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ABSTRACT

In this paper, we consider 2 x 2 non-cooperative elliptic system involving Laplace operator defined on bounded, con-
tinuous and strictly Lipschitz domain of R". First we prove the existence and uniqueness for the state of the system un-
der conjugation conditions; then we discuss the existence of the optimal control of boundary type with Neumann condi-
tions, and we find the set of equations and inequalities that characterize it.
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Conditions
1. Introduction | oy |
S . . —Lt =r[y]. Lt =r[y,]. xey, (1.4
0 many optimal control problems governed by partial Ov, oV,

differential equations have been studied as in [1-3].

Systems governed by elliptic, parabolic, and hyper-
bolic operators have been considered, some of which are
of distributed type as in [4-12], while some others are of
boundary type as in [13-17].

Boundary control problems for non-cooperative nxn T
elliptic systems involving Laplace operator have been dis- Q=0Q,UQ,, ONQ,=¢ and Q=0 UQ:.
cussed in [17]. Furthermore, T'=(0Q, UdQ,)\y is a boundary of a

Here, using the theory of [3], we study the boundary con- domain Q, y=0Q,N0Q, #¢, and Q. is a bound-
trol problem for 2 x 2 non-cooperative elliptic systems in- ' ’ '

volving Laplace operator but under conjugation conditions.
Let us consider the following elliptic equations:

-Ay, +Yy, -y, = f XeQIUQz,
-AY, +Y,+Y, =, xeQ UQ,,

where we have the following notations:

Q is a domain that consists of two open, non-intersect-
ing and strictly Lipschitz domains €2; and €, from an n-di-
mensional real linear space R' ie Q, Q,cR" are
bounded, continuous, and strictly Lipschitz domains such that

ary of a domain Q,,i=1,2.
In addition,

g el’(D), fel’(Q) (i=12),
(1.1) 0<r=r(x)<r <o,reC(y),

r, = constant, and vis an ort of an outer normal to I'.
Finally, [p]=¢"-¢",
=g, xeT, (12) " ={p}" =0(x) under xe 00, Ny,

9" ={p} =¢(x) under xeoQ, Ny .

the heterogeneous boundary Neumann conditions:

oy, oy,
=9
AN OV,

and the conjugation conditions: The model of system (1) is given by:

A =A
|:§y_1:|:()’ |:§y_2:|:0’ XE)/, (1.3) y(x) (yl’yZ)
Va Va :(_Ay1+y1_yz’_Ayz"'yl"'yz)’
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A:(H'(Q)) > (2(Q)

system (1) is called non-cooperative, since the coeffi-
cients took the previous form.

We first prove the existence and uniqueness for the
state of system (1), then we formulate the control prob-
lem. We also prove the existence and uniqueness of the
optimal control of boundary type, and we discuss the
necessary and sufficient conditions of the optimality.

2. The Existence and Uniquenessfor the
State of System (1)

Since H'(Q)c ’(Q)c (H ! (Q))’ , then by Cartesian
product we have the following chain [1]:

(H'(@) = (L (@) g[(Hl(g))'j |

On (Hl(Q))zx(Hl(Q))z, we define the following

bilinear form:
a(y.y)= gJ;Vyl Vy/ldx+gJ;Vy2 Vi, dx
+i(y1 ViV Vs s )dX ()
+[rvlw]dy +[r{y.]lv.]dr,
The bilinear ;orm Q) is conti:luous, since:
[y ) < 1% iy 19 Ty 19 v 172
+ (||y1||Lz(g) 19l + 1Yl 12 Do
Il 1¥2 2y + 192l 191 oo )

sl 1071 P 281 e 1§ P 1 )

since the inequalities
¥l < ¥y and [¥li) < & [Mhq) are true
[3]. Then we have:

LZ (}/) >

la(y.))
<K (”yl”H‘(Q) "‘//1 "Hl(g) +||y2 "Hl(Q) "VIZHH‘(Q)
+|| Yi "HI(Q) "V/2 "H‘(Q) +||y2||H‘(Q) "'/Il "Hl(g))

<K (IlylllH] @ Y lhiia) Wil o) + Il (Q))
<K ||Y||(H1(Q))2 ||l//||(H1(Q))2 , K is constant.

Now, we have the following lemma:

Lemmal:

The bilinear form (2) is coercive on (H ! (Q))2 , that is,
there exists 4 € R, such that:

Copyright © 2013 SciRes.

aly- =Kyl o K0

)25

Proof:
a(y.y)=[(Vy) + ¥ dx+[(Vy,)" +v; dx
e[l +[wT )dr

> [y ey + 19 -
hence

a2Vl )

(since r > 0)

which proves the coerciveness condition of the bilinear
form (2). Then we have the following theorem:

Theorem 1: s

For a given f =(f, fz)e<L2 (Q)) , there exists a

unique solution y=(y,,y,)e (H1 (Q))2 for system (1).

Pr oof:
Since (3) is hold, then by Lax-Milgram lemma, there
exists a unique element

2
y=(y1.y2) y=(y1,y2)e(H1(Q))
such that
a(yw)=L(y) vy =(pw)e(H (@), @
where L(y) is defined by:
L(w)= [ fwdx+ [ fy,dx+ [ g dl + [ gy, dr,
Q Q T T

Y =(vps)e(H'(Q) 5)
The linear form (5) is continuous, since:
|L(W)| = " fi "LZ(Q) ”Wl ||L2(Q) +|| f, "LZ(Q) ”WZ "LZ(Q)
+ "gl |||_2(r) "l/ll ||L2(F) + "gZ||L2(r) "‘//2 ||L2(F) >

since the inequalities || y||L2 @ < C|| y||Hl @
and ||y||L2(F) <g, ||y||H1(Q) are true [3], then:
|L(W)| s C” fi ||L2(Q) "V/IHH‘(Q) + C" f, ||L2(Q) "V/Z "H‘(Q)
[ ||L2(r) v "H‘(g) +6 ||92||L2(r) v "H'(Q)
s (C" fi ||L2(Q) TG ||gl|||_2(1') )"V/l "H‘(Q)

#(clllle o * €Il 2 s

hence

IL(w)| <K, ("%"Hl(g) +||‘/’2||H'(g))

=K, ||‘//||(HI(Q))2 . (K, is constant)
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Now, let us multiply both sides of first equation of (1.1)
by ,(x), and the second equation by y,(x) then
integration over €2, we have:

“AY +Y - yz pydx = J‘fﬂ//ldx

I
I

Ay2+yl+y2 w,dx = ffz w,dx.

By applying Green's formula:

IVyIVy/ldx J'l//l 61)//] dl“+f -Y,) v, dx
A
:Jfl w,dx ,
Q
IVyzvl//de—I%jyz dr+[(y, +Y,) v, dx
Q r Va Q
zjfz w,dx,
Q

by sum the two equations, then comparing the summa-
tion with (2), (4) and (5) we obtain:

J'VyIV://ldx +IVy2Vw2dx

Q Q

+J(Y1 _yz)V/l dX+I(y1 +Y2)'//2 dx
Q Q

:Ifl 1//1dx+jf2 v, dx
Q Q

+jl//1 2] dF+J.!//2 %, dr,
r OVa v 0V,
then we deduce (1.2), which completes the proof.

3. Formulation of the Control Problem

2
The space ( F)) is the space of controls. For a con-

trol u= (L ) the state
2 . .
y(u)= ( () AOE ( "(Q )) of system (1) is gi-
ven by the solut1on of the following systems:
{—Ay,(u)er,(u)—yz(u):f, xeQ UQ,, 61
—AY, (U)+y (U)+y, (u)=f, xeQ UQ,,
2] =g +U, %:gﬁuz, xeTl, (6.2)
AN Va
and the conjugation conditions:
{ayl(“)}o, FVZ(“)}O, xe, 63)
OV, AN
oy, (u) ’ oy, (u) ’
AT V) QR , =L = , , (64
{2 ey (20 ] xer. o

Copyright © 2013 SciRes.

Since there exists a generalized solution
y(u)e (H ! (Q))2 to the boundary value problem (6),

then such solution is reasonable on T of Q, and
||y(u)||(L2(F))z <o . (7)

The observation equation is given by:

Z(u)=(Z,(u).Z,(u))=Cy(u)=C(y, (u). y, (u)),

where Ce ,C((L2 (1“))2 ;(L2 (F))z), namely:

Z(u)=(Z,(u).Z, (u))=y(u)=(y (u). v, (u)). ®

For a given Z, —(zgl,zgz)e (L2 (F))z , the cost func-
tion is given by
2

21l (r) ©)

)= [ ()= 2 gy +3 ()

+(Nu,u)(

LZ
LZ(I-)) B
where Nu=a(x)u, 0<a, <a(x)<a <.

The function y(u)e (H ! (Q))2 is specified on the

domain QU , minimizes the energy functional:

O(y)= I(le)z +y! dX+_[(V1//2)2 +y; dx
Q Q
+[r([n] +[vaT )ar
! (10)
—2.[ f]t//ldX—Z_[ f21//2dx—2.|. gy, dIl’
Q Q r
~2[ gy,dl" = 2[ Uy, dl =2 [ Uy, dT
r r r

on (H ! (Q))2 , and it is the unique solution in
(H ' (Q))2 to the weakly stated problem of finding an

element y(u)e (H ! (Q))2 that meets the following in-
tegral equation:

IVyIVWIdx+IVy2Vy/2dx
Q Q
Vv = v Y v+ Yoy, dX
Q
+[rIn]lwildy+[r[y.]lw.]dr
¥ e
:J fly/ldx+J fzwzdx+fglwldr
Q Q T

+J‘92‘//2dr+_“u1‘//1dr +Iu2y/2dF
i (u) = (v, (U).y, (u) e (H (@) (11
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The control problem then is to find u=(u,, u,)eU,,
such that J(u)<J(v), where Uy is a closed convex

subset of (L2 (F))2 )

The cost function (9) can be written as (see [1]):

2
J(u):n(u,u)—2L(U)+||y1 (0)-2, 2(r) (12)
2
+||y2 (O)_ Zg () ”

In this case, the bilinear form =(.,.) and the linear
form L(.) are expressed as:

m(u,v)= (yl (W)=%(0), % (v)- (0))L2(r)
(3% (1) = ¥2(0). 35 (V) = %:.(0)) o, (13)

()

L(v)= (Zgl =% (0). % (V)-V, (0))Lz(r)
+(25, = ¥:(0). ¥, (V) - ¥, (O))Lz(r) .
Now, we prove the continuity of m(u,v) and L(v)

on (L2 (F))2 as follows [3]:

Let ¥'=9(u’) and ¥"=9(u") be solutions from
HI(Q) to problem (11) under f = 0 and g = 0. Then
from the bilinear form a(.,.) which is given by (2), we
can derive the following inequality:

(14)

"

|y -y o

<G ||)7' - )7"",241(9)2

5

seui-vl, 7

thus, we have:

19 =y < ol =tz
() (Cm)

i.e. the function §(u) is continuously dependent on u. |
Then the continuity of m(u,v)and L(V) on (L2 (F))
is proved. )
The bilinear form =m(u,v) is coercive on (L2 (F))

since (au,v)= (x/gu,\/gv) ,

Thus:

Copyright © 2013 SciRes.

n(uu)= (y1 (U)=y,(0),y, (u)-y, (0))L2(l')
(3 ()= v2.(0), %2 () =¥ (0)) s
J“(\/gu’\/gu)(ﬂr))2

28, (u,u)(Lz(r))z :

Then by Lax Milgram lemma, the following theorem
is proved. Moreover, it gives the necessary and sufficient
conditions of optimality.

Theorem 2:

Assume that (3) holds, there exists a unique optimal
control u=(u,u,)eU,, that is closed convex subset

of (L2 (1“))2 and it is then characterized by the follow-
ing equations and inequalities:
{—Apl (u)+pi (u)+p, (u) =0,

xeQ,uQ,. (15.1)
~Ap, (u)=p, (u)+ p, (u) =0, P

op B P, _ 3

v, ()= 2 ov,. (1)~ %, (15.2)
xel,

{6@(“)}0, sz—(u)}o, xe7, (15.3)
6VA* 6VA*

op, (u) i_ op, (u) i_

{ ov }‘r[pl]’{ o | =Pl asa

Xey,

(p(u)+§u,v—u)(Lz(r))z >0, (16)

together with (6), where R
p(u)= ( P (u), p, (u)) € (H : (Q)) is the adjoint state.
Proof: s
The optimal control u=(u,u,)e (L2 (F)) is char-
acterized by (see [1])

n(uv-u)>L(v-u) VveU,, (17)
by (13), and (14):

n(u,v—u)—-L(v-u)

= (y(u)— z,,y(v-u)- y(O))(Lz(r))z

+(§u,v—u)( >0,

)
thus:
(Y()= 23 Y(¥) = ¥(W)
+(au,v- u)(ﬁ(r))z >0,

this inequality can be written as
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(% (W)= 20 % (V)= ¥ (W) 1
+(v: (v)
+(au,v—- ) 0y >0.
Now, since: (A P, y)z(p,Ay),then:
(P AY)(i2()f
= (P (). =AY (U)+y (W) =¥ (U)) 2
CYCRS AT EACIESA (D) S

by using Green’s formula, we obtain:

then

Ap=A(p.p,)
:(_Apl +ht0 ’_Apz
xeQ,UQ,,

_p1+p2)» (19)

Since the adjoint system takes the form [3]:

A'p(v)=0, xeQ, (20.1)
P _ y(v)-z,, xeT, (20.2)
8VA* 9

op op |
=0 and =r|p|, xey, (203
LVAJ an {a‘%} [p]. xey, (203)

and by using (19), system (15) is proved .
From Green's formula the following equations are
true:

(—Ap1 (), vi(v)-v, (u))LZ(Q)

=(V V()W) @D
(jfl Yi()- y,(u)J ,
~ ()

Copyright © 2013 SciRes.

g2’ yz )_yz (u))Lz(r) (18)

(=8p: (), ¥ (V) = ¥ (W),
= (VR W,V (% (V)= ¥ (W),

L@

_[681[/)2 Yo (V)= (U)] >

A (r)

(22)

by adding
(P (U)o % (V)= 3 () 2 g
(P (u),yi (V)= (u))LZ(Q)
to the both sides of Equation (21), and

(=1 (U) %2 (V)= ¥ (U)o »
(pz(u)ayZ(V)_yZ(u))Lz(Q)

to the both sides of Equation (22), then by (15) we obtain:

[;p‘ Wi(v)- yl(U)J
Va L3(r)

= <Vp1 (u),V(yl (V)-y, (u)))LZ(Q) (23)
+(p (U). v (V)= (u))ﬁ(g)
+( P, (u). ¥ (V) - (u))LZ(Q) ’

and

{aafz YA (V)— Y, (U)J
~ L2(r)
= (VP (WY (%2 (V)= %2 (),

(24)
+(_ o] (U), Y, (V)_ Y (u))Lz(Q)
+( P, (u)’ Y (V)_ Y (u))LZ(Q) )
Now, we transform (18) by using (15) as follows:

(851 ,Y1( ) Y1(u)]

A L2(T)

P,
+{6 Y (V)= Ys (u)] (25)

Va (r)

+ (Eu,v—u)(L2 )z >0,

by (23) and (24), we have:
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by using (2):

a(y, (v)= ¥ (u). py(u))- I[yl (w)][p]dr
+a(y, (v)-y, (u _f [ ¥, (V)= Y, (u)][ p,]dy
P20,

Jr(éu,v—u)(L2 -

from (2), and using Green’s formula:
( P (u). A(Y: (V) -y, (u)))l_z(g)
+I —( )) dr

Va

_I [yl ][pl]d7
+jr|:y1 V _y1 U :|[p1]d7

+( P (U). A(¥: (V) ¥, (u)))LZ(Q)

avA

_J [yZ J[pz]d;/
+J [yz ][pl]d;/

2 >0,

+j p, dr

(auﬂv_u)(ﬁ(r))

from (6), we obtain:

[P (v —u)dr+[ p, (v, —u,)dl
r r

+ (ﬁu,v—u)(L2 o) >0,

which proves (16).
Remark:
If the constraints are absent, i.e. when

Uy = (L2 (T ))2 , then the equality:

p(u)+au=0, xeT, follows from condition (16).
Hence

Copyright © 2013 SciRes.

u=-2 and u=-2 xer. (¢
a a

4. Conclusions

The main result of the paper contains necessary and suf-
ficient conditions of optimality (of Pontryagin’s type) for
2 x 2 elliptic systems under Neumann conjugation condi-
tions involving Laplace operator defined on bounded,
continuous and strictly Lipschitz domain of R", that
give characterization of optimal control.
We can consider boundary control problems for 2 x 2
and n x n elliptic distributed systems with Dirichlet con-
jugation boundary conditions. Also we can consider
boundary control problems for parabolic and hyperbolic
distributed systems with Dirichlet and Neumann conju-
gation boundary conditions. The ideas mentioned above
will be developed in forthcoming papers.
Also it is evident that by modifying:

the boundary conditions,

the nature of the control (distributed, boundary),

the nature of the observation,

the initial differential system,
many of variations on the above problem are possible to
study with the help of Lions formalism.
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