of Atmospheric Sciences, Box 351640
University of Washington
Seattle, WA 98195-1640
E-mail: torn@atmos.washington.edu

2The National Center for Atmospheric Research is sponsored by the National Science Foundation



Abstract

One aspect of implementing a limited-area ensemble Kalman filter (EnKF) involves the

specification of a suitable ensemble of lateral boundary conditions. We propose two classes

of methods to populate a boundary condition ensemble. In the first class, the ensemble of

boundary conditions is provided by an EnKF on a larger domain and is approximately a

random draw from the probability distribution function for the forecast (or analysis) on the

limited-area domain boundary given the available observations. The second class perturbs

around a deterministic estimate of the state using assumed spatial and temporal covariance

relationships. Methods in the second class are relatively flexible and easy to implement.

Experiments that test the utility of these methods are performed for both an ideal-

ized low-dimensional model and limited-area simulations using the Weather Research and

Forecasting (WRF) model; all experiments employ simulated observations under the perfect

model assumption. The performance of the ensemble boundary condition methods is assessed

by comparing the results of each experiment against a control “global” EnKF that extends

beyond the limited-area domain. For all methods tested, results show that errors for the

limited-area EnKF are larger near the lateral boundaries than those from a control EnKF,

but decay into the limited-area domain so that errors are comparable to the control case.

The relatively larger errors in the limited-area domain EnKF originate from not assimilating

observations outside the limited-area domain and, in the second class of methods, from

deficiencies in boundary spatial and temporal covariances. Overall, these experiments suggest

that for observation densities typical in NWP, ensemble boundary conditions can be specified

in the absence of a global ensemble without significant penalty in the domain interior by

perturbing around an ensemble mean.
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1. Introduction

The ensemble Kalman filter (EnKF) provides a computationally practical alternative to

the extended Kalman filter for use in atmospheric data assimilation (e.g. Evensen 1994,

Evensen 2003, Hamill 2005). One attractive property of the EnKF is state-dependent esti-

mates of the background-error covariance matrix, which controls how observational informa-

tion affects model variables. This attribute may be especially important for mesoscale data

assimilation, where the synoptic-scale balance relationships (geostrophic and hydrostatic

balance), employed in many existing data assimilation schemes (Parrish and Derber 1992,

Rabier et al. 1998), are weak or absent. While previous studies do indeed suggest that

the EnKF will be useful for mesoscale applications (Snyder and Zhang 2003, Dowell et al.

2004), these studies did not account for lateral boundary condition error; accounting for such

error may be crucial for situations with inflow across domain boundaries. Here we address

this issue of ensemble boundary conditions for limited-area EnKFs by exploring a range of

practical options.

Previous work on limited-area modeling has shown that lateral boundary conditions

affect solutions over the entire domain (Warner et al. 1997). Predictability on limited-

area domains is distinct from global domains in that growing errors may be advected out

of the domain, which along with accurate boundary conditions on inflow boundaries may

lead to enhanced predictability relative to global domains (Errico and Baumhefner 1987).

Conversely, sensitivity studies have shown that errors on limited-area domains may be traced

back to the boundaries (Errico et al. 1993), and therefore inaccurate boundary conditions

may result in large forecast errors (Vukicevic and Errico 1990, Vukicevic and Paegle 1989,

Warner et al. 1989). In general, the size of the domain and the length of model integration

determine how much the lateral boundaries affect solutions on the domain interior. Moreover,

Nutter et al. (2004a, 2004b) show that ensemble boundary conditions must be perturbed to

prevent an ensemble forecast from losing variance for increasing lead time.

Boundary condition error has not been addressed in past EnKF studies. Most previous

EnKF studies have employed global models that resolve synoptic scales (e.g. Houtekamer
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and Mitchell 2001, Mitchell et al. 2002, Whitaker and Hamill 2002, Whitaker et al. 2004).

EnKF studies with limited-area models have used identical boundary conditions for each

ensemble member (Snyder and Zhang 2003, Dowell et al. 2004, Zhang et al. 2005). Here,

we explore a range of possible methods for ensemble boundary conditions in a limited-area

EnKF for two different models in ideal settings. Although this paper deals with ensemble

data assimilation, we note that the boundary condition ideas outlined here may also prove

useful for limited-area ensemble forecasting.

This paper is organized as follows. Section 2 outlines five methods for generating an

ensemble of lateral boundary conditions. Section 3 details the implementation of these

methods in EnKFs applied to a simple one-dimensional model and the Weather Research

and Forecast model model (WRF). We document the results of the experiments for the simple

model in section 4 and for the WRF experiments in section 5. A concluding summary is

provided in section 6.

2. Boundary Perturbation Methods

A common practice in numerical weather prediction models is to advance the lateral

boundary points linearly in time, such that Xk,i, a state variable at time tk and location i

on the boundary, evolves according to:

Xk+1,i = m∆t + Xk,i, (1)

where

m =
Xk+1,i −Xk,i

∆tbc
,

and ∆tbc is the time between boundary updates (tk+1 and tk). Whereas Xk,i comes from the

limited-area analysis, values of Xk+1,i are typically based on forecasts from a global model

or a model with a larger domain.

As summarized previously, the specification of lateral boundary conditions is a key

component of limited-area models. Since lateral boundary conditions are imperfect and

affect the solution on the domain interior, an ensemble forecast in a limited-area model
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requires an ensemble of lateral boundary conditions. This ensemble of boundary values,

Xj
k+1,i, where j is the ensemble member index, must take into account spatial and temporal

covariance relationships to avoid spurious effects in the interior, while maintaining ensemble

variance.

We define two classes of ensemble boundary conditions, the first of which derives com-

pletely from an ensemble on a larger domain. The absence, in many applications, of an

appropriate larger domain ensemble motivates the second class, which consists of methods

that parameterize or model the spatial and temporal covariance relationships of the boundary

conditions. Below we define one implementation of the first class, and four methods in the

second class. This range of possible methods is not meant to be exhaustive, but rather to

provide a broad sample of techniques that emphasize the available flexibility in the problem.

Table 1 provides a summary of the essential aspects of the methods that we now discuss in

detail.

a. Global Ensemble Values (GEV)

Perhaps the most natural method for ensemble lateral boundary conditions is one that

uses values from a global-model ensemble having the correct short-term error statistics, such

as might come from an EnKF. This method involves pairing each limited-area ensemble

member with a global ensemble member. Appealing to (1), Xj
k+1,i is obtained by interpolat-

ing the parent global ensemble member’s short-term forecast onto the boundary points of the

limited-area domain. The main advantage of this method is that the covariance relationships

are state dependent. A disadvantage is that errors in, and even the formulation of, the global

model can lead to detrimental incompatibilities on the boundaries; for example, the global

and limited-area model may have different attractors or the global ensemble could be drawn

from the wrong distribution. Furthermore, the global ensemble must have at least as many

members as desired for the limited-area ensemble.

Presently such an operational global EnKF system does not exist. Even assuming a

global EnKF system becomes available, retrospective case studies may require running a

global ensemble if an archived one does not exist. It is therefore advantageous to seek
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other methods that yield results comparable to GEV, but that are not as computationally

expensive and which offer greater flexibility.

Next, we introduce a series of methods that populate an ensemble around a deterministic

forecast. In each of the following methods, Xj
k+1,i is calculated from

Xj
k+1,i = Xk+1,i + δXj

k+1,i, (2)

where Xk+1,i is the ensemble mean boundary value, which is given by the best available

estimate of boundary points (e.g. from an operational center analysis or forecast) and δXj
k+1,i

is a perturbation for ensemble member j generated by one of the following methods.

b. Climatology Time Series (CTS)

CTS obtains values for δXj
k+1,i from a set of time series taken from a climatological

dataset. Time series equal in number to the ensemble size are drawn from climatology

starting at arbitrary dates for a length of time equal to the period of assimilation; each time

series includes all the boundary points and is assigned to a specific ensemble member. The

ensemble mean is removed from the ensemble and these perturbations, δXj
k+1,i, are scaled by

an assumed constant. Because this method does not require a separate, independent global

ensemble, it is less computationally intensive than GEV.

Spatial and temporal covariances in this case are not state dependent but rather they

estimate climatological covariances to within sampling errors, and therefore should reflect

the dominant balance relationships such as geostrophic or hydrostatic balance. To the extent

that balances are significantly non-linear, scaling the perturbations will disrupt the balance.

These attributes are both a strength and a weakness because CTS yields time series with

spatial and temporal covariances from real atmospheric states, but they are flow independent.

Another drawback is the empirical scaling of the boundary perturbations.

c. Global Ensemble Sampling (GES)

It is possible to choose a few boundary points to perturb and to adjust all other boundary

points to maintain an assumed balance. We define two methods (GES and, in section 2d,
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LAES) that have assumed spatial and temporal covariance relationships, but do not require

an empirical scaling factor for the boundary variance. GES consists of choosing boundary

points to model as an autoregressive process, adjusting all other boundary points to maintain

balance with each of the new perturbed boundary points using an assumed fixed covariance

matrix, then summing up the perturbations over all chosen points. Mathematically, this

process can be described via

δXj
k+1,i =

Npert∑
m=1

[
(aδXj

k,m +
√

1− a2σk,mεj
k,mCi−m

]
, (3)

where a is the temporal autocorrelation coefficient for ∆tbc and Npert is the total number

perturbed boundary points. δXj
k,m is ensemble member j’s deviation from the ensemble

mean, Ci−m is the assumed covariance between Xk+1,i and Xk+1,m, σk,m is the ensemble

standard deviation and εj
k,m are independent realizations of a normally distributed random

variable having zero mean and unit variance.

In the present method, σk,m is taken to be the sample standard deviation from a global

ensemble at the mth grid point. If a global ensemble exists with fewer members than

needed, this method may be used to augment the ensemble for use in the GEV method;

here we consider the case where the global ensemble is simply sampled for its variance to

populate a random ensemble. Similarly, the global ensemble could be used to estimate Ci−m

at each tk, but we will only consider the case that Ci−m is fixed and independent of tk.

This method is attractive because it uses a state-dependent variance estimate, but may

suffer from sampling errors in that estimate and from deficiencies in the assumed temporal

autocorrelation coefficient and spatial covariances Ci−m, which are state independent.

d. Limited-Area Ensemble Sampling (LAES)

This method is similar to GES, but uses the standard deviation given by the limited-

area ensemble analysis on the boundary points as the source of σk,m in (3). One defect of

this method is that the ensemble variance decreases too much with time owing to sampling

error in EnKF; therefore, the limited-area ensemble boundary variance is inflated by a small
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amount. It is also not clear that the limited-area ensemble analyses reflect the uncertainty in

the global fields because they lack information about observations and error evolution outside

the domain. An advantage of this method is that it is completely self-contained, requiring no

external data. Like the previous method, the use of assumed spatial and temporal covariances

is a weakness.

e. Fixed Covariance Perturbations (FCP)

Unlike the previous two methods, which only directly perturb a limited number of

boundary points, this method employs fixed spatial and temporal covariance relationships to

create perturbations in all boundary points and fields. Here, we assume that the boundary

perturbations are random draws from a normal distribution with zero mean and covariance

matrix P b, which we shall denote by N(O,P b). The temporal evolution of the boundary

perturbations is assumed to be an autoregressive process such that,

δXj
k+1,i = aδXj

k,i +
√

1− a2X̃j
k,i, (4)

where a is the temporal autocorrelation coefficient for ∆tbc and X̃j
k,i is a scaled sample from

N(O,P b). In general, it is nontrivial to construct and sample from P b for systems with a

high-dimensional multivariate state. Fortunately, variational assimilation systems typically

include sophisticated models for P b and are often available in a form which makes sampling

from N(O,P b) straightforward (e.g. Andersson et al. 2000, Barker et al. 2004). One of

the main advantages of this method is that balanced perturbations can be created without

storing large amounts of data as may be required for GEV and CTS; however, this method

may suffer from a lack of state-dependent information.

3. Experiments

a. Simple Model

A simple one-dimensional model is used to explore the boundary condition methods

described above in a controlled setting (Lorenz and Emanuel 1998, hereafter LE). This

model has proven useful in EnKF experiments because it qualitatively relates to mid-latitude
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dynamics and has low computational cost (e.g. Anderson 2001; Whitaker and Hamill 2002).

At each grid point, i, the model is defined by

dXi

dt
= (Xi+1 −Xi−2)Xi−1 −Xi + F, (5)

where the terms on the righthand-side can be thought of as representing advection, dissi-

pation and forcing, respectively, of an unspecified, non-dimensional meteorological quantity.

Long integrations of this model yield a time-mean value for Xi of 2.3 and variance of 13.

We define a “global” version of the model using 80 grid points and periodic boundary

conditions (that is X81 = X1), and a “limited-area” version of the model using 50 grid points

and specified lateral boundary conditions. Global and limited-area grid points are co-located,

eliminating the need for interpolation. Inspection of (5) reveals that the limited-area domain

contains three grid points that must be specified, two on the left boundary and one on the

right (i=1, 2, 50); these boundary points are interpolated linearly in time via (1).

All experiments are performed in a perfect-model context with truth taken as a long

integration from a randomly generated initial state for a total duration of 10,000 assimilation

times. Sixty global ensemble members are created by randomly drawing from model clima-

tology and limited-area members are initialized from the global ensemble. Each assimilation

time is 0.05 model time units long; one model time unit can be thought of as 120 hours

(Lorenz and Emanuel, 1998). Observations are taken from the truth state with added

Gaussian random error having zero mean and a variance of 0.5; observation errors are

assumed uncorrelated. The global observation network consists of 40 observations at each

time tk, which are located in between every other grid point [yk,i = 1
2
(Xk,2i + Xk,2i+1), i =

1, 2, 3, ..., 40]. For the limited-area EnKF, only the 25 observations located within the limited-

area domain are assimilated.

One of the drawbacks of EnKFs is spurious long-distance covariances due to under-

sampling, which yield erroneous corrections to the background field (Hamill et al. 2001,

Houtekamer and Mitchell 1998, Houtekamer and Mitchell 2001). To overcome this problem,

observation influence is localized during the assimilation using the Gaspari and Cohn (1999)
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fifth-order piecewise rational function given by their equation (4.10); the covariances reach

zero 25 grid points from the observation location. We employ the ensemble square-root filter

so that observations are unperturbed (Whitaker and Hamill 2002).

Spurious covariances also artificially reduce the variance of the ensemble, thus producing

an over-confident estimate of the state (Hamill et al. 2001). Anderson (1999) showed

that inflating the ensemble perturbations by a small amount can overcome this aspect of

undersampling. We choose the covariance inflation factor so that the ratio of the RMS error

of the global ensemble mean (E1) to the average RMS error of each global ensemble member

(E2) is 0.71, as expected for a 60 member ensemble (Murphy 1988). The resulting inflation

factor (1.007) is employed for all LE experiments. Details regarding the implementation of

the boundary condition methods are summarized in Table 2.

b. WRF Model

The experiments performed with the Weather Research and Forecasting (WRF) model

are designed to mimic the simple model experiments as closely as possible. Since WRF is a

limited-area model, we create a pseudo-global domain (PGD) with boundaries well removed

from the limited-area domain (LAD)1. Boundary points are linearly interpolated in time by

(1).

The chosen domain has 100 km grid spacing over 90 grid points in each horizontal direc-

tion and 27 vertical levels (Fig. 1). This relatively coarse horizontal grid is employed to test

the boundary methods on scales with well-known dynamics and covariance relationships (e.g.

approximately geostrophic and hydrostatic). The LAD (50 grid points in each horizontal

direction) shares the PGD grid and vertical levels such that interpolation is not required

(Fig. 1).2.

1Well-removed is defined here such that solutions on the LAD boundaries are unaffected by the location

of the PGD boundaries.
2All model runs employ the MRF boundary layer scheme, Betts-Miller-Janjic convective scheme and no

cloud microphysics. On the PGD, a lateral boundary zone three grid points wide provides a transition from

specified time behavior to free time behavior; the outer boundary point is specified by interpolated GFS

values and the inner two boundary points by a linear combination of interpolated GFS values and WRF
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All experiments are performed under the perfect-model assumption for 15 days with

observation assimilation every six hours. Initial and boundary conditions for the truth run

are derived from National Centers for Environmental Prediction (NCEP) Global Forecasting

System (GFS) analyses every six hours starting at 18 UTC 18 March 20033.

Whitaker et al. (2004) showed that surface pressure observations are sufficient to con-

strain the tropospheric mass field using an EnKF in a sparse observation network. Thus, for

simplicity, we assimilate only surface pressure (technically, column integrated dry air mass)

every six hours for an idealized observation network. The global observation network is a

randomly located, uniformly distributed collection of 250 grid points, 72 of which are located

within the LAD (Fig. 1). Additive observation errors are uncorrelated and Gaussian with

zero mean and a variance of 1.0 hPa.

As for the LE experiments, ad hoc steps are taken to overcome the effect of ensemble

undersampling. Covariance localization is again accomplished by the Gaspari and Cohn

compact correlation function that reduces the covariances to zero at a radius of 3000 km

from an observation. Global and limited-area ensemble covariance inflation factors of 1.06

and 1.075, respectively, are determined by calibrating the system by the ratio of the RMS

error in the ensemble mean to the average RMS error in each ensemble member for the

dry-air mass field.

A 100-member PGD ensemble is initialized with 100 GFS lagged forecasts validating

within 12 hours of 18 UTC 18 March 2003. An assimilation step is performed prior to the

first forecast in order to reduce the ensemble variance; the LAD ensemble is initialized by a

similar procedure. To generate ensemble boundary conditions for the PGD, the CTS method

is employed using time series of GFS analyses and an empirically derived scaling factor of

0.125. Details regarding the implementation of the boundary condition methods for the

limited-area domain are summarized in Table 2.

dynamics.
3This period was chosen because of the rich variety of weather systems (cutoff cyclones, ridges, strong

surface cyclones) that affected the area of interest
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4. Simple Model Results

Three diagnostics are used to evaluate the different boundary condition methods. The

RMS error over space and time is defined as

E =

√√√√ 1

Nt

1

Nx

Nt∑
k=1

Nx∑
i=1

[
Xk,i −X t

k,i

]2

. (6)

The RMS error as a function of time is defined as

Ek =

√√√√ 1

Nx

Nx∑
i=1

[
Xk,i −X t

k,i

]2

, (7)

and the RMS error as a function of space is defined as

Ei =

√√√√ 1

Nt

Nt∑
k=1

[
Xk,i −X t

k,i

]2

. (8)

Xk,i is the ensemble mean at time tk and location i, X t
k,i is the corresponding value of truth

and Nx and Nt are, respectively, the number of grid points and number of times.

Fig. 2 shows that after a spin-up of 50 assimilation times, the global ensemble RMS

error in the simple model is stable in time, exhibiting only short-lived deviations from the

time-mean value of Ek (0.30), which is 60 % less than the observation error. This error

distribution indicates that assimilating 40 observations leads to smaller errors in the global

ensemble state than just interpolating the observations alone. For clarity of presentation,

RMS errors for the other methods are not shown in Fig. 2. As expected, the global ensemble

has the smallest RMS error over space and time, but all boundary methods have RMS errors

within 5 % of the global ensemble’s value as seen in Table 3.

Whereas the global ensemble has uniform errors in space due to the periodicity of the

model and uniformity of the observation network, the limited-area domain results show

larger errors near the lateral boundaries. More precisely, Fig. 3 shows the differences in

the RMS error as a function of space between each limited-area domain boundary-method

experiment and the global ensemble (Emethod
i −Eglobal

i ); positive values indicate where errors
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are larger than the global ensemble on the limited-area domain. Error differences in the

limited-area domain interior are indistinguishable from the global ensemble, but positive

differences exist near the boundaries. A few of the methods actually have error differences

that are slightly negative, but this may be due to the limited number of analyses used to

compute the statistics. The increased error near the boundaries results from two sources

other than linear time interpolation: fewer observations assimilated near lateral boundaries,

and boundary covariance assumptions. Daley (1992) showed that assimilating observations

with a Kalman filter in a periodic domain with a data void leads to larger errors near the

interface between the areas with sparse and dense observations, similar to these experiments

where the limited-area domain does not assimilate observations outside the domain. GEV

has the smallest errors among all limited-area domain boundary methods since it has state-

dependent boundary covariances. The differences in RMS error between the global ensemble

and limited-area ensembles are reduced by assimilating with a denser observation network.

When re-running each experiment with twice as many observations, the maximum error

differences near the boundaries are reduced by 30 % for the methods that use assumed

covariances as compared to Fig. 3 (not shown).

Recall from section 2 that we defined two classes of methods, one that uses state depen-

dent statistics and another that uses assumed statistics. Even though CTS and FCP differ

in part by their treatment of the temporal evolution of the boundary perturbations, these

two methods have similar error (Fig. 3). This suggests that the temporal behavior of the

boundary conditions can be approximated well by an autoregressive model. In supplementary

experiments, we varied the autocorrelation coefficient and scaling parameter for the FCP

method. These experiments suggest that for small scaling parameters (less than 0.5; i.e.

small ensemble variance), the error differences are similar for all autocorrelation values used;

however, for larger scaling parameters (≥ 0.80; i.e. larger ensemble variance), using the

default autocorrelation coefficient (a = 0.94) lead to 20 % smaller error differences near the

left boundary as compared to a = 0 (not shown).

GES has the smallest errors among the methods that use assumed covariance relation-
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ships. This is due to the fact that the state-dependent ensemble variance used in this

method scales the ensemble perturbations consistent with the state, which yields smaller

forecast errors near the boundaries as compared to the CTS and FCP methods, which have

fixed, state-independent variance.

Even though GES and LAES use similar procedures, they yield different results because

of the variance estimate (σk,m) used for (3). We assume that the ratio of the 0.05 time-unit

forecast variance to the analysis variance is constant (1.05) when inflating the limited-area

ensemble variance; however, this ratio actually ranges from 0.5-3.5. As such, the LAES en-

semble boundary conditions will often have the wrong estimate of ensemble variance, leading

to larger forecast errors during subsequent integrations. Furthermore, the autocorrelation

coefficient is important for both GES and LAES; error differences double when white noise

(a = 0) is assumed.

In summary, these results based on LE indicate that: as expected, the state-dependent

covariances for boundary conditions from a “global” EnKF (GEV) produce the smallest

errors, although all methods have RMS errors over space and time that are within 5 % of

the global ensemble method. Moreover, an autoregressive model appears to provide a good

approximation for the temporal evolution of the boundary perturbations, and a variance

estimate from a global ensemble is preferable to scaling ensemble boundary perturbations

with a constant scaling factor.

5. WRF Results

We proceed to evaluate the performance of the boundary condition methods in a WRF

EnKF, with the following considerations. Unlike the one-dimensional LE model which has

only three boundary points, WRF has four two-dimensional lateral boundaries; covariance

relationships among boundary points are therefore an important concern. For these ex-

periments, the model is dry and the model state is represented by six prognostic variables

(u, v, w, temperature, height, and dry-air mass). Two different metrics are evaluated: error

in the dry-air mass (observed), and error in the 500 hPa geopotential height (unobserved);
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other tropospheric fields give similar results, including vertical motion. We note that the

observation network used here is sparse when compared to the LE experiments. The ratio

of the number of degrees of freedom to number of observations for LE is 2:1; whereas for the

WRF experiments the ratio is approximately 5000:1.

Fig. 4 shows that the PGD RMS error as a function of time for both dry-air mass and

500 hPa height exhibits no obvious trend; therefore, the 250 surface pressure observations

constrain the state. The RMS error in dry-air mass (Fig. 4a) is approximately 0.7 hPa

after 3 days, which is 30 % smaller than the actual observation errors, thus indicating that

assimilating observations on 3 % of the dry-air mass grid points leads to smaller error than

just simply interpolating the observations. Table 4 shows that the PGD ensemble has the

lowest RMS error over space and time in the dry-air mass field although all methods have

RMS errors within 35 % of the PGD value. Although mid-tropospheric observations are not

assimilated, 500 hPa height errors are steady in time, which is consistent with the results of

Whitaker et al. (2004). Similar to the dry-air mass field errors, all boundary methods have

500 hPa geopotential height RMS errors over space and time within 25 % of the PGD value

(Table 4). Moreover, all boundary condition methods have qualitatively similar plots to

both panels of Fig. 4 and are not shown. To infer the impact of observations, we integrated

the ensemble for 15 days without assimilating observations. The results of this experiment

reveal that the assimilation of surface pressure observations leads to approximately a factor

of three decrease in the RMS error in both fields (not shown).

The impact of observations on analysis error is illustrated by the spatial structure of the

RMS error for the PGD run (Fig. 5). Generally, errors are smaller close to observation

sites and greater in observation network gaps, notably over the central United States,

Saskatchewan and eastern Mexico. The areas of largest error are also co-located with grid

points that have the highest variance about the 15-day time-mean. Significant errors over

eastern Mexico are related to the dry-air mass covariances, which tend to be strong for places

of common elevation, but small otherwise, so that observations on the Mexican Plateau and

the Gulf of Mexico yield small corrections along the sloping model topography.
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In contrast to the dry-air mass field, errors in the 500 hPa geopotential height field

(Fig 5b) reflect the mean path of significant weather systems during this period, rather

than the observation network. Areas of largest errors are co-located with grid points that

experience persistent shortwave-trough passages and have the highest variance in 500 hPa

geopotential height about the 15-day time-mean.

RMS error differences between the PGD and LAD boundary-condition experiments (Fig. 6a)

support the previous LE results by indicating that the RMS error in the dry-air mass is larger

near the lateral boundaries, particularly near large gaps in the observation network (e.g.

Hudson Bay and Vancouver Island). Along each of the four lateral boundaries, errors are

approximately 0.5 hPa larger than for the PGD; just a few points into the interior however,

errors are similar to those for the PGD. All methods have qualitatively similar RMS error

differences compared to the PGD, so only FCP is shown in this figure. Note that these

results are not exclusive to surface pressure observations. A similar error-difference profile

is obtained when assimilating temperature observations at three different vertical levels at

the same sites as the dry-air mass observations (not shown).

We create a composite that takes into account the RMS error as a function of distance

from the boundary, similar to Fig. 3a for LE. The composite in Fig. 6b is produced by

averaging the RMS error differences over all grid points as a function of distance from

the lateral boundary. In general, errors are larger near the lateral boundaries, but are

nearly indistinguishable from the PGD field 500 km into the domain interior (∼ 5 grid

points). Fig 6b also suggests that assumed boundary covariances and state-dependent

covariances have similar error for dry-air mass. This contrasts with LE results which showed

that methods with state-dependent covariances have smaller error near the boundaries.

Methods with assumed covariances may have RMS errors similar to methods with state-

dependent covariances for WRF because the dominant covariance length scale is relatively

large compared to the grid spacing. Whereas LE’s grid points are corrected by a few

observations because the covariance length scale is limited to a few grid points, WRF grid

points are corrected by more observations because the covariance length scales are larger

15



and observations are distributed in two dimensions.

Similar to Fig. 6a, Fig. 7a shows the RMS error differences between FCP and PGD for

the 500 hPa geopotential height field. RMS errors are larger for FCP along the boundaries,

although the largest errors are located in the interior of the domain over Michigan, which

may be due to a small number of samples for these experiments. Specifically, the errors over

Michigan can be traced to errors in two amplifying shortwave troughs in strong northwesterly

flow. This region of increased error only exists for methods that use assumed boundary

covariances, suggesting that the northern boundary’s assumed covariances did not accurately

model the error as the trough entered the domain. The second area of larger errors near

Hudson Bay is associated with an eastward propagating trough along the northern boundary;

although this trough is resolved on the PGD, it is treated by a combination of linear

tendencies and model dynamics on the LAD due to its proximity to the lateral boundary.

Constructing an analogous composite to Fig. 6b for 500 hPa geopotential height (Fig. 7b)

also shows that the error differences decline toward the domain interior; however, more

significant differences exist among the methods near the boundaries in this field as compared

to the dry-air mass, indicating that some covariance assumptions lead to smaller errors than

others for unobserved fields. The following discussion will focus on comparing the various

methods in class two.

Figs. 6b and 7b show that RMS errors are smaller for the FCP method as compared

to the CTS method. The differences in temporal and spatial covariances contribute to this

result. One might expect the FCP spatial covariances to be better than the CTS spatial

covariances since the FCP covariance model is based on forecast differences, while the CTS

covariance model is based on differences from states drawn from climatology. Similar to the

LE model experiments, the error in FCP is found to be relatively insensitive to the choice

of autocorrelation coefficient (not shown).

Contrary to LE results, Figs. 6b and 7b suggest that even though GES uses a state-

dependent variance to scale boundary perturbations, FCP and CTS have smaller error when

applied to a WRF EnKF. As noted in Table 2, we directly perturb the model sigma-level 0.737
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temperature on the boundary; therefore, only this field has boundary perturbations with

explicit state-dependent variance. Boundary perturbations in all other fields are calculated

to maintain balance with the prescribed temperature perturbations, thus the variance in

these other fields may not match the global ensemble’s estimate. The results presented here

are sensitive to the field chosen to perturb; errors are larger in an experiment where we

perturb only the boundary dry-air mass instead of temperature. LAES has larger error than

GES for both fields since the temperature variance in LAES is scaled by the limited-area

analysis variance, which may not reflect the external forecast uncertainly like the global

ensemble variance used in GES.

6. Discussion and Conclusions

We have presented several methods for creating an ensemble of lateral boundary condi-

tions for use in a limited-area EnKF. The most obvious ensemble boundary conditions come

from an EnKF run outside the limited-area domain, and this method yields the lowest errors.

Since such an ensemble may often be unavailable, or of the wrong size or resolution, a range

of alternative boundary conditions have been explored. The results are encouraging because

they suggest that errors for the alternative methods are only modestly larger than for the

control case, and that these errors are limited to an error “boundary layer” near the edges

of the limited-area domain. Moreover, the alternative boundary conditions are relatively

computationally inexpensive compared to the cost of the EnKF on a larger domain, and

they offer a range of flexibility in specifying the boundary conditions. The performance of

these methods has been demonstrated in a simple one-dimensional model (LE) and in the

WRF model.

The magnitude and horizontal distribution of the boundary errors depend on the co-

variance assumptions related to each method, with state-dependent covariances leading to

reduced boundary errors, especially for unobserved fields. For example, the control case

(GEV) had the lowest errors among all methods for both LE and WRF, which demonstrates

the positive impact of state-dependent covariances near the boundaries. Unfortunately, most
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operational centers are not currently producing short-range ensemble forecasts with the

appropriate statistical properties for the GEV method; therefore current implementations

of this method require computing an expensive global ensemble for use in the limited-area

EnKF.

Fortunately, our experiments also showed that there exists a second class of compu-

tationally inexpensive methods based on assumed spatial and temporal covariances for

lateral boundary conditions that may provide a useful alternative to the GEV method. One

such method, CTS, employs ensemble perturbations generated by scaling deviations from

randomly drawn climatological time series. Similar to all methods in this second class, errors

for CTS were comparable to GEV for observed fields, but were larger for unobserved fields

near the boundaries. Again, this suggests the importance of state-dependent cross-variable

covariances. Moreover, since the boundary perturbation scaling is arbitrary, the boundary

variance is not state dependent, which may result in forecast errors with the wrong variance.

Among the methods in the second class with assumed spatial covariances, the fixed

boundary covariance method, FCP, had the smallest errors. Boundary perturbations in this

case were cheaply generated by drawing from a specified multivariate Gaussian distribution,

such as the covariance model for the WRF 3D-VAR algorithm. In this method, the state-

independent spatial covariance used on the boundaries comes from forecast differences and

are representative of short-term forecast errors (Rabier et al. 1998), thus they are probably

more appropriate than random climatological perturbations. As with CTS, a potential

drawback of this method is that boundary perturbations are scaled empirically. It may

be possible to choose the scaling factor adaptively at each assimilation time based on the

statistics of the innovation vector.

A generalization of the fixed-covariance method, GES, employs a large-scale ensemble

only to estimate the ensemble variance. This method is attractive because of its low

computational cost, and ability to use a global ensemble with fewer members than desired

on the limited-area domain. Only a subset of the degrees of freedom are directly perturbed

on the boundaries, and an assumed covariance model is used to perturb all other points.
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We note that although the perturbed points have the variance of the global ensemble, the

adjusted points in general will not. Experiments presented here show that the quality of the

analyses varied depending on the choice of points; thus deciding what fields to perturb is

problematic. Finally, a variant on the GES method, LAES, uses scaled estimates of ensemble

variance from the limited-area ensemble analyses. This method tends to have larger errors

than GES because the variance of the forecast boundary perturbations originate from the

limited-area analyses, which may not be representative of forecast errors near the lateral

boundaries.

Two of the above boundary methods can be combined using a coarse grid nesting

approach resulting in state-dependent boundary covariances at a reasonable computational

cost. On the coarse (outer) grid, a limited-area ensemble may be forced by a method

from the second class outlined here. Assimilation of observations on this domain produces

state-dependent forecast covariances, and allows the use of the best method (GEV) on the

finer (inner) nests. In theory, this procedure should result in state-dependent covariances

on the fine-scale domain boundaries, without the cost of running a true global ensemble.

Furthermore, this approach also allows for observations outside the inner nested domain to

affect the state in the inner domain because an ensemble of observation estimates is available

from the coarse grid. Another potential option for situations with sparse observations

near the lateral boundaries involves linearly combining the limited-area analysis ensemble

mean with a deterministic global analysis, similar to the relaxation zone procedure used for

forecasts on the boundaries of limited-area models. Future work will focus on testing these

ideas in mesoscale EnKF applications.
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Figure Captions

Figure 1. WRF pseudo-global domain (full grid), limited-area domain (inner box) and

surface pressure observation network (dots). Shading indicates model surface elevation

every 600 m.

Figure 2. RMS error as a function of time (Ek) for the LE global ensemble.

Figure 3. Difference between each method’s RMS error as a function of space and global

ensemble’s RMS error as a function of space (Emeth
i − Eglobal

i ) for all limited-area domain

grid points. Positive values indicate RMS errors greater than the global ensemble.

Figure 4. (a) RMS error as a function of time (Ek) for the WRF PGD dry-air mass field

over all grid points in the limited-area domain. (b) As in (a) for 500 hPa geopotential

height.

Figure 5. (a) RMS error as a function of space (Ei) in the WRF PGD dry-air mass field.

Colorbar units are hPa. (b) As in (a) for 500 hPa geopotential height. Colorbar units are

meters. Dots indicate observation locations.

Figure 6. (a) Difference between the RMS error as a function of space in dry-air mass for

the FCP method and the RMS error as a function of space for the PGD dry-air mass field

at corresponding grid points in hPa. Shading indicates positive differences (i.e. larger

errors than PGD), while contours denote negative differences in 0.1 hPa increments. Dots

are observation locations. (b) Composite RMS error differences in each boundary method’s

dry-air mass field as a function of distance from the boundary.

Figure 7. As in Fig. 6, but for 500 hPa geopotential height. Units are meters.
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Table 1: General characteristics of each ensemble boundary condition method.

Global
Ensemble
Values

Climatology
Time Series

Global
Ensemble
Sampling

Limited-Area
Ensemble
Sampling

Fixed
Covariance
Perturbations

Acronym GEV CTS GES LAES FCP
spatial
covariance

state-dependent
ensemble

climatology fixed, assumed fixed, assumed fixed, assumed

temporal
covariance

state-dependent
ensemble

individual time
series

autoregressive
model

autoregressive
model

autoregressive
model

perturbation
scaling

implicit scaling
parameter

global ensemble
variance

limited-area
ensemble variance

scaling
parameter

Table 2: Details regarding the implementation of ensemble boundary condition methods of
the second class in LE and WRF.

LE Model WRF Model

Climatology
Time Series (CTS)

time series source random integrated states sample from 1 year of GFS analyses
scaling 0.09 (time series variance = global ensem-

ble)
0.11 (time series variance = global ensem-
ble)

Global Ensemble
Sampling (GES)

perturbation points every boundary point temperature at level 0.737 at every fourth
point

variance source global ensemble global ensemble
spatial covariance time-averaged covariance WRF 3D-VAR NCEP covariance
autocorrelation 0.94 (from global ensemble) 0.55 (from global ensemble)

Limited-Area
Ensemble Sampling (LAES)

perturbation points every boundary point temperature at level 0.737 at every fourth
point

variance inflation 1.05 (from global ensemble) 1.00 (inflation worsened results)
spatial covariance time-averaged covariance WRF 3D-VAR NCEP covariance
autocorrelation 0.94 (from global ensemble) 0.55 (from global ensemble)

Fixed Covariance
Perturbations (FCP)

spatial covariance source time averaged covariance WRF 3D-VAR NCEP covariance
scaling 0.40 (increment variance = global ensem-

ble)
0.65 (increment variance = global ensem-
ble)

autocorrelation 0.94 (from global ensemble) 0.55 (from global ensemble)
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Table 3: RMS error over space and time (E) for each boundary method with the LE model.

Boundary Method RMS Error (E)

Global Ensemble 0.30

Global Ensemble Values 0.31

Climatology Time Series 0.32

Fixed Covariance Perturbations 0.31

Global Ensemble Sampling 0.31

Limited-Area Ensemble Sampling 0.32

Table 4: RMS error over space and time (E) for each boundary method and each metric

with the WRF model.

Boundary Method dry-air mass (hPa) 500 hPa height (m)

Global Ensemble 0.63 9.58

Global Ensemble Values 0.68 10.16

Climatology Time Series 0.72 11.69

Fixed Covariance Perturbations 0.72 10.00

Global Ensemble Sampling 0.78 11.31

Limited-Area Ensemble Sampling 0.83 11.45
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Figure 1: WRF pseudo-global domain (full grid), limited-area domain (inner box) and surface

pressure observation network (dots). Shading indicates model surface elevation every 600 m.
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Figure 2: RMS error as a function of time (Ek) for the LE global ensemble.
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Figure 3: Difference between each method’s RMS error as a function of space and global

ensemble’s RMS error as a function of space (Emeth
i − Eglobal

i ) for all limited-area domain

grid points. Positive values indicate RMS errors greater than the global ensemble.
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Figure 4: (a) RMS error as a function of time (Ek) for the WRF PGD dry-air mass field over

all grid points in the limited-area domain. (b) As in (a) for 500 hPa geopotential height.
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Figure 5: (a) RMS error as a function of space (Ei) in the WRF PGD dry-air mass field.

Colorbar units are hPa. (b) As in (a) for 500 hPa geopotential height. Colorbar units are

meters. Dots indicate observation locations.
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Figure 6: (a) Difference between the RMS error as a function of space in dry-air mass

for the FCP method and the RMS error as a function of space for the PGD dry-air mass

field at corresponding grid points in hPa. Shading indicates positive differences (i.e. larger

errors than PGD), while contours denote negative differences in 0.1 hPa increments. Dots

are observation locations. (b) Composite RMS error differences in each boundary method’s

dry-air mass field as a function of distance from the boundary.
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Figure 7: As in Fig. 6, but for 500 hPa geopotential height. Units are meters.

33


