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ABSTRACT

The boundary condition for use with the diffusion solution for coupled radiation and

conduction energy transfer is derived. An effective slip coefficient is presented

function of the conduction-radiation parameter. Comparison to exact numerical solutions

is good for the geometry of infinite parallel black plates. In the course of the analysis,
uniformly valid asymptotic expansion for the combined conduction and radiation problem
in a nongray medium in the optically thick regime, and an exact analytical solution to the

radiation-conduction transport equation in the boundary regime are obtained.

STAR Category 33
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BOUNDARY CONDITIONS FOR THE DIFFUSION SOLUTION

OF COUPLED CONDUCTION-RADIATION PROBLEMS

by Marvin Goldstein and John R. Howell

Lewis Research Center

SUMMARY

The diffusion solution for radiative energy transfer in gases contains the assumption

that only local conditions contribute to the radiative flux at a point. When this assump-
tion is justified, the diffusion solution is straightforward and accurate. For problems

involving coupled radiation and conduction, the diffusion solution is probably the simplest

approach that can be taken to determine temperature distributions. It is well known that

diffusion methods for radiation are inaccurate near bounding surfaces, however, because

energy from the boundaries, rather than the local gas volume, is a major factor.

In this report, the correct boundary condition for the combined conduction- and

radiation-diffusion solution is derived. The condition at the boundary is in the form of
an effective temperature discontinuity that corrects for the error introduced in the dif-

fusion solution by the presence of the boundary. This condition is a mathematical arti-

fice only, because physically no discontinuity can exist in the presence of conduction.

The effective slip is derived by the use of matched asymptotic expansions of the exact
equation of transfer. The entire temperature distribution in the gas can be determined

from the diffusion solution with a slip boundary condition and a correction near the wall

found from the linearized exact equations. The linearized equations have been solved ex-

actly by the methods of singular integral equations. Often the diffusion solution itself

will provide the portion of the temperature distribution that is of interest.

INTRODUCTION

It is well known that the mathematical formulation of energy-transfer problems in

enclosures containing absorbing-emitting gases in which radiation is the only mode con-

sidered can lead to a prediction of a temperature discontinuity at the gas-boundary inter-

face (refs. 1 to 3). The discontinuity arises because a gas element immediately adjacent



to the boundary receives only a portion of the total absorbed energy from the boundary,

while the remainder comes from surrounding gas and boundaries at different tempera-

tures. The element then reaches an equilibrium temperature somewhere between the

temperature of the adjacent boundary and the surrounding gas. This equilibrium temper-
ature may be quite far from the boundary temperature.

Heaslet and Warming (ref. 2) have presented predictions of the slip in the absence of

conduction (radiative equilibrium) for a gray gas between infinite parallel plates. These

authors used Chandrasekhar’s tabulated X- and Y-functions (ref. 3) to provide useful ex-

act solutions.

Probstein (ref. 4) and Deissler (ref. 5) included the temperature discontinuity in

formulating boundary conditions for use with diffusion solutions of radiative transfer.

Although the temperature slip condition has proved useful in radiative transfer, it

must be realized that an actual discontinuity in temperature arises only mathematically.

Physically, some conduction of energy between the gas and the boundary will occur, ex-

cept perhaps in certain extreme situations, and any conduction will remove the discon-

tinuity. (In extreme cases, such as for an extremely rarified gas, other assumptions

used in the equations of radiative transfer also become invalid, chiefly the assumption of

local thermodynamic equilibrium. ) Thus, in any radiation problem involving a diffusion

analysis or the typical transport analyses, no physical temperature discontinuity can ex-

ist. However, for small conduction, very strong temperature gradients might be ex-

pected near the boundary.

The purpose of this report is to analyze the region of the gas near a bounding surface

in which these strong gradients exist, and to determine the effect of thermal conduction

on the gradients. An effective slip coefficient for use in the steady-state diffusion solu-

tion for combined radiation and conduction problems is then derived for use with hot or

cold boundaries. The utilization of the coefficients presented herein effectively extends

the usefulness of the diffusion solution by specifying accurate boundary conditions for its

formulation.

SYMBOLS

A function arising from B function given by eq. (87)
separation of variable

^ intensity of emission in
solution (eqs. (76) ^^ ^g^
and (77))

C function defined by
a gas linear absorption v

/nq\eq. \o3)
coefficient

C-,, Cn, Co, C"4 integration constants
B intensity of emission
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D characteristic length y ratio of wall temperatures,

E function defined in eq. (103) T^, 2/Tw, 1

G function defined by eq. (97) A temperature difference by extrap-

g function defined by eq. (98) olation of diffusion solution

(fig. 1)
H function arising from separation ofv 6(e) intermediate or gage parameter

variables solution for h

(eq. (76)) e expansion parameter, 1/aD

h ffi’ VT* 0 function arising from separation of
c w v /j\

I radiation intensity
variables solution for t^
(eq. (77))

i intensity in inner region when sub-
0 angle measured from normal of

scripted
boundary

K constant defined by eq. (31)
\, conductivity of gas

k function defined in eq. (103)v
jU. COS 0

L curve defined in fig. 2

^ temperature gradient at x* 0;
N radiation-conduction parameter, ri’r*/riY*l

o ul /UA x*-0
a^ /4(7T x u

<s Stefan-Boltzmann constant
q energy flux

T optical thickness, ax
T absolute temperature

$ function defined by eq. (93)
t temperature in inner region

^ radiation slip coefficient,
u dummy variable of integration rr^^- T^Y ml /nL w ^ ’J)] /ciR
v separation variable

^ solid angle

X function defined by eqs. (101)
^ frequency

x distance from bounding surface Subscrints-

x-1- dimensionless coordinate, x*/6(e) p complementary solution

Z complex variable for eqs. (Ill) p diffusion solution
and those that follow

g gas
a function defined by eq. (29)

k kinetic conduction
;3 defined by eq. (124a)

R radiation
r dimensionless energy flux,

l/’^l <2) r reteren<!e

w surface or wall temperature
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y frequency dependent +, approaching boundary from

1, 2 at surface 1 or 2 inside or outside domain

Superscripts: * dimensionless property

(0), (1), (2) terms in expansion mean value

ANALYSIS

Consider a black wall at temperature T that bounds a gas extending far from the

wall (fig. 1). The mean free path for radiation I/a is assumed to be much longer at
all frequencies o> than the gas kinetic mean free path, so that the gas can be assumed

in local thermodynamic equilibrium. Scattering in the gas is neglected.

The analysis, briefly outlined, is as follows: At regions far from the wall (i. e. for

a ,x ), a diffusion solution becomes exact to order (I/Da ) At regions very near

|
^ X.

^^^T’- I
l-eA’+Ote2)

\,\ T^’ 0)

^ \\. ^T’tT) t’^lT) et11^) eZt^’tT)
\ /

| \g Region \. ,,,I N. ^T(x) ^"’(x’) + 6^1’(x> + 6ZT(zl(x<) +
^^^,̂̂

^^/^

Inner

Matching Outer

(-------
Distance normal to boundary, x"

Figure 1. Definition of regions in gas near boundary.
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the wall (a^x 1), a linearized solution for the gas is shown to hold. The solutions for
these two regions are then matched for intermediate distances from the wall. Up to

q

terms of order (1/Da^) this expansion agrees with the usual diffusion solutions in re-
gions not too near solid boundaries. On the basis of this correct expansion, the boundary
conditions for the solutions to the diffusion equation must be modified by introducing an
apparent discontinuity in temperature A at x 0 to account for the boundary region
where the diffusion solution breaks down. The values of A depend on the usual
conduction-radiation parameter N and on the limiting value of the outer solution temper-
ature gradient.

The problem is now examined in detail. To determine the slip coefficient to first
order, the only changes necessary to consider are those in the direction x normal to
the wall. The results will be valid, however, for two- and three-dimensional problems.

At any arbitrary position in the medium, the equation of transfer for radiation

(ref. 3) can be written (scattering neglected) as

c^^ BJT) I, (la)

where 1^ is the local spectral radiation intensity, and B is the blackbody spectral

intensity. The equation denoting the conservation of energy between the conduction and
radiation processes is, for conditions of steady state and no flow,

-d- \ dT A- f f cos 0 I., dw d0 (lb)
dx k dx dx ^ -4) "

At a solid black boundary,

^ ^w
0 < cos 0 ^ 1 (2)

^ SoW

These equations can be nondimensionalized with the introduction of
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1

li cos 0

a. ^0)

a

x* x-
D

T
T*

^
I*

Ia)
w 44o-T^

B* -BC^-
" 44crT^

aX,
N --K-

4aT^
where a, D, and T are arbitrarily chosen reference values of the absorption coeffi-

cient, a characteristic length, and a temperature, respectively. These reference values

are chosen in such a way as to make the nondimensional terms of order one (at least in

regions far from the wall). Typically, a would be an appropriate frequency-averaged

absorption coefficient, T an average radiating temperature, and D a length of the

same order as that over which the temperature changes significantly in the outer region.

The general equations governing the conduction-radiation process then become

3I*

^ -a) B* I* (3)
a^Di 3x* " "

and
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A -JL N^^ -A- r f ^ dO do, (4)
aD dx* dx* dx* ^0 /n=4!^

Expansion for Outer Region

For regions far from the wall, the analysis proceeds as follows: Let the quantity e

be defined as

_1_
aD

By definition, an optically thick gas is one in which e is small as compared with one.

Now equations (3) and (4) can be written

ai*
e -^ -" B*, % (5)

a*, 3x* "

, ^- N ^1*= ^- r f ^* do, dn (6)
dx* dx* dx* ^>=0 ^S^TT

For e 1, T*, I*, and B* can be expanded:

% -^-^ - w

T*(x*) T^\x*) + T^(x*) + e^^^x*) + (8)

B^(T*) B^ + eB^ + e2^ + (9)

The relation for B*(T*) can also be expanded in a Taylor series about T^ ;:

B* (T*) B* (T()) +
aB^(T(o))

(T* T()) 4- -L^^ (T* T^)2 + (10)
" " arW 2! rm 2

9T a^^^)
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Then, substituting equation (8) into equation (10) and gathering terms yield

aB+cr^) ., aB^cr^) ,y. a^cr^) 2
B* (T*) B* (T()) + e -1’---- T^ + e2 -"---- T^ + J- --u---- (T^) +

^ arW 2I 9^(0)^2
(11)

Comparison of equations (9) and (11) provides the relations

BW B^(T()) (12a)

^i) W^^W (12b)
" 3T()

g(2) W^ ^2) ,^ ^2B^T(0)) ^(l))2 (12C)
" -(0) ^ ,(,(0)^

Equations (7) to (9) and (12) can now be substituted into equation (5). This substitution

and equating like powers of e result in

l() B^
(13a)

i<i) B(l) -y- aB&)
" ^ t)x* (13b)

ai(i)
^(2) g(2) _y_ "^

^ ax* (13c)

pTt"-1)
i(") B(^ -a- w-

a^ ax* (13n)
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Similarly, substituting equations (7) to (9) and (12) into equation (6) and equating like

powers of e give (after use of eq. (13))

^A -^L r^ f’^dx* dx* dx* / a^, 3x* /
*<>=0 *^=47r

d2 /^BW do; / ,-d- / _"--- / ^ dO (14a)
dx*2 / ^ Ik ^2=477

/
/

^n 2 flR() /
^- N^-^- T^ ^ ^^ do, / ^ d^ (14b)
dx* dx* ^,2 a^ ^(0) /

^2=477

Note that the zeroth power terms make no contribution because, since B is independ-

ent of p., B’ ’p. dSl 0. Now define a dimensionless radiative conductivity as
yn=47r "

r rI 8B* / y
X*(T*) / -!- -^ do) / ^ dfl (15)

/ ^ aT* /
^ ^=47T

Then equation (14) becomes

^ N^^T^ ^’. O (16a)
dx* dx* dx*

JL JN dT(l)
+ -d- ^X*(T(o))T(l)1l 0 (16b)

dx* [ dx* dx* L JJ

9

III



The term X*(T*) can be expanded about T’ as was done for B*(T*) in equations (9) to

(12), and the result is the expansion

X*(T*) ^(T^) + e -d- [^(T^T^ + 0(2)
dT^

As before,

X*(T*) ^ .^ . A(2) .
Hence,

^) ^(T^) (16c)

^(1) d^(T^) ^(1) (^
dT^

Multiplying equation (16b) by e and adding the result to equation (16a) give

-d- JN A- (T() + .T(1)) + X*(T()) -d- (T^ + .T(1)) + .T^ -d- ^(TWA 0 (17a)
dx* [ dx* dx* dx* L JJ

Substituting the relation for \*(T*) into equation (17a) and using equation (16c) and (16d)
result in

_d_ N _+/-. (T() + .T<1)) -.- (X<) + ex(1)) -d- (T() + 6T<1)) + 0(e2} 0 (17b)
dx* dx* dx*

or using equation (8) results in

A N-^ + A+Cr*)^ + 0(e2) 0 (17c)
dx* dx* dx*

which is the same expression that is found by the usual diffusion approximation. The

diffusion result can be obtained by expanding I* but not T*, and then neglecting terms
0

of order e Such a procedure, however, does not allow the matching of inner and outer

expansions to all orders in e to obtain a uniformly valid expansion, as is now shown.
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0

However, equation (17c) is shown to be correct to order e in regions not too close to

solid boundaries. Equations (13) and (16) are the governing equations for the outer re-

gion.

Expansion for the Inner Region

Because the small parameter e multiplies the highest order derivative appearing

in equations (5) and (6), the analysis deals with a singular perturbation problem wherein

the formal asymptotic expressions (7) to (9) cannot satisfy all the boundary conditions of
the original problem. This situation indicates the presence of a "boundary layer" in the

region near the wall within which steep gradients are expected (i. e. large values of

9I* /9x* and dT*/dx* in eqs. (5) and (6)). Thus the formal asymptotic expansion

(eq. (17)) must break down in the boundary region, although it is expected to remain valid

in the region far from the boundary.

To obtain a valid expansion in the boundary region, the procedure continues with the

introduction of a "stretched" coordinate (or optical depth) T:

T x*. ax (18)
e

Introducing this new variable into equations (3) and (4) and maintaining the other dimen-

sionless quantities the same as in the outer expansion give

8I*

^ BS % (19)

and

A N^ A r f ^ ^ ^ (20)
dr dr dr -4)=0-A2=47r

All terms in equations (19) and (20) are expected to be of order one in the inner region,

since the highest order derivatives are no longer multiplied by e. When the coordinate

is stretched, the gradients in the inner region are of order one. Therefore, an at-

tempt can be made to expand the solutions to these equations in terms of the small pa-
rameter e as

11



T*(T) t^M + et^r) + e2^2^) + (21)

i^ il0’^’ .^ ^
B^ bW^ .A^ (23)

Expanding B* in a Taylor series about t’ and substituting equation (21), and then

equating like powers of e between the resulting equation and equation (23) give

bW B^ftW) (24a)

/^ ~9B*(t) /^
b 1) --"- t<1) (24b)

\JJ L at Jt=t()

^) ^(2) ^(D- , (t(D)2 ^)
^L 3t -t=t() 2! 9^2.^w

Substituting equations (21) to (23) and (24) into equations (19) and (20) gives the linearized

equations for the inner region as

^ ^L b^ i^ n 0, l, 2, (25)
a^, QT

.^ N^^ r f nff dSl d^ n 0, 1, 2, (26)
dr dT dr 4)=0-/n=47r

The boundary conditions (eq. (2)) at T 0 must now be satisfied by the solutions to

equations (25) and (26). By equating like powers of in equations (21) and (22) at

T 0:

12



r

t^ T^ (27a)

t^ 0 n > 0 (27b)

i^ B^Tj 0 <^ 1 (27c)

i^ 0; n > 0 0 ^ jn ^ 1 (27d)

Note that the conditions given by equations (27) are not sufficient to determine completely
the solution of equations (25) and (26), and the conditions at large T must be further

specified.

Matching of Inner and Outer Solutions

The formal expansions for the outer region (eqs. (7) to (9)) and those for the inner

region (eqs. (21) to (23)) are still not completely determined. At this point, boundary
conditions for the outer solutions cannot be specified because, as already noted, they
break down near the boundary. The inner solutions are not specified completely because

their behavior for large T has not been determined. This indeterminancy is removed
by the requirement that the full expansion (inner and outer) be uniformly valid. In the

present context, this uniformity means that, in a certain sense to be specified more pre-
cisely, the inner and outer expansions must merge smoothly in some intermediate region,
for example, I/a x D. In this region, the procedure requires that both the inner

expansions (eqs. (21) to (23)) and the outer expansions (eqs. (7) to (9)) be valid asymp-
totic representations of the true solutions.

For convenience, two order symbols are defined. First,

<p(z) 0[^(z)]

means that there exists a positive ^ such that

limM <^
z-0 |^[

and second,

13



(p(z) o[^(z)]

means that

umM o
z-O |^

The matching of the inner and outer expansions proceeds. It is well known (ref. 6)

that to accomplish the matching a sufficient requirement is that an intermediate variable

x-^
6̂(e)

exist with 6(e) 1 and lim 6(e) 0 (e. g. 5(e) e374) such that, if terms
e-0

are retained in the expansions, the inner and outer expansions are expressed in terms of

X"4’ and all terms of o(eN) are neglected with X’1’ held fixed, then the two expansions be-

come identical. That is, it is required that

T(\^)] + ^T(V6(.)] tW^" A^^-
lim,------------------- L 6- +/-_-_ L ^ Jl o (28)
e-O ,J

L -J

with similar expressions for the expansions of 1^ and B^. The conditions on the inner

and outer expansions must be found that will make them satisfy equation (28).

First, define

O,*(T()) f ^(T^dT^ (29)

Then, substituting equation (29) into equation (16a) after integrating gives, for the outer

region,

NT^ + cr^T^) C^ + CgX* (30)

From this equation, it is clear that

14



lim T^x^e)] constant K T^(x* 0) (31)
e-0

From equations (12) and (13), it follows that

lim I^lx-^e^ B^K) (32a)

and

lim B^x-^ (e)] B*(K) (32b)
e-0

When noting equations (21) to (23) and that as e 0, with X’1’ fixed, T , it fol-

lows that for the zero-order inner and outer expansions to match,

lim tW x+5^ lim t()(r) K (33a)
e-0 e J T-

^m iW^t ^ iW(r) B^(K) (33b)

lim bW’^ lim bW(r) B^(K) (33c)
6-0

a)
6 J T- " a>

To zero order, the inner equations (25) and (26) are

^A^ ^O) ^
and

AN-^A /’" / ^) dS2 da, (35)
dr dT dr ^=0 -/n=4?r

The zero-order inner equations (34) and (35), with boundary conditions (33) for T o

and boundary conditions (27a) and (27c) for r 0, have the solutions

15



K T^ (36a)

t^ T^ (36b)

bw S^w) (36C)

i0^ ^1’^ -1^ - 1 (36d)

To match the first-order terms requires the expanding of Q’*^ /) in a Taylor series

around K as

Q^T^x-^e)]) a*(K) + (T^ K) ^*- + o[(T^ K)2’] (37)

^^T^^K
Note that, at x* 0, equation (30) becomes

NK + O!*(K) C^ (38a)

and also

-da*- X*(K) (38b)
dT(o)

(0)L JT^=K

Substituting equation (37) into equation (30), using equations (38) and rearranging terms

give

TW K^^ ORT^ K^ (39)
N + X*(K) L J

Squaring equation (39) shows that

(T^ K) (^(e)] (40)

Now, 6(e) is chosen such that

16



r 2
lim 6-^ 0 (41)
e-0|_ e

(For example, 6(e) e7 where 1/2 < y < 1 satisfies this relation. ) In view of equa-
tions (40) and (41), equation (39) becomes

/O^ C.,6(6)x+
T^ K -"---- + o(e) (42)

N + X*(K)

After equation (30) is differentiated once and evaluated at x* 0,

dT^
Cy [N + X*(K)] "1-- (43)

_dx*_x*=0

Substituting equation (43) into equation (42) gives

T^ K ^x-1-^ ^ o(e)
_^_^=0

6(e)x+ dT^ + o(e) (44)
.^^x^O

Equation (16b) is integrated to obtain

T(l) ^ ^^N + X*^^) N + X^T^)

When this is rewritten in terms of the intermediate variable and a new constant A* is

defined by

A* T^x* 0) (45)

the following equation is obtained:

17



p

T^^x-^ =----3--- + 0[6(e)J
N + X+Cr^)

A* + 0[5(e)] (46)

The limit equation (28) is now written for 1 and equations (44), (46), and (36b) are

substituted for T^ /, T1 /, and t^ /, respectively:

fr^x^)] + eTW[^(e)] tW^ et<1)-x^
lim^-----------------------L ^ J-----I 6 -H
e<0 e

^

/ K + B^x4-^ + o(e) + JA* + 0[6(.)]l T* et(l) x*^ \
dxiti x^O l________J L ^ J

lim 0A /
(47)

Since K T*, equation (47) becomes

linJ-6^ dT^
^ , t(l) x^)-l iin.te . q5(.)]l 0 (48)

-0 ^ e dx* ^o 6 J e-o L c J

Because T x"^ (e)/e and

lim(T) lim x 5^ (49)
e-0 -0 e

x -constant

it can be concluded from equation (48) that

lim t^T) A* + rf^) (50)
T- \dx*/^Q

18



if the outer solution is to be correctly matched. Equation (50) then provides the boundary

condition of the inner solution for t’ at large T.

To determine the behavior of i’ at large T, expand equation (13a) in a Taylor

series about T^0’ T*

I^ViXe)] B’)[x^)] B()(K) . (TO) K)^ + O^C" K)2] (51)w ’TW.K
Then, the substitution of equations (40) and (44) into equation (51) gives (note that K T^)

C^w ^^ -^ ’(^^ -f6) <52’

^^ m T.w

Substituting equation (12b) into equation (13b) gives

9B() BB^
^^^(e)] --^ T^)^^)] -^ --"- (53)

aTW a^ 3X*

or noting that

^W^ , ^,,
arW arW

^rr’^-rp*1 ~1W

^ ^(.^^ . 0[5(.)]
d^* dx* x*=0

dT*

^^dx* x^O

and then substituting equation (46) into equation (53) to eliminate T’ give

19



iro^fe)) ^. ^’ -f- ^! dT* ^p^ ^" art0) , ’ aT<) ,o,
dx* x..o

-TW-T* T^ ’^T*
W -W

The matching condition for intensity is analogous to that for temperature (eq. (47)). Sub-

stituting equations (54), (52), and (36d) into the matching condition gives

fcV6(.)] el^x^)] 4)^1 41’^lim^----------- L J L Jl-t J
"-(5) ,, -^^"-^ ,, ^ , .^.-^-rom

T’")-T* -IT’ ’=T* T’ ’=T*-’w ’w ^o
lim-<
e-0

(55)

Note from equation (12a) that B* (T) B^^T); thus, equation (55) becomes

lim.-^ 5()^ dT*
^. jiL dT*

e-0 aT^ ^
dx* x*=0 a^ dx* x*=0

"O"^

^1) x^e) i^fo() ^ o[5(e)]l 0 (56)

^/

or, finally, it can be concluded that

lim i.W(r) A^ fr A-W 9BW (57)
\ a^ dx* x*=0 9T*

T-T^

20



The boundary value problem for the first-order terms of the inner expansion is now com-

pletely specified, and its parts are now collected in one place. From equations (25) and

(26) with n 1, equations (24b) and (27a) are

^- ^L ^ (t) t(D iW (58)

^ 8T L 91 Jt=T^
and

A N^A r r ^ ^ ^ (59)
dT dT dT JU=0^=47T w

From equations (27b), (27d), (50), and (57),

i^ 0 T 0, 0 < jn, < 1

t<1) 0 r 0

t^^ A^ rf^ r . (60)
\dx*4,,o

^^^ L^ (9B^
\ ^1 dx* x*=0 V^/T^

Now, set

i^ iW + i<1) (61)
W 0), p 0), C

and

t^ t^ -. tW (62)

where

21



tW ^ ^ r^p dx* x*=0

id) ^ Jr ^W "-^a}’ p \ a^ dx*

^
3T*

T*^

The direct substitution of expressions (61) and (62) into equations (58) to (60) then shows

that i’ and t^ must satisfy the following boundary value problem:

^^ ^ ^ ^ ,3)

^ 8T V^/T*^
c "? c

dt^) /TO /- fi\
N-^ / / /.i^ dn dc^ (64)

dr -4>=0 ^2=47r c

For 0 < ju < 1,

^) ^ ^ ,Y^ ,j
^ c V^ ^x^O A^VT^T*w > (65)

t^) -A* T 0c J

^0- ----1
\ (66)

f(1) 0 T ^ \
C ^/

Equation (63) can be integrated with respect to w to give

/oo
^oo

, A /"+/- iW ^ tW (9B^ ^ / l^ d. (67)
dT ^ ^

c ^VT.^ y
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To proceed from this point, it is convenient, although not necessary, to assume that a*

is independent of o>; that is, the analysis deals with a gray gas. This approximation is

made here only to eliminate a discussion of the effects of the spectral absorption coeffi-

cient, which adds no new features. Under this assumption, a* a*. Defining

^ r^
and using the expression

<

^3 /* 3B*
I^ / --^ do> (68)

7T / 9T*
^O

equation (67) becomes

JL^^ tW- i^ (69)
a* dT IT

c c

Equation (64), under the gray gas restriction, is

dt^ .,1
N -c- 27r / i^’ii dii (70)

dr J-\ c

and the boundary conditions (eqs. (65)) become

iW L^ ^ T^ o < ^ i, r o
c Va* dx* , n / TT\ x*=0 / , (71)

t<1) -A T 0
C

Defining
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,iW
h =-"-

rp*4
w

tm
t s -^-

T*w
3

T* a*T*

(72)

f
1 dT*

T’^* dx* x*=0

A

T̂^

N
w ~3T’*"

w J
equations (66), (69), (70), and (71) become

^
-ah- t h (73)
3T*

N_. -^ 2 / h^i d^ (74)w dT* ^1

h ^ A for 0 < p. < Fl
IT* O (75a)

t -A for 0 < 4 < 1 J
h 0; t 0 for i-* o (75b)

and solution of the boundary value problem specified by equations (73) to (75) will com-

plete the solution of the entire problem. The method employed is similar to that used by

Ferziger and Simmons (ref. 7) for a different radiation transport problem and is based

on the work of Case (ref. 8).
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Solution of the Boundary Value Problem

A separation of variables solution is assumed valid for the problem specified by

equations (73) to (75) and is of the form

h f Hy^e-^A^ dv (76)

t y AyO^e-^ dv (77)

Examination of the boundary condition, equation (75b), shows that

Rg(v) > 0 (78)

The trivial solution h t’ constant exists, but it is neglected because of boundary
condition (75b).

Substitution of equations (76) and (77) into equations (73) and (74) gives

-(^ ^v ^v (79)

N ,.1

--^ 0^ 2 / HyOn)^ dii (80)
v 1

Eliminating 0 from equation (79) by substitution in equation (80) and then rewriting

equation (80) give

(4 v)H 2V- f H (p.)li d,i (81)
N^ ^-l

and

(C)^ 2V- f Hy(4)jLt du. (82)
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In general, v may be a complex number. However, if v is assumed complex in

equation (81), then for the imaginary part of v to be nonzero, N must be negative.

However, N is a parameter that can take on only positive values, so that for this prob-

lem Im(v) 0, and v is taken as a positive real number by this argument and equa-

tion (78). It is sufficient to restrict v to the range 0 < v < 1. With the function C

defined as

A
Cy / Hy(4)4 dfi (83)

j- 1

equation (81) becomes

2C v
H -’- P. V. -1- + 6(4 v)B (84)v

^ 4 v

where P. V. denotes that the Cauchy principal values of the integrals are to be used.

Multiplying equation (84) by 4 dp. and integrating from -1 to 1 give

C,A, 2 . v ln(^)\ vB, (85)

The function H can be arbitrarily normalized so that

^ C^ v (86)
w

Equation (85) can then be written

B Nw 2v2 v3 lnf-1-^ (87)v 2 \1 + v/

With equation (87) B is completely specified.

Equations (84) and (82) become, with the substitution of equation (86)-,

3
H P. V. -v-- + B 8(4 v) (88)

p. v
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and

Oy -v2 (89)

Now that H and 0 are known functions of v, they may be substituted into equa-

tions (76) and (77) to yield

~\

/1vV^ -T*/U
h P. V. ^--- A dv + B A e ^ ^ p. s 0

> (90)

/1 vV7*^
h P. V. A dv jLi < 0, v

and

t f1vYe-^ dv (91)
^O

The value of the remaining function A is found by the substitution of equation (90) into

the boundary condition (75a) to obtain

/I 3.

P. V. ^--^ dv + B A ^ A (92)
p. v tM t-

This singular integral equation may be solved for A as follows: Consider the domain

D (fig. 2) bounded by the closed curve L + L’ in the complex plane. Define the function

$(Z) as

$(Z) -J- / l^ dv (93)
2iri f Z v
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C| ^0 L

Figure 2. Domain in complex plane bounded by closed
curve.

Q

As long as v A is p-integrable (in the Lebesgue sense) on (0, 1) where p > 1, then

$(Z) is analytic everywhere except on L. For such a function, the Plemelj formulas

apply almost everywhere (refs. 9 to II):

^(v) ^~(v) v^y for 0 < v < 1 (94)

and

/ u^
^(v) + $~(v) P. V. -!- --" du (95)

TTi U V

where e > 0 and

^(v) lim $(v +/- ie)
e-0

Equations (94) and (95) are used in equation (92) to find that

^(v) G(v)$~(v) + g(v) (96)

where the function G(v) is defined as
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N 4v2 2v3 Inf^-^ Tri
B + Triv0 w \1 + v/

G(v) -v---- E--------= (97)

^ ffiv3 N 4v2 2v3 Inf1-^) + .i
M + v/

and

g(v) ^ v3 A ^v4 v3 A) (98)

B^ .iv3

^ 4^2 ^3 Jj_^\ ^. ^
Note that G(v) is continuous and nonvanishing on L and that g(v) is p-integrable in the

range 0 < v < 1. The functions g<(v) and G<(v) on L + L’ are defined as

g. 0, G- 1 on L’

gl g, GI G on L

The behavior of G, will now be examined. For all values of N the modulus of

G-. (v) is 1. For the case of chief interest here, that is, for N ^ 0, the argument of

G< (v) varies continuously in the range from 0 to less than 2ir and back to 0 as v goes

from 0 to 1 on L. The argument of G-, is 0 on L’; hence, G, is single-valued on

L + L’, and the index of the boundary value problem (refs. 9 or 10) is 0.

For the special case of N 0 (no conduction), however, the argument of G< (v)
changes continuously from 0 to -2-n as v varies from 0 to 1; the index for this boundary

value problem is -1.

For an index of 0, a solution to the boundary value problem always exists for an ar-

bitrary A and , (ref. 10). For an index of -1, however, an auxiliary condition must be

imposed to relate A and ^. This condition eliminates the possibility of satisfying the

boundary condition T(x 0) Tr>. The possibility of a physical slip in temperature at the

wall for N 0 then arises. This case will not be pursued further. Note that

lim g(0 + e) 0 e > 0
e-0

lim g(l e) 0 e > 0
e-0
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and that G< and g< are therefore continuous and single valued on L + L’ for N ^ 0.

The only discontinuity of $(Z) is on L so that equation (96) can be rewritten as

^(v) G^(v)$~(v) + g^(v) v contained in L + L’ (99)

where the superscript (+) or (-) is understood to refer to the function approaching L + L’

from inside or outside D, respectively.

The functions G, (v) and g- (v) for any two arbitrary points except v 1 satisfy the

Holder condition

|G(v^) G^) < R|vi Vg l"

where R is a positive number and 0 < o? ^ 1. Until recently, the Holder condition was

required of both g(v) and G(v) before solution of equation (96) could be shown to exist.

However, it has recently been established (refs. 10 to 12) that, as long as g(v) is

p-integrable where p > 1 and G(v) is continuous as is the case herein, a solution for

A in the class of p-integrable functions can be found that satisfies the boundary value

problem almost everywhere (except on a set of measure zero); this solution is obtained

(ref. 10) by setting

/I^(v) x^v) +/-1 -I^xL + p. v. J- g(u)du (ioo)
2 X-^v) 27ri X^uKu v)_

where

X(Z) expJ- / llL^ dv (lOla)
27ri JQ v Z

and

X^v) G^v)X-(v)

> (lOlb)
X^v) exp A In G(v) + P. V. -i- / ln G(u)du

2 27ri JQ u v
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With an appropriate choice of the branch of the logarithm,

In G(v) 2i tan-1 7rv3 (102)

^
Define

k 7̂TV"

/ -i/iY (i03)
tan du f

\k /
E expl p. V. v u/-
v

7T U V

/

With the substitution of equation (100) into equation (94) and with the use of equation (101)
and the definitions given by equations (102) and (103), the result may be written

A ^ ^ ^^l^ P.V. / ^ -^---- (-)

7T[\ + 1) ^ ^+ 1) (^

If equation (91) is combined with equation (75a), the boundary condition becomes

f v^y dv A (105)

Substituting equation (104) into equation (105) gives a relation between A/^ and N^. In-

stead of proceeding directly in this manner, however, it is simpler to proceed as follows:

Note that

/I v^A r1 9
lim P. V. --v- dv / v A dv (106)
11-0 p. v ^O
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0

because lim v A is finite by equation (104). If the limit p. 0 in equation (92) is
v-0 v

taken, the following expression is obtained:

r1 2I v A dv + lim B A -A (107)
^O p.-^0 ^ ^

Comparison with the boundary condition (eq. (105)) gives

lim B A 0
li^O p- ^

Substituting equation (104) now gives

/
-A + lim E_. A p. v. / ---du^ A) 0 (108)

v<0 V7^ / .1/2JQ ^u + 1) (u v)

1 \
Since (^u A)/ uE (k + 11 is bounded at u 0, and lim E is finite, the limit in equa-

/ \ / v-*0 v

tion (108) exists and reduces to

/Al ----du---, - JL 1 I ----du- (109)

^ 7T / 2 l/2 E. 7T / / ? .1/2^u ^) 0 J, ^^where

En ^^
Equation (109) provides a relation for A/^ as a function of N. This result can be

further simplified as follows:

Equation (101) is written as

-1- -^- 27rivs -1- where veL (110)
X’^(v) X~(v) By !Tiv3 X-1-^)
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The coefficient of X"’"(v) on the right side goes to 0 at v 0 and v 1, and it follows

from equation (101) that X(Z) never vanishes.

The application of the Plemelj formulas and the boundary condition

X(Z) 1 as Z o

gives

/-J- -l / dv
+ 1 (111)

X(Z) n I ^ \1/2

^ (kv + l) ^ ^v

Expanding equation (111) in an asymptotic series near Z yields

/"-J_ l + 1 1 / dv--- (112)
X(Z) Z I / / ^1/2Ja ^ + 1)

A similar expansion of equation (lOla) gives

-’- 1 +i A- y in G(v)dv (113)
X(Z) Z 27ri ’O

and equating coefficients of 1/Z results in

1 /ll / \
---dv--- i- f ln G(v)dv / tan^tA-ldv (114)

,
2 vl/2 2i->6 / \kJ

E,(k^ l) ^0 V ^
/r / \i/2 n

Since at v 0, I/ v(k + 1) E is bounded, equation (111) becomes in the limit Z 0
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/
lim ^- 1 / ----dv---- + 1 (115)
Z-0 X(Z) v I / 9 \1/2

^ (^ + 1) ^v

It follows from equation (lOla), since In G(v) 0 at v 0, that

lim -1_ lim exp -J- P.V. f ln-G(v) dv -1- (116)
Z-0 X(Z) u-0 27ri ^ v u EQ

With the use of equations (114) to (116) in equation (109) finally results in

^ 1 / tan-V-lViv (117)

^ ^ W
From equations (8), (31), and (45), it follows that

T*(x* 0) T* e A* + 0(e2) (118)

0

that is, up to terms of 0(e ), A*T is the apparent discontinuity in temperature ob-

tained by extrapolating the outer solution to the wall.

As already shown by equation (17c), in the outer region the temperature satisfies the
9

usual diffusion approximation up to terms of 0(e ); hence, equation (118) gives the

proper boundary condition for solutions to the diffusion equation, with the apparent dis-

continuity in the wall temperature appearing to account for the region near the wall where

the diffusion solution breaks down. If the radiation slip coefficient is defined as

/I / \

WJ 3 1 tan-^J- dvW
then equations (117), (118), and (72) show that
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T*(x* 0) T^ eT^
4 !A(N^ + 0(e2)
0

, 1, dT* 4

^ , o(.2)
a* dx*

^
3 w

or, written in terms of the dimensional quantities,

3[Tp(x 0) T
----------^ ^ . 0(e2)

4 1-D
a dx x=0

where Tp. is the temperature obtained from the outer solution which is equivalent to the
2diffusion solution to order e. Because

4T^[T*(x* 0) T^j T^(x* 0) T^4 + 0(e2)

the expression for the slip coefficient can also be written

T^(x 0) T4 3

^
^w) + 0(2)

18 T3 -D
3a w dx ^o

Alternatively, define as usual

, dTr.
q^ -16 ^T^Ja (:lx

x=0

which is the radiation contribution to the wall heat flux in the diffusion approximation.

Then

JT4 ^ ^) T4!
-^------w i^(N + O(^) (119a)

-^
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APPLICATIONS

Equation (117) provides a relation for the linearized radiation slip coefficient A/I;

in terms of a simple integral that depends on the single parameter N^, the usual

conduction-radiation parameter. Examination of the equation (118) shows that the radia-

tion slip coefficient ^ is related to A/^ by

ofr4 T^x 0)1
^

L w D^ ’\ 3 A (H9b)
q^ 4 ^

where Tp/x 0) is the temperature in the gas at the boundary to be used in the diffusion

approximation. Deissler (ref. 5) predicts an approximate radiation slip on the basis of a

second-order radiation diffusion solution, and his result for N^y 0 is

W^ 0) 0. 5

The results from the present analysis, shown in figure 3, closely approach Deissler’s

result for small N

Prediction of Energy Transfer

The slip coefficient derived herein can be readily incorporated into the diffusion solu-

tion for predicting energy transfer. For the case of infinite parallel plates containing a

gray gas and separated by a distance D, exact numerical solutions are available in the

literature (ref. 13) for determining the accuracy of results. For this geometry, the dif-

fusion solution (eq. (17c)) after one integration becomes

q* -N dT:!;- X*(T*) dT*= -q- (120)
dx* dx* 4^4

in which the constant of integration is q* q* + q* where q* is the dimensionless total
1.

energy flux and q* and q* are the dimensionless radiative and conductive fluxes, re-

spectively. For no sources or sinks, q* is constant with x*, and equation (120) can be

integrated directly.

The slip coefficients i^, and i^n are then used to eliminate the temperatures at
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Figure 3. Apparent slip coefficient for use with diffusion solution as function of conduction-radiation parameter.
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each boundary. From equations (119) and (120),

(T^)4 (T^*)4
1 ^ T

4q (121)

^ ^tv i

where the sign of q* depends on the direction of the normal to the boundary and will be

positive for i 2 and negative for i 1. Linearizing and substituting into the integrated

equation (120) to eliminate T^ and T^ give

3N (1 y)’
r q 1 1 + vf’ 1 (122)

1 < 2) ^D^^
L (I /) J

where y is the ratio of the wall temperatures T^ ^ /T^ i
and ^ is the optical thick-

ness of the gas aD.

Predictions based on equation (122) are shown in table I and are compared with the

numerical results of references 13 to 15 and with the simple additive solution of the exact

uncoupled radiative and conductive fluxes as proposed by many authors. Agreement by

both approximations is good, and the present formulation is slightly more accurate. An

TABLE I. COMPARISON OF APPROXIMATE AND EXACT SOLUTIONS FOR ENERGY

TRANSFER THROUGH GRAY GAS BETWEEN INFINITE PARALLEL PLATES

Optical Ratio of Radiation- Solution

thickness wall tern- conduction
Exact Present Additive

of diffusion peratures, parameter

solution, y at surface 1, Dimen- Refer- Dimen- Error, Dimen- Error,

’^D 1 sionless ence sionless percent sionless percent

energy energy energy

flux, flux, flux,

r r r

10 0. 5 1 0.336 1 0.336 0 0.323 -3.9

10 5 1 140 1 140 0 130 -7.2

10 5 .02916 133 14 126 -5.3 125 -6.0

3 .2 208 583 15 567 -2.9 552 -6. 5

1 5 1 .863 13 .850 -1. 5 .773 -10.4

1 5 .01 .647 13 .612 -5.4 581 -10.2
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advantage of the present analysis is that temperature distributions in the medium are

easily obtained by the integration of equation (120), but these cannot be obtained from the

additive technique.

More General Solutions to Optically Thick Situations

For the purpose of discussion, consider the supposition that both the absorption coef-

ficient a and the thermal conductivity \y are functions of the local gas temperature.

A well-known fact is that, for a a(T), pure radiation solutions of both energy transfer

and temperature distributions may be greatly changed from the solutions for a assumed

constant (ref. 16). For a a(T), then, the additive solution for heat flux in combined

radiation-conduction problems may be poor because of the influence of conduction on the

temperature profile, which may change the radiative flux greatly from the radiative flux

present with no conduction.
o

If terms of 0(e are neglected and the dimensional forms are substituted for all

terms, equation (17c) can be written

A- J x. W +l6^!3 ^= 0 (123)
dx _K 3a(T)_ dx

Now define

T y 3
13 f x, (T)dT + -16a / -^- dT (124a)

J k 3 / a(T)

or

rp

f3 f A, (T)dT + 4"- / -L- ^ dT (124b)
J K 3 J a(T) dT

Equation (123) can then be written

V2^ 0 (125)

while the boundary condition (eq. (119)) is, with the use of the diffusion relation for q^,,
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^ ) /w =--4--^ (126)
3a(T^) an^o

where 3/3/3n is the rate of change in ;3 with direction normal to the boundary. Equa-

tions (125) and (126) are the general formulation of the diffusion equation for combined

conduction and radiation with the extrapolated slip boundary condition.

CONCLUDING REMARKS

The correct boundary condition for use with the diffusion approximation for combined

conduction-radiation problems was derived. The boundary condition is given in terms of

a slip coefficient \p, where

^ A^
^(x 0)]
^r

Values of ^ as a function of the conduction-radiation parameter N are presented in

graphical form. Results obtained with the use of the diffusion approximation and the slip-

coefficient boundary condition compare well with exact solutions for the case of a gray

gas contained between infinite parallel black plates.

The entire temperature distribution in the gas may be found by applying the solution

of the linearized exact solution near the wall and the diffusion solution away from the wall.

The procedure used herein guarantees that the solutions will match in the intermediate

region and will give a uniformly valid representation of the entire temperature field.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, March 22, 1968,
129-01-11-07-22.
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