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Abstract. One of the approaches to inverse problems based upon their relations to boundary
control theory (the so-called BC method) is presented. The method gives an efficient way to
reconstruct a Riemannian manifold via its response operator (dynamical Dirichlet-to-Neumann
map) or spectral data (a spectrum of the Beltrami—Laplace operator and traces of normal
derivatives of the eigenfunctions). The approach is applied to the problem of recovering a
density, including the case of inverse data given on part of a boundary. The results of the
numerical testing are demonstrated.

Introduction

The goal of this paper is to present one of the approaches to boundary-value inverse problems
(IPs) based upon their relations to boundary control theory. We are dealing with the so-
called BC method proposed by the author in 1986 (see Belishev 1987a); its modernized
version (Belishev 1990b) lies as a basis of this paper.

To demonstrate the opportunities of the method we choose, perhaps, the most impressive
of its achievements: that is a reconstruction of Riemannian manifolds. Moreover, the
problem of recovering a density is considered; this is the problem which the BC method
was created to solve. Let us describe the main results.

(i) Let (2, g) be a smooth compact Riemannian manifold with a boftteronsider the
dynamical system

Uy — Aqu =0 inQ x (0, 7T) Q)
uly=0 = t|;=0 =0 (2)
ulrxpo.r) = f- 3

Let u = u/(x,t) be its solution (wave) initiated by a boundary contyal The response
operator (dynamical Dirichlet-to-Neumann map) is defined as the Rap: f —
du’ /dv|r«o,7) (v being an outward normal). At the final moment T the waves moving
from T fill the subdomainQ” = {x € Q|dist(x, ") < T}. By virtue of a hyperbolicity of
problem (1)—(3) the operatd?’ is determined by the submanifol®”, g). The remarkable
fact is that the opposite turns out to be truse show that the operatoR?” determines
(T, g) up to isometry

1 E-mail address: belishev@pdmi.ras.ru
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R2 Topical Review

(i) Let {x¢}2, and{gc(-)}2, be the spectrum and the eigenfunctions of the problem

—Agp = Ao in Q
olr=0
functions {¢,} being orthonormalized inL,(); vy := d¢;/0v. The set of pairs

{Aes Y ()72, is said to be the (Dirichlet) spectral data of a manifold. One of our results is
that spectral data determin&, g) up to isometry

(iii) Consider a bounded domaife c R" with a smooth boundary™; let p > 0
be a smooth function (density) given @. The dynamical system of the form (1)—(3)
corresponding to the wave equatipmn,, — Au = 0 determines a response operator and
spectral data. We proposm efficient procedure which recovepsor via R?" or p|q via
{M; ¥ }. The analogous results are obtained for the case of both kindsefe data given
on any open subset of a boundary

As an approach, the BC method is of a complex character: it uses geometry, asymptotic
methods (propagation of singularities), control theory and functional analysis. The role
of the organizing frame is played by the system theory. One reason to call the approach
the boundary control method is as follows. One of the central facts which is necessary
to justify the method is a property of controllability of system (1)-(3): the reachable
setU” = (u/ (-, T)|f € Lo(I' x [0, T])} is dense inL(QT). Furthermore, the use of
controllability relates the BC method to an approach based upon the Hilbert uniqgueness
method (Lions, Puel, Yamamoto and others; see, e.g., Yamamoto (1995)); both approaches
exploit the well known principle of system theory: if a system is controllable, it is the
observable that gives the possibility of extracting information concerning a reachable part
of the system from the corresponding measurements.

The first variant of the BC method (Belishev 1987a) was based upon a transparent
physical idea: operating by a boundary control to create in a dothaiwaves of a standard
shape(Dirac §-functions). Later this idea led to a variant of the method using some of the
multidimensional analogues of the classical Gelfand—-Levitan—Krein's equations (Belishev
1987b, Belishev and Blagovestchenskii 1992). Recently, Rakesh noted that in the one-
dimensional case this variant (see Belishev 1996b) is similar to an approach proposed by
Sondhi and Gopinath (Gopinath and Sondhi 1971, Sondhi and Gopinath 1971).

As one more analogue and predecessor of our method, the ‘local approach’ belonging
to Blagovestchenskii (1971) has to be mentioned. A dynamical variant of the BC method
may be considered as its multidimensional generalization.

The BC method was originated independently and practically simultangoustiz
other approaches to the multidimensional IPs (Kohn, Lee, Nachman, Novikov, Sylvester,
Uhlmann, Vogelius and others). Comparing it with the known methods the following
pecularities should be noted:

(i) the method is of invariant character: it recovers not only coefficients of equations
but Riemannian manifolds odn arbitrary topology(note that the compactness aad°-
smoothness of a manifold do not play the central role in reconstruction);

(i) the BC method gives more than a uniqueness of determination, it proposes the
recovering procedures which may be used as a basis of numerical algorithms;

(i) the method works in the case of data given on part of a boundary; its dynamical
variant leads to unimprovable (time optimal) results;

1 The paper by Belishev (1987a) was submittedtklady Akad. Nauk SSSRresented pL D Faddeev) on 29
April 1986, and published in June 1987. The papers by Belishev and Kurylev (1986, 1987) were written later; the
first paper used the scheme identical with that of Belishev (1987a) and referred to this latter work.
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(iv) a simple and clear background (integration by parts, controllability plus geometrical
optics) makes the method of a rather general character which gives reason to hope for its
applications to more complicated systems of elasticity, electrodynamics etc. First steps in
this direction have already been taken (Avdonin and Belishev 1996, Belishev 1995, 1996a,
Belishevet al 1997).

In conclusion, we describe the contents and the structure of the paper.

Section 1 is devoted to the geometrical preliminaries. In section 2 the direct boundary-
value initial problems are considered; the geometrical optics relations are presented.
Section 3 introduces spaces and operators which describe the dynamical system (1)—(3) in
terms of control theory; the visualizing operatof appears in section 3.5. Section 4 deals
with a property of controllability; a duality ‘controllability—observability’ is considered.
Section 5 plays a central role by demonstrating a way to visualize the waves through the
boundary measurements. The operafdris represented in the form of an operator integral
which is determined by the inverse data. Section 6 deals with a reconstruction itself. We
describe a way to obtain an isometrical copy of an original manifold from a picture of waves
given by operatoiv”. Thus, a reconstruction is realized by the scheme ‘inverse gata
the visualizing operatoe> manifold’. In sectim 7 a simplified variant of the approach is
applied to a problem of recovering a densitySinc R”. In particular, the case of inverse
data given on part of a boundary is considered. Section 7.7 contains results of numerical
testing of the algorithms based upon the BC method.

The paper is written so that the reader who prefers applications could ignore the material
of theoretical character. To understand how the method recovers a density one can read the
paper along the path:

section 1: 1.1; 1.2; 1.3; 1.4, (i)—(iii); 1.5, (i); 1.6

section 2: 2.1; 2.2; 2.4; 2.5

section 3: 3.1; 3.2; 3.3; 3.4

section 4: 4.1; 4.3

section 7: completely.

We use the abbreviations: IP, inverse problem; sgc, semigeodesical coordinates; DS,
dynamical system; BCP, boundary control problem; Al, amplitude integral; AF, amplitude
formula.

1. Geometry

The geometrical preliminaries are given. The basic object is the semigeodesical coordinates
considered ‘in the large’ on a Riemannian manifold.

1.1. Eikonal and cut locus

Let (22, g) be a compacC *-smooth Riemannian manifold with a borderdimQ =n > 2
andg a metric tensor o1s2.
The function

T(x) :=dist(x, I") x €Q

is calledan eikonal Its level sets
¥ = {x € Q|r(x) = &} §>20

are calledequidistant surfacesf the border™; I'® = I". A family of subdomain
QF = {x € Qt(x) < &} £>0
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extends with respect tg. A ‘cross size’ of a manifold is characterized by the number
T, :=maxz () = inf{& > 0|Q° = Q).

Let £, be a geodesic starting from a pointe T" in the normal direction and, [0, s] its
segment of length > 0. The second end point of the segment is denoted(pys) € ¢, ;
for s = 0 we setx(y, 0) = y. A critical lengths = s.(y) is defined by the conditions:

(1) t(x(y,s)) =5 for 0 < s < su(y);

@ii) T(x(y,s)) < s fors > s.(y).

Thus, ifs < s.(y), segmentt, [0, s] is the shortest geodesic connectingy, s) with
I, whereas fos > s.(y) the segment does not minimize disty, s), I'). Functions,(-) is
continuous o™ (Gromol et al 1968, Hartman 1964).

The pointx(y, s.(y)) is calleda separation poinbn ¢,,. A set of separation points

o= Jx, 5.

yell

is said to bea separation set (cut locug)f a manifold with respect to its border (Gromol
et al 1968, Hartman 1964). The well known fact is that a cut locus is a closed set of zero
volume,

w=0 volw =0 (1.1)
which is separated from the border:
T, =dist(w, ") = mrin s5() > 0.
For¢ < T, the setl Nw is empty; if¢ > T, the partl’é \ w of an equidistant surface

is a smooth(n — 1)-dimensional manifold (perhaps, unconnected). Thus, the regularity of
I'é may be violated on a cut locus only.

1.2. Geodesic projection

Fix x € Q and define itggyeodesic projectioron a border:
prx :={y € I'ldist(y, x) = t(x)}.

Thus, prx is a subset o containing all the points being nearestio
Fix & € [0, T,] and introduce the subsets of a border

of = prré \ w) of = pr(é Nw) of =T\ (6} Uc®)
which form a partition

F=0SUcfUoc® (1.2)
and may be characterized in terms of the functipf) as follows:
of ={y eTls.(y) > &} oi={yells.(y) =)  of ={y eTls.(y) <&}

By virtue of the continuity ofs. (), the sets;i are open orl"; sets is closed. Setrf is
decreasing, whereas set is increasing whei§ varies from 0 to7,.
Denotingsz‘i = Q\ QF, one has the relation

dist(c®, Q) > & T, <&<T. (1.3)

following easily from the definitions.
Let us remark in addition that the map pf2: — I" turns out to be a diffeomorphism
between™® \ w ando’. If & < T,,, one has pFé = o =T.
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1.3. Semigeodesical coordinates

A simple fact is that every point outside the cut locus is connected with the border by a
unique shortest (normal) geodesic. Therefore, a projection®f2 \ » contains only one
point y(x) := prx € I', whereas a pail(x), t(x) determinesrt uniquely and may be
considered as its coordinates.

In more detail, let us fix pointy and its (small) vicinityB : xo € B C Q \ w such that
pr B is covered by local coordinatesd, ..., y"~* onT. Systemylopr,...,y" Lopr, ()
is said to bethe semigeodesical coordinatésyc) onB. Below we use the same term for
the pairy (-), 7(-) if there is no need to put?, ..., y"~1 in detail.

Property (1.1) gives a remarkable possibility to use sgc ‘in the large’, i.e. almost
everywhere o2 (Hartman 1964).

We denote byy a metric tensor in sgc which has the well known form

0

g= I w,v=1...,n—1
o ... ... 01
The length and volume elements are
ds? = g, Ay dy” + dr? dQ = (detg(y, 1)Y2dyt...dy" tdr = B(y, r)dl de
1.4

where
d t 1/2
M) and  d := (detg(y,0)"2dyt.. . dy"

AR (detg(y, 0

is a canonical measure on a border. Note fhand d” do not depend on the choice of
local coordinates; functiop € C*°(Q2 \ w) is positive everywhere.

Recall that in local coordinateg', ..., n" the Laplace operator is written as follows:
a a
A, = (detg) Y2 — (detg)/?g" — 1.5
¢ = (detg) 817"( g)gan, (1.5)
whereg = {gu(n',.... n")}},_, is the metric tensor{g"'} = {gu}~*. In sgc it takes the
form

3 3 3 3
Ag = (detg) ?— (detg)"’g"’ — + (detg) > —(detg)/>—  (1.6)
ayH ayY aT ot

with smoothg.

1.4. Pattern

Here we introduce a geometrical object which plays the central role in the BC method.
Semigeodesical coordinates induce the mémm  \ w into the cylinderl" x [0, T]
itx— (yx), t(x)).
The image

O:=i@\w)= | (), 7)) cT x[0, 7]

xeQ\w

is said to bea patternof .
The following facts may be easily checked.
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(i) The tensorg determines a metric o®. The mapi transforms(Q\ w, g) onto (©, g)
isometrically; its inversé ! coincides with classical exp

(ii) For any £ € [0, T,) a smooth parlé \ w of equidistant surface is mapped onto the
setai x {t = &} C ©. Correspondingly, the representation

Q\o= ] Mo
£€[0.T)
is transformed into
o= |J of x{r=¢) (1.7)
§€[0,T.)
which may be considered as a ‘horizontal’ bundle of a pattern.
(iii) An ‘upper’ border of a pattern

0= sy

yell
is said to bea coast The continuity ofs,(-) implies
mesirq.0 =0 (1.8)

onT x [0, T,].

(iv) The inverse map~! = exp- may be extended from a pattern onto a coast by
continuity. Everywhere in the following we suppose the extension to be done, denoting it
by the same symbal. An extended map transfe® U # onto 2, andé® onto w, but not

injectively. If pointm € w is connected witl™ by the shortest geodesi¢s, ¢,, ... (so
thats,(y’) = s,(y") = - - - = t(m))), then one has
UG s ) = i NG s ) = =m

i.e.i~! glues points of a coast.
The objects introduced above are shown in figure 1.

Figure 1. Semigeodesical coordinates and pattern.

In the following, dealing with dynamical problems we shall use reduced patterns. Fix
positive T < T,; the subdomainQ’ (see 1.1) equipped with the tensgf,r may be
considered as a separate Riemannian manifold. As such, it has the cut locus

ol =onQ’
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and the pattern

T :=i(@"\w") cT' x[0,T]
with the coast

6T ;=0 N[r x (0, T)].

Varying T one has an increasing family of patter@$ which exhausts patter® = 0.
(v) The following remark would be useful: the map?! transfers(®7,g) onto
QT \ w’, g) isometrically; it glues points of a coast™*(87) = w’.
A pattern was first introduced in Belishev (1990b).

1.5. Images

() Let us agree to consideg introduced in section 1.3 as a function on a pattern:
B eC>®®),B>0.

Fix T < T,; for any functiony given onQ” we define functiory on 7 :=T" x [0, T]
as follows:

BY2(y, D)y (x(y, 7)) (y.1) e @

Yo :2{0 (y.7) € 57\ @,

Functiony is said to bean imageof y, the corresponding map’ : y — 7 being calledan
image operator
(ii) Introduce the (real) Hilbert spack” := L,(Q7),

Oy, V) = /QT dS2 y(x)v(x)
and the spac&’ = Lo(Z7),
(Fizr = [ drde promey. o).
Let £ be the subspace of functions localized on a pattern:
F&={f € F' | suppf c ©T}.
The (orthogonal) projectox’ in 7 onto FZ cuts off functions on a pattern:

fly, o) (y,7) e ©F

r —
(XG)f)(V’T)_{O ()/,T)EET\®T-

Lemma 1.1. The image operator acts isometrically frak¥ into F7, the relations

UTy, 1T v)pr = (y, V)pr Ranl” = Fl AT IT = Uyyr "™ = xL.
(1.9)

being valid (l are identical operators).
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Proof. OperatorI” is correctly defined orH” by virtue of (1.1). For arbitraryy,
v e C5P(Q7 \ ') one has the equalities

(y, V)yr = /QT dQ y(x)v(x) = (see (1.1)= /QT\ = (see (1.4))

= \/(;T drdr ‘B(}/, r)y(x(y, T))U(x()/, T)) = ()N}’ "D)]:T — (IT y, IT U)]:T.

Thus,IT is an isometry.

Operator!/” transfersC3°(Q7 \ w’) onto C5°(®7). Indeed, the inclusiod” C(QT \
o) c CP(OT) is obvious; on the other hand, for any € C°(®") one can find the
preimage(/7)~1f e C5(QT \ 0”) as follows:

DTN =@t fy ), t(x)  xeQ\o'.

A density of setC(Q7 \ »’) andC5°(O©7) in HT and FY implies Ran'” = FJ. Thus,
two relations in (1.9) are established; the rest of (1.9) is just a corollary of the first. The
lemma is proved. O

Corollary. The operator(/7)* : T — HT acts by the rule
AT HE) =B 2XEN @, 1) xeQ \o

Suppose functions € C%(Q7) andw e C(Q") to be connected through the Laplacian,
Agy =w in Q.

Let y, w be their images o®’. An image operator induces the corresponding relation on
a pattern:

Aj=w in © (1.10)
with operatorA := I” A(I")~1, which may be represented in the form
A= g““—az I o
dyHayv oy at?

with smooth coefficients. The representation (1.10) may be checked by a simple calculation.

1.6. Domains of influence

In conclusion of the geometrical preliminaries we introduce one class of the sets used below
in dynamical problems.

DenoteQ” :=Q x [0, T] (0 < T < T,); for any point(xo, 7o) € QT definefuture and
past cones

K[ (x0, 10)] := {(x, 1) € Q"|dist(x, xo) < £(r — 10)}.
For anyD c QT the sets
KI[D]:= U K[ (x0, 10)]

(x0,70)€D

are calledfuture and past domains of influencef subsetD. The following facts may be
simply derived from the definitions given above and in section 1.2.
(i) Let

s =T x [T —&,T] 0<&XT
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be part of the lateral surface” of cylinder Q; the representation
K[l ={(x, 1) € Q"lt > t(0) + (T - &)}
is valid. Thus, this domain lies above the characteristic surface
AT = {x, 1) e QT|lt = t(x) + (T — &)}
(i) Consider the semi x {t = T} lying on an upper base oD” (recall that

Qi = Q\ QF), and the setsfi x{t =T —§&}, o x{r = T — &} which form a
partition of the cross sectioll x {t = T — £} of £7. The following relations hold:

(0f Uoh) x {t =T —£} c K'[Q] x {r =T}]
of x{r=T—-&)¢ K'[Q x{r=T}] (1.11)

the latter being meaningful only i, < & < T, (see (1.3)).
Properties (i) and (ii) are illustrated on figure 2 (the part ®f belonging to
KT[Q% x {r = T}] is shaded on figure 2(b)).

(@)

Figure 2. Domains of influence.

2. Waves

Properties of waves initiated into a manifold by boundary sources (controls) are presented.
The waves play the role of the main tool used by the external observer who investigates a
manifold from its border.

2.1. Boundary-value initial problem

Consider the problem

Uy —Aqu =0 in IntQ” (2.2)
uli=o = usli—0 =0 (2.2)
ulgr = f (2.3)

with a final moment = T > 0 and functionf = f(y, t) which is said to be d@Dirichlet)
boundary contrallet u = u/ (x, t) be its solution Wwave.

Let us list briefly some known facts concerning waves.

(i) Introduce a set of smooth controls1” = {f e C>®(=7)|(8/3t)* f],—0 = O,
k =0,1,...}; for any f € MT the problem (2.1)—(2.3) has a unique classical solution
ul e C®(QM).
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(i) The map f — u/ acts continuously fromL,(X7) into C([0, T]; L»(R2)) (see
Lasieckaet al 1986) its extension by continuity determines a generalized solutfofor
f € Lo(27) satisfying (2.1) as a distribution.

(iii) The hyperbolicity of problem (2.1)—(2.3) leads to a property which is interpreted as
a finiteness of the speed of wave propagation: for gny L»(=7) one has the inclusion

suppu’ C K1 [suppf]

in 0. Since suppy’ c =7 and KX (Z7) = {(x,1) € Q"|r > t(x)} (see section 1.6) this
implies the inclusion

suppu’ (-, §) C Q° 0<&<T (2.4)

in Q. Thus, Q¢ may be interpreted as part of a manifold filled by waves up to the moment
t = &, that selects the value= T, as a time needed for waves to fill the whole of the
manifold.

(iv) An independence of the metric tenspion time leads to the well known stationary
state property. Leff € FT and f(; &) be adelayedcontrol,

0 0<t<T—-¢&
f(y,t;é)i={f(y’t_(T_5)) T—&<t<T.
The relation
W COC Ty =ul (-, €) in Q (2:5)

just means that a delay of a control implies the same delay of a wave. As a corollary one
can obtain

k
u@ntf — (%) u’ in o7 (2.6)

for feMl k=12, ....

(v) Let v = v(y) be an outward normal at poipt € ', 9, := d/dv; the mapf — 9,
u’|sr defined onM7 acts continuously from the subspagg € HX(Z7)|f|,—0 = 0} C
HY(ZT) into Lo(=7) (H%(...) be the Sobolev classes) (Lasieakzal 1986, Lions 1968).

2.2. Dual problem

The boundary-value initial problem

Vit — Agv =0 in IntQ” 2.7)
V|j=r =0 Vili=r =¥ (2.8)
vsr =0 (2.9)

is said to bedual to problem (2.1)—(2.3). Let = v”(x, t) be a solution; the following is a
list of its properties.

(i) For anyy € C5°(2) the problem has a unique classical solutione C>(Q7).

(ii) The mapy — v* is continuous fromL,(Q) into HX(QT) N C([0, T]; H}(S)); this
fact permits the definition of a generalized solution foe L,(2) extending the map by a
continuity (see Lasieckat al 1986).

(iii) Defined on Cg°(R2), the mapy — 9, v’|yxr acts continuously fromL,(2) into
Lo(2T) (see Lasieckat al 1986). Therefore, a trac v”|yr is correctly defined fow”,

y € La(€2).
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(iv) A hyperbolicity of a dual problem leads to the inclusion
suppv’ € KT [suppy x {r = T}] (2.10)
in OT.
One reason to call problem (2.7)—(2.9) dual to problem (2.1)—(2.3) is the following
relation between their solutions.

Lemma 2.1. Forany f € Ly(27), y € L»(2) the equality
[ eau .y = [ ard s v (211)
Q T

is valid.

Proof. For f € MT, y € C5° and the corresponding classical solutions one has the
equalities

0= det[utj:(x,t) — Aguf(x,t)]v—"(x,t)
QT

= / d2 [u] (x, )v” (x, 1) — u! (x, )V, (x, D]['Zh
Q
T
—[ dr /dF[Bvu-f(y, OV (y, 1) —ul (v, 3,07 (v, 1)]
0 r

T
+/ dt/ dQu’ (x, [V} (x, 1) — AgvY (x, 1)]
0 Q
= (see (2.2), (2.3), (2.7)-(2.9))

T
_ _/ dQuf(x,T)y(x)—i-/ dr/dr F s D0 (1, 1)
Q 0 T

which implies (2.11) for smootlf, y. Extending the established equality gne Lo(27),
y € L(2) by continuity, one can obtain the necessary result. The lemma is proved.

Solutionv” describes a wave produced by the perturbation of the velocity. Such a wave
propagates (in inverted time!) into a manifold whose border is rigidly fixed.

2.3. Propagation of wave discontinuities

The well known fact is that discontinuous controls generate discontinuous waves. The
discontinuities of waves propagate along bicharacteristic (rays), their amplitudes being
calculated by means of geometrical optics.

Choose a smooth contrgl € M” and fix parametet : 0 < & < T < T,; let

o7 o 0<tr<T—-¢
fey.t)y =00 —(T =&)f(y.&) = b T—te<t<T

be its cutting-off function 4(...) is the Heavyside function), supp c =7. In general,
f is a discontinuous control having a discontinuity at the momeat?l — &:

e O E0=fr. T = 6). (2.12)

The corresponding wave’: is localized in domainKi[ETf], and our goal is to describe
its behaviour near the characteristic surfa¢e® which bounds supp/s from below (see
figure 2(a)).
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Let w. := {x € Qdist(x,w) < ¢} be a vicinity of the cut locus; denot@! :=
(Q\ we) x [0, T]; 54 1= 50(s).

Lemma 2.2. For arbitrary (small) ¢ > 0 one can findS§ = §(¢) > 0 such that the
representation

u(x, 1) = B2y (), T() f(y (x), 1 — T(x)O(t — T(x) — (T —&))
+w! (x, 1)t —T(x) — (T — £))4 (2.13)

is valid for any(x, t) € QT satisfyingt < t(x) + (T — &) + 6 (i.e. lying underX”=°%). The
functionw{ is bounded:

lw!| < (T, f, )

uniformly on¢ € (0, T).

This result is known (see, e.g., Babich and Buldyrev 1991, Wainberg 1982); the reader
could find a variant of the proof belonging to Kachalov in Belishev and Kachalov (1994).
Representation (2.13) shows that a discontinuity of the wave movesarftom the
border" with a unit velocity. At the final moment = T it is localized on the surface
I'é playing the role of a forward front of wave; an amplitude of the discontinuity being
calculated as follows:

Jim ey, 0. 1) = B O f (0 T = 9). (2.14)

These kind of relations are known as the geometrical optics formulae (see Babich and
Bulydrev 1991, Wainberg 1982). Comparing (2.14) with (2.12) one can say that up to the
factor /2 of a geometrical nature the shape of the wave discontinuity repeats the shape
of the discontinuity of control.

Let us remark that (2.13) describes the behaviour of a wavermdythe characteristics
XT% carrying a discontinuity, andut of a cut locusIf T > T, far from this area a wave
can possess singularities of more complicated structure.

2.4. Discontinuities in the dual problem

As in system (2.1)—(2.3), the same effect is present in the dual one: discontinuous data
produce discontinuous waves.
Choosey € C*(Q); let

Ye(x) == 0(t(x) — &) y(x) xeQ

be its cutting-off function on the subdomaﬂﬁ =Q\ Qf = {x € Qr(x) > £}. Note that,
in general,y: has a discontinuity at surfade:. Consider problem (2.7)—(2.9) with data
v|;=r = 0, v|,=r = y&; let v’ be the corresponding solution.

Lemma 2.3. Inthe case oD < & < T < T, the relation

1/2 £ o
lim av ny(y, T) — ﬂ (V’%_) y(X(%%)) ()/,%') (= o X {l E}

2.15
I T—£—0 0 (y.§)eos x {t =T —§) @

is valid.
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Equality (2.15) is dual to (2.14), the duality being known as a reciprocity law. Omitting
its proof (see Wainberg 1982), we only give the following ‘physical’ explanation.

The discontinuous perturbation of velocity, suppy: C €27, generates a discontinuity
of the wavev” which propagates (in inverted time) along the rays (see the arrows on
figure 2(b)) towardd". Reaching a border at the moment= T — &, the discontinuity
interacts not with the whole df but with the ‘illuminated part’oﬁ Uo? only (see (1.11)).
In points of oi an amplitude of interaction may be calculated by means of geometrical
optics giving the first line in (2.15).

The partaf c I" is not covered by the wave at=T — & sinces? is placed far from
Qi (see (1.11), (2.10)) which explains the second line of (2.15).

Let us remark that geometrical optics is not applicable at pointsiok {r = T — &}
lying on a coast of a pattern. Fortunately, in view of (1.8), this will not create problems
later.

Considering the right-hand side of (2.15) as a functionyof), and comparing it with
the definition of images (section 1.5) one can rewrite the relation as follows:

Hgmé o O VE(y, 1) = F(y, ) a.e. onx’. (2.16)

This is the formula which motivates us to introduce images. It represents an imagasof
a collection of wave discontinuities propagating in a dual system and being detected on a
border.

2.5. Spectral representation

Here we describe briefly the Fourier method for problems (2.1)—(2.3) and (2.7)—(2.9).
OperatorL : L(Q) — Lp(RQ), DomL = H?() N H} (),

Lu:=—Agu

is self-adjoint and positively defined. Léti}2,, 0 < A1 < A» < --- be its spectrum and
¢r be the corresponding eigenfunctiofisp, = Ar¢x) normalized by the condition

/ d2 o (x) i (x) = 8i.
Q

System{g;}o2, forms a basis inL»(2) that gives the possibility of representing waves
by a Fourier series. Denote

1/2 1/2

Vi == dy@xlr st =i (v 1) 1= =k TSI A(T = 0 1Y(y).

Lemma 2.4. (i) For any f € Lo(X7) the representation

[ee]

=Y dMe  dm=[ aasfensen @)

k=1
is valid, the series converging ih,($2).
(i) For any y € L»(£2) the representations

oo
V0 ==Y wh s AT -0lee we= / A< y (x) i (x) (2.18)
k=1 Q
o0
v’ |5 = Z Vi st (2.19)
k=1

are valid, the series converging i (2) and Lo(X7) correspondingly.
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One can obtain the proof just by integrating by parts (see, e.g., Lions 1968).

The set of pairgi.; ¥ ()}, is said to bgDirichlet) spectral dataof manifold (€2, g).
In what follows it plays the role of data of the spectral IP. In this connection it would
be important to note in advance that the Fourier coefficients in (2.17) are determined by

(A Y}

3. Dynamics

The boundary-value initial problems introduced previously are equipped with the attributes
of dynamical systems (spaces and operators) as is customary in control theory.

3.1. Control operator

We begin to consider problem (2.1)—(2.3) as a dynamical system (DS). As such, it is denoted
by o7 throughout what follows.

The Hilbert space of controls (input$)” = L,(X7) is calledan outer spacef the DS
T

o .
By virtue of (i), section 2.1 waves (states) (-, ) belong to the spaceé{ = L,(2)
which is said to bean inner spaceof the DS
An ‘input — state’ correspondence i’ is realized bythe control operatorw?” :
FI - H,
Wi i=ul(.T)
acting continuously from an outer space into an inner space. Let us discuss some of its

properties.
Introducethe delay operato ¢ : FT — FT,

TN f = f(18)
(see (iv), section 2.1) whetgis a parameter, & £ < T; 770 = Qzr, 77T = 14r. Note

thatz is an action time of the delayed contrbf ¢ f. A stationary state property (see (2.5))
of the DS« may be rewritten as follows:

WITIHS f=u/(6)  0<§<T. (3.1)
Equality (2.6) fork = 2, t = T takes the form
w0 T) = ufi (. T)

that implies
82
WTﬁ =AW on MT. (3.2)
The outer spacé” contains an increasing family of subspaces
FrE=TMF" =(f e F'|suppf C "%} 0<ELT (3.3)

(T =T x [T — &, T)) formed by delayed controls. In accordance with (2.4) and (3.1)
a control operator maps this family into one of subspaces of the inner gpace

HE = {u e H|suppu C '} 0<&EXT (3.4)
so that the relation
wTFTS ¢ HE 0<EXT (3.5)

holds.
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As it was noted in (i), section 2.1, the valli®& coincides with the time needed for
waves moving from a border to fill a manifold. Thi#& enters the following important
result.

Lemma 3.1. For T < T, a control operator is injective:

Kerw’ = {0}. (3.6)

The proof can be found in Avdoniet al (1994) and Belishev (1990a).

3.2. Operator of observation

The problem (2.7)—(2.9) determines a dynamical system which is saiddadi¢o «” and
is denoted byx!.
The operator0? : H — FT,

0"y :=8,v"|sr

is calledan operator of observatianlt realizes a ‘state> output’ correspondence in the
DS a!. Due to property (iii), section 2.2, operator” is correctly defined.
The following result clarifies finally the meaning of the term ‘duality’.

Proposition 3.1. For any T > 0 the equality
oT = (wh* (3.7
holds.

Indeed, the relation

(WTf’ y)H = (f? OTy)]:T

is no more than a way to write (2.11).

3.3. Response operator

An ‘input — output’ map in the D%’ is determined byhe response operata®®?” : 77 —
FT,DomR" = {f € HY(Z")|fli=0 = O},

RT f = dul|gr

which is correctly defined by virtue of (v), section 2.1. In contrast to operators of control
and observation it is not continuous.

A response operator describes the reply of a dynamical system to an action of a control.
It may be identified with information being obtained by an outer observer from dynamical
boundary measurements.

The hyperbolicity of system (2.1)—(2.3) implies the following well known fact.
Corresponding to double time, the operalR¥ is determined by the submanifol®”, g)
being independent o7, g). In the following the operatoR?” will play the role of
inverse data, and, as such, it contains informatiorfdnonly.
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3.4. Connecting operator

The operator introduced here is one of the main objects of the BC method.
Let us define the map” : FT — FT,

cl.=why*w! =oTw? (3.8)

which is said to bethe connecting operatoof the DS«”. This term is explained by the
relation

CTf e =W, Wiy = ! (-, T), ub (-, T))y (3.9)

i.e. operatorC” connects metrics of outer and inner spaces.
By its definition, CT is a continuous non-negative operator ff. In view of
KerCT = KerwT, one has

KercT = {0} T <T, (3.10)

(see (3.6)).

The role of the connecting operator in our approach stands out due to the following
remarkable fact: CT may be expressed in explicit form through the inverse data (in
particular, through a response operator). To formulate the result we need some auxiliary
operators:

the operator of an odd continuatiod : 77 — F2T,

fG 0 0
—f(,2T — 1) T

S"HCn =
the reducing operatav?” : 7' — FT,
NZTg =glsr
the operator selecting an odd part of contr& : F?" — F2T
(P?Tg) (-, 1) = 3[g(-, 1) — g(-, 2T — 1)]

the operator of integratiod?” : 2T — F2T,

)0 = /O ds (. s).
One can easily check the relation
(sTy* = 2N?T p2T, (3.12)
Let R?" be a response operator of the B3 (problem (2.1)—(2.3) with a final moment
t = 2T).
Theorem 3.1. Forany7 > 0and f € HY(X") the representation
CTf =3y RTJTSTf (3.12)

holds.
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Proof. Fix f € HX(X") and note that contrat := J?"S” f belongs to DonR?", being
an even functioni (-, t) = h(-, 2T —t). Letu" be a solution of the problem

Uy — Agu =0 in Int Q%"
ul—o =u;li=0 =0
M|22T = h

Denotingw (x, t) := u"(x, t) — u" (x, 2T —t) one can check the relations

wy — Agw =0 in IntQ” (3.13)
wl-r =0 W=y = 2u"(-, T) (3.14)
w|sr = 0. (3.15)

The derivative in (3.14) may be calculated as follows:
Wler = 2u" (-, T) = (see (2.6))y=2u" (-, T) = 2u%" 7 (., T) = 2u’ (-, T) = 2W" f.
(3.16)

Comparing (3.13)—(3.16) with the dual problem (2.7)—(2.9) we concludeuthatv” with
y = 2WT f. By definition of the operator of observation, this implies

dywlgr = 9,07 |zr = 0Ty =20TWT f =2CT f. (3.17)
On the other hand, calculating the same derivative directly one obtains
dw(, 1) = du" (-, 1) = du" (-, 2T — 1) = (R¥T W) (-, 1) — (R h)(-, 2T — 1)
which may be rewritten in the form
dyw|sr = N2T2P?T R? ) = 2N?T p2T R?T 2T 52T f — (see (3.11)x= (ST)* R J2' ST .
(3.18)
Comparing (3.17) with (3.18) we obtain (3.12). The theorem is proved. a
Unfortunately, representation (3.12) does not hold for arbitrarg F7. The reason
is that, in contrast to the one-dimensional case, the multidimensional op®&#tdr’ is
unbounded (Bardos and Lebeau, private communication). Therefore, tafirfdin the
general case one must invoke a passage to the limit.

The set of pairgi:; ¥ (-)}52, (see section 2.5) will play the role of data in the spectral
IP. The following result shows that the connecting operator is determined by spectral data.

Theorem 3.3. For anyT > 0 the representation
cl = i(-, sy sl (3.19)
=1
is valid, the series c]:)nverging in a strong operator topology.
Proof. Fix f € FT; in accordance with (2.17) one has
W (. T)=W'f= i(ﬁ SE)FTPre
=
Applying the (continuous) operata?”, one obtains the representation
CTf=0"Ww'f= i(ﬁ 50)0" g = (see (2.19))= i(ﬁ SOISE
k=1 k=1

in the form of a series converging iA”. The theorem is proved. (]
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OperatorC” was first used in dynamical IP in Belishev (1987b). It would be interesting
to note that the dual operatar = W7 (W7)* plays a basic role in the Hilbert uniqueness
method (Lions 1988).

3.5. Visualizing operator

Completing the list of operators associated with systemanda!, we introduce one more
map which connects dynamics with geometry. Recall that the image opéfatoy — ¥
was defined in section 1.5.

The mapv? : FT — FT,

vl =1"wT

is said to bethe visualizing operatorActing by the rulef — i/ (-, T), it makes the wave
images be objects of an outer space.

The meaning and future role of the visualizing operator may be announced as follows.
An external observer operating on a border fih) cannot see the wavésto a manifold.
Suppose, that the observer is able to determifiefrom boundary measurements (inverse

data). If so, the remarkable possibility of making wave pictures (images) visible on a pattern
is obtained. Moreover, applying an image operator to (3.1) one obtains the relation

VITHE f =il (., 8) 0<&ELT (3.20)

so that an observer could visualize on a pattern the whole of a wave process. Then the
observer could extract from the pictures information concerning a manifold. It is a program
which will be realized below, when we shall solve the IPs.

Relations (1.10) and (3.2) lead to the equality

32 .
VTW =AVT on M" (3.21)

which is required later.

4. Wave shaping

Can one shape a wave by means of a boundary control? In some sense, the answer is
positive which leads to important consequences for IPs.

4.1. Boundary control problem. Controllability

Let y € HT be a function given in subdomai@” filled by waves by the moment= T;
the boundary control problertBCP) is to find f € FT satisfying

u' (-, T) =y. (4.2)
The problem is evidently equivalent to the equation

Therefore, lemma 3.1 implies the following.

Proposition 4.1. For anyT < T, the BCP has no more than one solution.
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The set of all of possible states of the @5
UT = wTrl = W/ (-, )| f € F¥}

is said to baeachable(at the momenf’). By virtue of hyperbolicity it lies irfH” (see (3.5));
consequently, to analyse a solvability of the BCP is to study the embetiding %”. The
following result plays the key role in the BC method.

Theorem 4.1. For anyT > 0 the equality
closy " = HT (4.3)

is valid.

Postponing the proof until section 4.4, let us discuss the meaning of the result and some
of its useful corollaries.

Relation (4.3) shows that any functione H” may be approximated by waves
arbitrarily closely inL,-metric. In control theory this property is known as (approximate)
controllability of the DS« .

Turning back to the solvability of the BCP, the following results can be mentioned.

(i) For timesT < T, in spite of its density irf{” a reachable set is rather poor: for
any ball B, C IntQ” one hasC$°(B,) ¢ U"; so thatd” # H” and the control operator
WT does not act isomorphically in contrast to the one-dimensional case (see Awla@iin
1994). Due to this fact the BCP turns out to be ill-posed.

(ii) For a sufficiently large timeT, which is determined by the geometry ©f one
hasi/™ = 'H, so that the BCP is solvable but not uniquely (see Bartoal 1992 and
section 6.8).

4.2. Observability

It is customary in control theory to reformulate a property of controllability in dual terms
(see Avdonin and Ivanov 1995, Lions 1968, Russell 1978).
We say that the dual D8! is observablgat time T') if the relation

Kero” = HoH" (4.4)
is fulfilled. As follows from the well known operator relation
Kero! = Ker(WT)* = H & closy RanW! = H & closy U’

the observability of! is equivalent to the controllability af”. Thus, by virtue of (4.3) a
dual system is observable on affiy> 0.

Property (4.4) is of interesting physical meaning. If perturbatiorinitiating a wave
processv’ in the DS«!, satisfies supp N QT # {2} (i.e. y is localized not far from a
border), it has to manifest itself dn during a time interval [0T]. Moreover, by virtue of
the relation

HT NnKero” = {0} (4.5)

the party|qr of the perturbation isiniquely determinedby the traced, v”|xr. This relates

an observability to Huygens's rule known in wave propagation theory (Bardos and Belishev
1995, Belishev 1994): in accordance with the rule, the forward front of wave may be
constructed as the envelope of the spheres whose centres belong to the boundary of supp
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4.3. Wave projectors

Consider the reachable sets
U =wrirrhs = (see (3.1))= {u/ (-, &)|f € F'}) 0<&EKT (4.6

corresponding to intermediate times. The stationary state property of the’ i8gether
with its controllability lead to the relation

closyif® = H* 0<ELT. 4.7

The (orthogonal) projecto® acting in clog/” onto clogf® is said to bea wave
projector. It is an intrinsic object of the system’ .
The projectorG¢ in H” onto H¢ acts as follows,

G =06 —rpy = T2
= — T =
»e D=1 ved
cutting off functions ong?.

Equality (4.7) implies

Pé = G 0<&<T. (4.8)

Being of great importance for IPs, this result merits being commented upon in more detail.
Certainly, ‘geometric’ projectorszé as well as wave projector®é are determined by

a Riemannian metric in2, but the equality (4.8) is far from being evident. Moreover,

it is not a general fact: as a counterexample the so-called two-velocity systems may be
mentioned, where a direct analogue of (4.7) and (4.8) does not hold (Beksla\1997,
Belishev and Ivanov 1995).

The personal experience of the author shows that to apply the BC method to a concrete
case one has first to clarify how the wave projectors act. For thexDSdue to its
controllability, the answer appears to be simple and explicit: these projectors cut off
functions on subdomains filled by waves. As we shall see later, it is a surprise for
IPs. Moreover, a lack of controllability in the two-velocity case mentioned above leads
to essential difficulties in IPs for this kind of dynamical system.

4.4. Proof of theorem 4.1

(i) In view of the equivalence of controllability and observability, to prove (4.3) is to
demonstrate (4.4). Since © H' < KerOT by hyperbolicity, it would be enough to
establish Ke0” c H © H', i.e. that the inclusiony € Ker O impliesy =0 in Q7.
(i) Choosey € KerO7; let v’ € H(QT) be a solution of (2.9)—(2.11) satisfying
v yr=0Ty=0
by the choice of). As may be easily seen, due to conditigii-, 7) = 0 the odd continuation

vV (x, 1) in Q x [0, T]
w(x, 1) = : .
—v'(x,2T —1t) in Q x [T, 2T]
turns out to be a function of the clags*(Q?") satisfying
wy — Agw =0 in 0?7 (4.9)
wlyger =0 o,w|xzr = 0. (4.10)

(i) (The Holmgren—John—Tataru uniqueness theoyebenote
KT ={(x,0) e 0710<t(x) <T — |t = T|}.
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Let us show that (4.9) and (4.10) imply
w=0 in K27, (4.11)

Indeed, by virtue of Tataru’s result (Tataru 1993, 1995) concerning a uniqueness of the
(zero) continuation of a solution of the wave equation across a non-characteristic surface,
any point(y, t) lying on a time-likesurfacel x (0, 27) has a vicinity (inQ?") in which w
vanishes identically. Therefore, in any smaller cylindg’ —¢ := Q x [, 2T — ¢] c Q%

(¢ > 0) the set supp is separated from a lateral surfaEfT‘E =T x[g,2T —¢]:

suppw N {Q° x [, 2T — €]} = {@}

with small enougte = £(¢) > 0. This is the first step of zero continuation offrom ©27
into K2
(iv) Fix ¢ and consider a subdomain @2~ of the form

KH ™=, 00< 2@) < T — |t = T| — ¢}

bounded byEfT‘s and two characteristics= t(x) + ¢, t = 2T — t(x) — ¢. There exists
(see John 1948, Russell 1971) an increasing family of ‘lens-shaped{&gtg, A € [0, 1)
such that:

(L) LW) C LA, M < A" L) € QF x[e, 2T —e] for o < Ao (with someig € (0, 1));

(2) for everya the partS(x) := [d£(A)] NInt Q2 ~¢ of a boundary of£(3) is a smooth
time-like surface;

(3) the family exhausts the subdomaiit” —* : |, 0.1 L) = K2 .

Assume that

suppw N K27~ #£ {2}, (4.12)
Increasingh from zero one can find = A, such that
suppw N L(A) = {2} A< Ay suppw N S(,) # {S}

(i.e. the value), corresponds to the first contact 6fA) with suppw). Evidently, in some
vicinity of point p € suppw N S(1,) the uniqueness of the zero continuationuofacross
S(x,) is broken. Therefore, assumption (4.12) leads to a contradiction, which imple$
in K27=¢. In view of an arbitrariness of we obtain (4.11).

(v) The equality (4.11) impliesw, = 0 in K%', so thatw,(-,7) = y = 0 in
K n{r = T} = QT. Therefore (see (i)), one has the inclusion Kér c H & H”.
The theorem is proved. |

The idea of the proof is taken from Russell's paper (1971) which used the classical
work of John (1948).

The reader should note a central role of the uniqueness theorem used in the proof. The
theorem has been known for the wave equation with (real) analytical coefficients (John
1948, Russell 1971) for a long time. Its generalization to a non-analytical case has taken
much time and effort. Recent progress in this direction was stimulated by Robbiano (1991)
and developed by étmander (1992). In 1993 it was crowned by a remarkable result of
Tataru (1993, 1995) which settled the question @3($2)-coefficients.

The first papers devoted to the BC method referred to the formulation of the Holmgren—
John theorem declared in Russell (1978, p 685). Unfortunately, private communications
found out an absence of the proof. That is why, beginning from Belishev (1990a) we were
forced to postulate property (4.3). Thus, during a period 1986-1993 the BC method covered
some unclear class of ‘controllable’ dynamical systems, and it was Tataru’s result which
permitted us to justify our approach.
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5. Visualization of waves

We demonstrate that boundary measurements determine the visualizing operator. The
efficient constructions (amplitude integral and amplitude formula) are proposed to represent
VT via R?T or {A+, ¥«}. They are based upon results of sections 2.3 and 2.4 concerning
the propagation of discontinuities.

5.1. Inverse problems

Let us begin with the statement of the IPs to be solved in sections 5 and 6:

(i) (dynamical 1P given the response operat®¢’ to recover the manifoldQ”, g);

(i) (spectral IP given the spectral datg.; ¥ (-)};2, to recover the manifold<2, g).

Just for simplicity a metric on a border is assumed to be known. It can be shown that
tensorg|r is determined by either kind of inverse data.

Speaking about the ‘recovering’ we mean the determination of a manifold up to isometry.

5.2. Operator sums

We begin to describe an operator construction which solves the IPs.

Let {F7¥}, 0< & < T be a family of subspaces i’ and X”*¢ be a projector inF”
onto F1:¢,

XTEf)C ) =00 — (T —&)f(.1) 0<t<T.

Recall that{H¢}, 0 < & < T, is a family of subspaces iH; G* projects in{ onto 7.

Choose a patrtitiof® = {é_,-}.f’:o: O0=¢&<é& <--- <& =Toftheinterval 0< ¢t < T
let 7(E) = max A&; be its range A&, = & — &_1. ProjectorsA; X7 1= XT:4 — XT51
act by the rule
FGo) 1<t <§

XTE Y1) =
(A X)) {0 for other ¢ € [0, 7]

and satisfy
N
D OAXTE =1 A XTEAL X5 = Qpr j#k. (5.1)
j=1

ProjectorsA; G* := G% — G*-* act as follows:

y(x) x € Q5 \ Q51

A; Gt =
(A; G°y)(x) {0 for other x € Q@

the relations

N
Y A GE=GT A;GEALGE = Oy j#k (5.2)
j=1
are valid. An operator sum of the form
N
AL =) AGEWTAXTS (5.3)
j=1

corresponds to the partitioB.
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Lemma 5.1. The sumAL : 77 — H is a continuous operator, the estimate
JAZI < W (5.4)

being valid.

Proof. For any f € F! the orthogonality (5.2) and (5.3) imply

N N
IAZ FU3 =) A GEWT AXTE FIZ < IWTIPY A X8 f15 = IWT 121 15
j=1 j=1
that gives (5.4). The lemma is proved. O

5.3. Amplitude integral

A convergence of sums (5.3) is established here. Some heuristic considerations are prefaced
to a rigorous result to make clear what limit a£ should be expected.

Assume for simplicityT < T, so that a cut locus plays no role. Fixe M7, and
consider a separate term of (5.3):

AGEWIAXTE f = A GEWTXTS f — AGEWT XTS5 f = A, GEWT XTI f, (5.5)
Indeed, the set sugp” X761 lies in 2" *; therefore, it does not get into a lay@f \
that impliesA;G*WT X741 f = 0.

Control X™% f coincides withf;, (see section 2.3) and, therefore, wa¥€ f; has a
discontinuity on its forward fronf'%/. ProjectorA;G¢ selects a part of this wave lying near

the discontinuity, and if(Z) is small enough this part may be described by geometrical
optics: relation (2.14) gives the approximate equality

A]CEWTfE ~ :3_1/2()/()‘7)751)](()/()07T_SJ) X € QE] \QEI71
! 0 for other x € Q.
Taking into account the fact that
£ ~1(x) for x € Q% \ Q%
and summing the terms (5.5) one obtains
T B2y, N fly@), T —t(x))  xeQ’
(Az fHx) =
0 for other x € Q.
Recalling the corollary of lemma 1.1 (witkl = 15 for T < T,) one can rewrite
ALf ="y y’'s
whereY? : FT — FT,
Y'HC=fC.T—1)  O0<t<T.

So, the convergencal — (I17)*YT should be expected.

Theorem 5.1. ForanyT : 0 < T < T, arefinement of a partition leads to the convergence
lim AL ="y y? (5.6)

r(8)—0

in a weak operator topology.
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Proof. Fix f € M”, ¢ > 0 and choose € C*(QT) such that supp C Q" \ @,; find
8 = 8(¢) (see lemma 2.2); choose a partition satisfyiti&) < §.

Applying (2.13) fort =T,& =§&; (j =1,..., N) one obtains the representation
w5 (e, T) = B30y (1), T f(y (1), T = 1(x)OE — T(x) + w’ (x, T; &) (& — 1(0)4
being valid forx € Q7 \ w,, 7(x) > & — 8 > & — &_y, i.e. on the set®s \ Q7] \ w,
(‘thin layer’). All of this may be rewritten as follows:

w/ (LT E)E — 7)) in[Q9\ Q7] \ o,
0 for other points of2”.
(5.7)

NG (T = Ty YT ] =

Representing in the layer
W, Ty =WIXT5 f = wla X745 f
and summing terms (5.7) one can obtain
N
[AL— A" YT =) AG W (T 8)E —1()  in Q" \ o,
=1
that implies

ITAL — aTY*YT1f, y)ml =

N

S el T - conw
= Qéj\QEf_l

= (see (1.4), (1.7))

N fj
E : dr (¢, — 1) / dr gy, Dw! (x(y, 1), T; §)y(x(y, 7))
/‘:1 j—1 oL

< (see (2.13))

(& —&_1)?
2

N
< g)gXﬁ(y(J, ()T, f, €) T;TiXIyI Z <o, f, e y)r(E).
e j=1

As a result, we have
(AL = U*YT1f e —> 0.

r(E)—0
Taking into account a density @5°(Q2” \ ) in H” and a boundedness of sums (see (5.4))
one obtains (5.6). The theorem is proved. O

The heuristic considerations presented before the theorem motivate to call the limit
T
AT = lim AL =:/ dG*wT dx™¢
r(8)—0 0

an amplitude integral(Al). Indeed, it was constructed by summing amplitudes of wave
discontinuities (2.14). The Al was first introduced in Belishev (1990b) and developed
in Belishev and Kachalov (1994). Moreover, in the latter papestrang convergence
AL — AT is established fof" < 7,,.

The next relation is a simple corollary of (5.6): the adjoint operator)* : HT — FT
may be represented in the form

T
(AT)* =/ dxTswh*dGgs = vT I (5.8)
0

with the same kind of convergence (weak).
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5.4. Images via Al

The following result represents an image operator in the form of an amplitude integral.
Lemma 5.2. The representation

ImT=yT /OT dxTs(wTy*dpé (5.9)
holds.

Proof.

T
IT = (see (5.8))=rT(AT)* = YT/ dXT5(WT)* dG* = (see (4.8))
0

T
= YTf dx"E(wT)*dPt.
0
The lemma is proved. O

A remarkable peculiarity of this result is that it relates geometry and dynamics: being
an object of geometric nature, the image operator is represented via intrinsic op#&fators
P¢ of the DS« (and standard operatois’, X7-¥). The reader should note the role of
controllability.

Introduce the operatord™¢ : FT — FT,

ns .= whH*piw? = o PEw?’ 0<EXT.

As a simple corollary of (5.9) we obtain the following principal result.
Theorem 5.2. The visualizing operator may be represented in the form of Al:

T
vl = YT/ dxT¢ dri’. (5.10)
0

Proof.

T
VI = ITWT = (see (5.9))= YT/ dxswhy*dpsw?
0

T T
= YT/ dx"Ed[(wT)*PEWT] = YT/ dx "8 drr’e.
0 0
The theorem is proved. |
In conclusion, observe that representation (5.10), as well as the amplitude integral, itself
is related to the problem of triangular factorization of operators (Belishev 1990b, Belishev
and Pushnitski 1996). That is not surprising in view of the well known and deep connections

between IPs and factorization (Belishev 1996b, Faddeev 1974, Gokhberg and Krein 1970,
Nizhnik 1991).

5.5. Amplitude formula

Another way to express images via amplitudes of discontinuities is given by formula (2.16).
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Theorem 5.3. For any f € M7 the representation

VN6 = (IO = lIm W) PIW D (6.11)

li
t—T
(Pt := 1yr — P%) is valid for almost all(y, &) € =7

Proof. The expression under the limit sign in (2.16) may be transformed as follows,
3,0 = 0"y, = 0TG'y = (see (3.7), (4.8} (W)*Piy.
Taking y = W' f one obtains (5.11). The theorem is proved. |

To emphasize the dynamical nature of relation (5.11) (see considerations around (2.16))
we call it an amplitude formula (AF). The AF was introduced in Belishev (1990b).

5.6. Models

Investigating a dynamical system through boundary measurements, an external observer
looks for its intrinsic structure and properties. As a first step, some kind of a copy (model)
of a DS may be constructed. Note that from the point of view of system theory we are
speaking aboutealizationsof a DS corresponding to the boundary measurements (Kalman
et al 1969).

The DSa! is determined by spaceB’ andH, and the control operatdv' ”; thus, one
can identifya” with the triple {F7, H, WT}.

Let Hx be a Hilbert spaceW,) : FT — Hy be an operator; the triple] =
{FT, Hy, W]} is said to bea modelof o if there exists an isometric operator: Hy — H
satisfying

U*U = 1y, wl =uw/]. (5.12)

Hyx and W, are called the (model) inner space and control operator, respectively;a
transform operatar The sets

U; = wlrFré = vt 0<ELT

are called reachable; the (model) wave projecvqjsare introduced as those in clpsif!
onto clos,, U;, so that

PEU=UP; PlU=UP;, 0<ELT (5.13)

where P{, = 1, — P;. Relations between the D&’ and its model are illustrated in
figure 3.
The following fact justifies the introduction of models.

Proposition 5.1. Any model determines the visualizing operator.

Indeed,VT is determined by operatoid”-¢ which may be expressed in model terms:
n"s = wWhH*PEw” = (see (5.12)= (UW])*PSUW] = (see (5.13))= (W) ) Pi W]
so that (5.10) takes the form

T
v = YT/ dx”Ed[wl)* P;w]]. (5.14)
0
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WT

u

wi
#

Relation (5.11) also may be rewritten in invariant form:

W .6 = Im (W) PLW{ Ny, ae ons’. (5.15)

Figure 3. Model.

In the remainder of section 5 we construct the concrete models corresponding to both
kinds of inverse data, dynamical and spectral. The goal is to recover the visualizing operator
along the scheme

inverse data= model = V7. (5.16)

Models were first used in the BC method in Belishev (1995) and Belishev and Ivanov
(1995); later they were applied to the dynamical IP for the heat equation (Belishev 1996a).

5.7. Dynamical model

Let
wh =u"|w'|
be a polar decomposition of a control operator and
(W)= [wTy Wiy
be its operator moduld/ is a canonical isometry from clgs RaniW’| onto clog, Ranw’
(see, e.g., Kato 1966). An obvious fact is that the triple
aly = {F", clossrRanw? |, W'}

forms a model of the D&7, with the isometryU” playing the role of a transform operator.
Model of;, may be constructed via a response operator. Ind&éti,determinesC”
(see (3.12)), whereas

(Wi = (Y=
Thus, denoting clos Ran(C”T)Y/? =: F1,5, one can represent
tin = {F", Fijp, (€Y.
The seta?/{f/z = (CT)Y2FT¢ gre reachable ones in the model. Denﬁfgg := clossr
U ; let Py, be the projector inF7,, onto 7y 5; representation (5.14) takes the form

T
v =yT /O dx” € d[(CT)Y2 Py ,(CT)?] (5.17)

determiningV” via C”, and, consequently, vi&?’.
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5.8. Spectral model

The Fourier expansion of waves (see section 2.5) gives a method to construct a model via
spectral data.

Let ¢ = {c}32, be a (real) sequence belonging to the sp@gantroduce the unitary
operatorU; £, — H,

[o¢]
Uc= Z Ck Pk -
k=1

The representation (2.17) induces the operaitdy : 7' — ¢,

Wof =1 (DY (M) =s)Hm
the relation
T T
wi=uw]
being valid.
From the aforesaid it may be concluded that the triple
af, = A{F", to, W)}

turns out to be a model of the DF". Evidently,«/, is determined by datéh; vi ()}

Let Rﬁ, be projectors irf, onto the subspaces c]@wsf,}‘ £+ in accordance with (5.14)
we obtain the representation

T
vi=y" [ axedongy g w) (5.18)

which expresses the visualizing operator in terms of a spectral model. Note, in addition,
that the adjoint operator entering in (5.18) acts by the rule

oo

(Wiy'e = csi

k=1

with the series converging i#” (see (2.19)).
An important peculiarity of datdi;; ¥} is that they determiné/” for any T > O,
whereasR?” determinesV” for givenT. This reflects a global character of spectral data.

6. The solving of inverse problems

We describe a way to recover part of a manifold filled by waves through the visualizing
operator. Supplementing the diagram (5.16), the st€p = (Q7,g) completes the
reconstruction.

6.1. C/,.-controllability

We are going to extract information about an intrinsic geometry from wave images. Some
additional properties of waves are required for this purpose. Here we present a result
which strengthens property (4.3): a set of smooth waves turns out to be dense in classes of
differentiable functions.
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Introduce the classes of contraly) c F7,

)

CY = clogewzryM” = {f ech(x"

=Qj=QL“”N}
=0
N=01,...

and denote
Uy =wrced cu’.

Lemma 6.1. For integer N and! satisfyingN > [ + 1+ [n/2] the relation
close U |p = C'(D) T>0 (6.1)

is valid on any compacb cC Int Q7.

The proof can be found in Belishev and Dolgoborodov (1997). This is the result which
gives the title of this section. As a corollary, we obtain the following. {£42; C MT
be aC)y-complete system of controls, i.e.

closer Lin{ 3172, = C§ (6.2)
(Lin is the linear span) and;, = W7 f; be the corresponding waves; in the conditions of
lemma 6.1, relation (6.1) is equivalent to the following:
close Lin{u;|p}i2y = C/(D). (6.3)
Everywhere in the following we puV = 3+ [n/2] so thatthe wavedu;}?2, form a
C2.-complete system ife”.

6.2. Wave coordinates

Property (6.3) opens the possibility of using smooth waves as coordinate$ .on

Lemma 6.2. (i) Systemu;} separates points i€, i.e. for anyx’, x” € 7, the following
conditions are equivalent:

(a) xl — x//;

(b) equalityu; (x") = u;(x”) is valid for all ;.

(ii) For any xo € IntQ” one can choose:j,...,u; such that the gradients
Vu;, (xo), - .., Vu;, (xo) form a basis in tangent spadg, 2.

Proof (sketch). For (ii) fix point xo € Int Q7 and choose its compact vicinit9 c Int Q7
covered by local coordinateg, ..., " so that
dim Lin{Vn* (xo)}i_, = n.

The C}L.-completeness permits us to approximate

that implies

< E€.

P
Vit (x0) — Y of Vuj(xo)
Jj=1
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Taking ¢ small enough, the latter obviously leads to the equality
dim Lin{Vn* (xo)}j_; = dim Lin{Vu; (x))}/_; = n

and, therefore, one can select subsystem?_, which generateg,,Q’.
Statement (i) may be justified along the same way usingGhecompleteness of the
system{u;}. The lemma is proved. O

Property (ii) permits the use dfi;} as local (wave) coordinates.

Proposition 6.1. For anyxo € IntQ” one can choose a subset of waugs. . ., u;, which
forms a coordinate system in a vicinity .

Another useful property of smooth waves is the following.
Proposition 6.2. (i) The representation

o | suppy; T>0 (6.4)
J

is valid.
(i) The set of pairgu;, A,u;}?2, determines the tensarin Q.

Indeed, (6.4) is an evident corollary of (i), lemma 6.2. Furthermore, fixing Int Q7
and denoting:; := A,u; one has the equalities in local coordinates

32u; (xo) du; (xo)

kl k

8" (x0) ankan + 8" (x0) o = h;(xo) (6.5)
(see (1.5)) which may be considered as an algebraic system to find unkgég),
gk (x0). Extending, if necessary, a number of equatigns 1, 2, ..., p one can achieve its

solvability, which simply follows from aC2_-completeness of the systefm;}.
The coordinate properties of waves lead to the analogous properties of their images.

Proposition 6.3. (i) The representation

®' = Jsuppi; T>0 (6.6)
J

is valid. )

(ii) The pairs{u;, Au;}72, determine the tensay on er.

Indeed, relation (6.6) follows directly from (6.4) by virtue pfer > 0. Tensorg may
be found from equationai; = h; which are written in sgc as follows:

3%ii; (o, T0)

v 920 (v0, T0) v 91t (yo, 70)
o LU0 T0) gy, 7 LT TO) o

= I (yo,
DYy 8y (Yo, T0)
(6.7)

for (yo, 70) € ®7, j = 1,2, ... (see (1.10)). As one can show, wave imaggg;2, form a
CZ2.-complete system o®” that provides a solvability of (6.7) with respectgdt’, g”, g°.
Note, in addition, that image@,} are also determined by the visualizing operator,

L 92
h; = Aii; = (see (3.21)= VTWf,-. (6.8)

+ 8°(v0, T0)ii; (o, T0) +
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6.3. Reconstruction a7, g)

The following result is an important step along the way from inverse data towards a manifold.
Theorem 6.1. The visualizing operatoV' ! determines the manifol@®7, g).

Proof. This is presented in the form of the recovering procedure.

Step 1. Choose control$]‘j}f§1 c MT satisfying (6.2) (with¥N = 3 + [#/2]) and find
imagesii;; = VT f; on ©7. Recover patter®” by means of representation (6.6).

Step 2. To recover the tensay visualize images; = V792f; /3% (see (6.8)) and find
componentg*’ from equations (6.7).

The manifold is recovered; the theorem is proved. O

Manifold (®7, g) is an isometric copy ofQ” \ o, g) (see (v), section 1.4), and,
therefore, the latter is recovered up to isometry.

To complete a reconstruction it remains for us to tg®T, g) into a copy of(Q7, g).
To do this we need, roughly speaking, to gi@é along the coast’ and extend a metric
tensor onto the glued points. An accurate realization of this plan requires us to invoke one
more object described below. A reconstruction itself is postponed until section 6.5.

6.4. Wave copy

Whereas patterr®” may be characterized af? in semigeodesical coordinates’, the
manifold introduced could be calle®” in wave coordinates’.
Let R* be a space of real sequendeg with the metric

00 /-
dir',r"y = ZZ‘j —| il
’ - / "

= 1+ Irj -

{u;} being the system of smooth waves used previously. Consider theim@3 — R*,
u(x) = {u;(x)}2;

and denote&2! := u(QT). The injectivity and continuity of this map follow from lemma 6.2;
moreover, it is not difficult to show that mapsQ” onto 7 homeomorphically.

Map u transfers a Riemannian structure fra2d on Q! as follows.

(i) The subse®! \ ! (w! := u(w”)) may be covered by ‘sgg ou=1, T ou=! and
equipped with the metric tens@t, ;== g(y ou™%, T ou~1). This turns it into an isometric
copy of (27 \ w’, g). To extendg, onto the whole of! let us apply a trick which is
useful in a future reconstruction.

(i) Fix m € o?'; let M be its (small)R*-vicinity. As proposition 6.1 guarantees, one can
chooseu;, out, ..., u;, ou=" to be local (wave) coordinates d N Q7. Find components
of g, in these coordinatesut of the cut locusw! and then extend the components an
by continuity. Thus, tensog, is determined everywhere d@!.

As it was constructed, manifolt2”, g,) appears to be isometric {7, g). We say
it is a wave copyof the original manifold. Relations between a manifold, its pattern, and
wave copy are shown on figure 4.

The following result clarifies the role of a wave copy in reconstruction.

Lemma 6.3. Pattern(®”, g) and systentii;} determine manifold<2!, g,).

u
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=

Figure 4. Wave copy.

Proof. The tensorg determines the functiofi|gr (see section 1.3); thus, functions

w; = B~Y2ii; = (see definition of images} u; oi~*

may be considered as given @1. One can extenab; on the coast’ by continuity (see
(iv), (v), section 1.4).
As is seen from equalities
wi(y, 1) = B2y, D (y, 1) =uj(x(y, 7)) (y,7) €O
the mapw : ©7 UHT — R*,
w:(y. 1) = {w(y. DI,
coincides with compositiom o i~ which implies
w@"ueh) =Ql.
To determine the tensqy, on QI one can repeat the steps (i) and (ii) described above,

usingw instead ofu:
(i) introduce the sgg ow™, row™ on Q7 \ ! and tensog, = g(y cw™t, tow™1);

(i) using local wave coordinates;, o w1, ..., w; ocw™! onw! = w(”), extendg,
on the cut locus.
Thus, (2!, g,) is constructed; the lemma is proved. O

Note that mapw glues points of coast’: w(y’,t) = w(y”, ) iff i7 (¥, 1)) =
i~Y((y", 1)) € o’ (compare with (iv), section 1.4).

6.5. The recovering ofQ7, g)

To complete a reconstruction we need just to join up the results obtained above.

Theorem 6.2. (i) The response operatdt?’ determines the manifoltR2”, g).
(i7) The spectral datdi;; ¥ (-)}2, determine the manifold, g).

Proof. Either kind of data determines a model (see sections 5.7 and 5.8); models determine
the visualizing operato¥”. Knowing VT one can recover patte®’, g) (theorem 6.1),
after which the wave copy!, g,) may be found (lemma 6.3). The latter is isometric to
Q7 g).

The spectral data permit us to find” for any T > 0 (see the end of section 5.8).
Therefore, they determing2”, g), T > 0 and, thus, the manifol, g) in a whole. The
theorem is proved. O
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So, a reconstruction is implemented in accordance with the scheme: inversesdata
model= operatorV’ = pattern(®’, g) = wave copy(!, g,) < (Q7, g).

6.6. Remarks

Besides the recovering of a wave copy, there exist other ways to extract geometry from
wave images.

(i) In the case of spectral reconstruction, one can visualize the iméggs of
eigenfunctions and, thereafter, use them as coordinates (instegt }pfto construct a
copy of (27, g) (see Belishev and Kurylev 1992).

(i) Let I, , be a geodesic starting int@ from y € I' in the directiona € Sf‘[l.

There exists a controf which generates the wave (the so-called quasiphoton, a kind of
Gaussian beam) with the following remarkable property: the wevis localized neat, ,.

Its imagei/ traces onz” a curveiy,a =1i({,« \ w) and, therefore, an external observer
possessing the operat®t’ is able to visualize this curve. Varying and« the observer
can recover a family{Z, ,} which is rich enough to recover the pattei@’, g), to glue it
along a coast and, eventually, to reconstriget, g) (see Belishev and Kachalov 1992).

Later, this technique was applied to the problem with incomplete data (Kachalov and
Kurylev 1993). This paper generalizes one of the results of Novikov (1988) on the more
complicated case of manifolds.

(i) The following scheme of reconstruction, in a sense, is dual to the previous one. Fix
voeT; let f =34,(y)0(t) be a pointwise controly,, be the corresponding wave. In this
case the hemisphe®[yo] = {x € Q|dist(x, o) = &} necessarily belongs to supp (-, &)

(see Bardos and Belishev 1995, Belishev 1994). Therefore, determining theipage)
one can visualize o&x” the surfacei;[yo] = i(Se[yo0] \ w) as a boundary of supp,(-, &).
The family{S}[yo]}; {yoeT, & €[0, T] turns out to be a sufficiently informative object to
determine(®7, g) and, further, to getQ”, g). Moreover, this scheme permits us to find
glr from inverse data; thus, a reconstruction may be fulfilled without setting a metiit on

Spectral reconstruction was first realized in Belishev and Kurylev (1992). Note, that the
scheme used in this paper is overloaded with unnecessary details. Dynamical reconstruction
was given in Belishev and Kachalov (1992). Both papers are based upon the work of
Belishev (1990b).

(iv) The smoothness of a manifold is required to work with classical solutions of (2.1)—
(2.3), to justify the geometrical optics (2.13) and (2.15), and to use the Holmgren—John—
Tataru theorem. All of these demands may be satisfied byCthesmoothness with large
enough finiteN (see Belishev and Kachalov 1994).

(v) Note in addition that the BC method gives some results for the Kac's problem of
recovering the shape of a drum. A simple generalization of the scheme (Belishev 1988)
leads to the following: for a wide class of manifolds, a Riemannian compact with a border
is determined by its Beltrami—Laplace operator giveanmy representation. In other words,
compact(€2, g) is a unitary invariant ofA,.

6.7. On recovering metrics

Let @ c R” be a bounded domain equipped with metrié & g;;(x) dx* dx! which turns
the domain into a Riemannian manifold; IR and{i.; ¥} be the inverse data @f2, g).
Can one recovegy, (-) in © via inverse data?
As it is stated, the question has a negative answer. The well known fact (see, e.g.,
Sylvester and Uhlmann 1991) is that any diffeomorphi®m Q — @, ®|r = Id gives
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another metrig’ = ®,[g] having the same inverse data, so that it is impossible to distinguish
g’ from g via boundary measurements.

One way to remove this kind of non-uniqueness was proposed by Lee (see Sylvester
and Uhlmann 1991). Suppose that a family of metrics produced by the ¢dupontains
a unigue metric gexyr Which minimizes the energy (Dirichlet) functional. This selected
metric is determined by inverse data uniquely. To objaig in the framework of the BC
method one can recover a wave cdy;,, g,), and then equip it wittharmoniccoordinates
" Ak =0. The mapr : Q, — R, w(x) = {7 (x)}{_, will determine gexr
in Q.

Another way is to use the pecularities of a metric. As an example, consider the case
of a strictly convex surfacé in R® with a border lying on a plane (hatlet). The Euclidean
R3-metric induces orf an intrinsic metricg of positive curvature. The classical result of
AV Pogorelov is thag determinesS up to isometry inR3. Therefore, having a wave copy
of (S, g), one can embed it int®3 uniquely and recover a hatlet. The same trick works
for any rigid surface wittfixed border. This situation has multidimensional analogues.

The reasons concerning the gro{p} may be applied to the case of manifolds to
recover not only Laplacian but a wider class of self-adjoint operators of Schrodinger type.
This extension of the BC method has been developed by Kurylev (1992, 1994a, b).

6.8. Dynamical reconstruction of vector fields

Here we would like to announce one more result of the BC method which is planned for a
future publication.
Let b = b*3/9x* be a smooth vector field of2; consider the problem

Uy — Agu —bu =0 in IntQ” (6.9)
=0 = tsli=0 =0 (6.10)
ulsr = f. (6.11)

Let u/ be its solution. As a dynamical system, problem (6.9)—(6.11) is described by the
same spaces and operators as the syafenThe peculiarity of this case is that the operator
A, + b governing an evolution is not self-adjoint.

Assume, in addition, that the manifold2, g) possesses the ‘non-trapping property’:
any geodesic starting from any point @fin an arbitrary direction reaches the bordemn
a time which does not excedd. This property guarantees the equality

U =H T > Tp/2

i.e. the system (6.9)—(6.11) turns out todectly controllablefor large enough time (Bardos
et al 1992, Bardos and Belishev 1995). The last fact permits us to obtain the following
result.

Theorem 6.3. The response operatd?’, T > Ty, determineg, g) andb.

Moreover, an efficient procedure using the amplitude integral permits us to reconstruct
a manifold together with a vector field on it. The proof is based upon the results of Avdonin
and Belishev (1996) and the present paper.

A bounded domain irR" (with the Euclidean metric) is an important example of the
non-trapping manifold. Thus, the BC method is able to recover arbitrary vector fields in
Q CR".

Let us note in conclusion that there exist some reasons to hope for an optimal result:
the hypothesis is thakR?” determineg 2", g) andb|qr for any T > 0.
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7. The recovering of density

Originally the BC method was proposed to recover the density of an inhomogeneous
membrane. From the geometrical point of view, this case corresponds to a conformally-
flat metric, and it looks naturally that the recovering procedure is based upon the relations
between Cartesian and semigeodesical coordinates.

7.1. Direct and inverse problems

Let 2 C R” be an open bounded domain with boundarg C*; p be a function gensity
satisfyingp > 0; p, p~1 € C®(R). A density induces the metric

ds? = p|dx|? (7.1)

turning  into a Riemannian manifold, so that all of the objects introduced in section 1 are
defined. We denote them as beforg: Q¢, ©7 etc, relating them to the metric (7.1) (not
the Euclidean one!).

Consider the problem

oy — Au =0 inQ x (0, 7) (7.2)
Uli=0 = tsli=0 =0 (7.3)
ulsr = f (7.4)

with A = Y7_, 82/3(x%)2. The corresponding dynamical syster is described by the
same spaces and operators as system (2.1)—(2.3), but since the density enters into the wave
equation in a special manner, some of the definitions have to be slightly corrected:

(i) the outer space of the D& is FT = L,(X7; dI'dr), dI" being a Lebesgue surface
measure o’;

(i) the inner space i$1 = L2(2; p dx),

(u,v)H=/dxp(x)u(X)v(X)
Q

the subspace®® = {y € H|suppy C ¢}, 0 < & < T corresponding to subdomai®
filled by waves;

(i) operators of control and observation are defined as befovd: f = u/ (-, T);
0Ty = 9,v”|gr (with Euclidean outward normal); the relation(W7”)* = 0T holds;

(iv) the response operator B” : FT — FT, DomR” = {f € HY(ZT)|f|;—0 = 0},
RT f = d,u’|yxr. By virtue of the hyperbolicity of problem (7.2)—(7.4), the operaR3f is
determined by valuep|qr being independent on the behaviour of the densit@inQ7;

(v) a spectral representation (see section 2.5) is related to the opératét — H,
DomL = H*(Q) N Hy(Q), Ly := —p~ Ay which is self-adjoint in*. To find the Fourier
coefficients of a wave one can use (2.17) with LebesguE’s d

The dynamical IPis to recover the density in Q7 via a given operatoR?”; the
spectral IPis to recoverp in Q via given spectral datéh;; ¥ )72 ;.

7.2. Amplitude formula

Here we transform the geometrical optics relation (2.15) into the form to be convenient for
the use in the IPs.
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As can be shown, in the special case of the wave equation (7.2) the relation (2.15) takes
the form

(v, B2 (v, E)y(x (v, £) (y.§)eol x{t =T &)
0 P& eo x{t=T—¢)
with an additional factor

lim 9, v%(y,t) = { (7.5)

t—T—£-0

_ ,O(X(J/,é)))(z_")/4
w8 = (p(x(y, 0)

(n = dim ). Considering the limit as a function ¢§, &), recalling the definition of images
(section 1.5) and taking into account (1.8), one can rewrite (7.5) as follows,

Ll 9,0% (1) = wy. )3 (v, ) a.e. onz’. (7.6)

We have
3,0 |gr = (see section 3.2¢ 07y = (see section 4.3x O (1, — G*)y
= (see (4.4)= 0T (GT — G%)y = (see (4.8))= 0T (PT — P%)y
which leads to the relation
lim _ (OT(PT = PHy) = u(y, )i(x(y.§))  ae. onx’ (7.7)

t—>T—&—

which is said to behe amplitude formuldAF). It represents an imaggas a collection of
amplitudes of wave discontinuities propagating in the dual systtm

A further transformation of the AF is connected with the wave projectors entering in
(7.7). They will be represented through bases consisting of waves.

The amplitude formula was first introduced in Belishev (1990b).

7.3. Wave bases

A useful corollary of the controllability of the D& is that there exist basesHf consisting
of waves.

Fix¢ € (0,T], T < T,; let {ff}j=1 c FT'¢ (see (3.3)) be a complete system of controls,
i.e. ‘

closgr Lin{ff}22, = 77
(Lin is the linear span); the relation (4.7) obviously implies
closy Lin{WTff}]?i1 = M5,

The property (3.10) provides the possibility of orthogonalizing the sy$y§5r‘nby means
of the Schmidt process

172
g1=f; hy = (CTg1, g0 57 g1

k-1
8= fi — Z(CTfk, hf)ﬂhf hy = (CT gk, 8) 7 8
=1

(7.8)
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The obtained system satisfies

closgr {h}}32, = 77 (CTh h)pr = 8 (7.9)
so therefore the system of waves } , u; := W7k forms an orthonormalizedaave
basis inH:

closy Lin{u$ 12, = H* (s, u5)y = (see (3.9), (7.9)k 8. (7.10)

The following has to be emphasized: to carry on the-orthogonalization one needs
the connecting operatamly. Therefore, an outer observer who know& or {i., ¥} is
able to construct systel{wf} producing a wave basis with the help of representations (3.12)
and (3.19). '

A wave projector may be represented through a wave basis as follows:

oo
§ _ § &
P —2;(~,u,-)Hu_,-.
p

Suppose that syster{rhf.} is constructed (via inverse data) for evdrye (0, T]; then one
can represent function®@” P¢y entering the AF in the form

OTPEy =3 (voupwO u; = (y.up) O Wh = (v.u;)w CThj
j=1 j=1 j=1

0<&<T. (7.11)

7.4. Images of harmonic functions

In the case of harmonic functions the coefficients (inner products) entering (7.11) can also
be expressed in terms of inverse data.
Denotex” (t) := T —t.

Lemma 7.1. (i) Ifa € CLQ") N C3(QT) satisfiesAa = 0in Q7 the equality
(@ u’ ¢, T)yr = (R)*(c"alr) — k" dyalr, f)zr (7.12)
is valid for any f € F7.

(i) If a € CH(Q) N C?(Q) satisfiesAa = 0in K, the equality
(@, u ¢, T ==Y a7l v oy (f s e (7.13)
k=1

is valid for any f € F7.

Proof. (i) For f € MT one has the relations

T
(@, ul (. )y = / dv p(0)a(u’ (x, T) = / dx p(x)a(x) f dr (T = t)ugy x, 1)
Q Q 0
T
=/ dt(T—t)/dxa(x)Auf(x,f)
0 Q
T
= /0 dr (T — 1) /r dr [a(y)d,u’ (v, 1) — (Ba)(Y)u! (v, 1)]

- /z AP di{l 0aNRT )00 ~ €T 3@ F v, ).
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One can justify the inclusior”a|r € Dom(RT)*, which permits one to transform the last
integral into the right-hand side of (7.12). Then the equality is extended fromon F7
by continuity.

(i) Let a = > 72, axgx be the Fourier expansion with respect to the eigenbasis of
operatorL. Integrating by parts one can easily find the coefficients

w =i [ dratdme). (7.14)
r
Calculating the inner product through the Fourier coefficients (see (2.17) and (7.14)) one
obtains (7.13). The lemma is proved. O

Blagovestchenskii was the first to discover the possibility of expressing products
(a,u’)y and (', us)y via dynamical inverse data (see Belishev 1987a, Belishev and
Blagovestchenskii 1992).

Let a € C1(Q) be harmonic inQ; the result of lemma 7.1 together with the amplitude
formula give the possibility of recovering the functig on =7 through the inverse data.

To do so the following procedure may be used.

Step 1. Find the operatoC” by means of (3.12) or (3.19).

Step 2. For everyt e (0, T] construct a systen{lhf} c FT¢ satisfying (7.9).

Step 3. Determine the function

oo
O"(P" — P)a = (see (7.10))= Y [(a.ul )3 CTh] — (a,u5)y CThS]
j=1
calculating the inner products by means of (7.12) or (7.13).
Step 4. Find palxr with the help of AF (7.7).
Let 1 (-) = 1 be a unit function ir2; 71, ..., 7" are the Cartesian coordinate functions:
7% (x) = x*, x = {x, ..., x"}. All of them are harmonic; therefore, applying the procedure
described above one can recover the functions
plpzt, . opg" onx’ (7.15)

via R?T or {Ax; ¥ ).

7.5. The solving of the IPs

To recover the density it remains for us to show that functions (7.15) detemmine” .
First, let us note that the functioml determines a pattern an’:

@ = suppul. (7.16)
Furthermore, one can find functions
~1 ~n
B one! (7.17)
ul ul

which determine a connection between sgc and Cartesian coordinates. Indeed, recalling the
definition of images (section 1.5) one obtains
pit . OBy O (e (v §) _
ul n(y, &)BY2(y, £)1
So therefore, for giventy, ), one can find poink(y, &) as follows:

7 (x(y, £)).

~1 ~n
X, &) = {7 (x (v, 6), ..., T (x(y, E)) = {ﬂ(% £)ns i(%é)} eR". (7.18)
ul nl
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In other words, functions (7.17) determine the miap: ©7 — Q7 \ ' transferring
(v, &) in x(y, ) (see section 1.4). Applying* to a horizontal cross section of a pattern
we can recover an equidistant surface in a domain:

iy, 1) €@t =¢£} > T\ o’

(see (i), section 1.4).
A family of surfacesI'® \ 0! C @, 0 < £ < T determines an eikonal iR” \ o’ by
the rule

Tlre =§ 0<&<T. (7.19)
An eikonal determines the density,
IVetl2, = p in Q7 \ o’ (7.20)

i.e. almost everywhere i®”?. By virtue of continuity ofp, it may be taken as recovered
in the whole ofQ7.

The aforesaid may be summarized in the form of a procedure completing steps 1-4,
section 7.4.

Step 5. Find functionsu 1, ut, ..., u#" on =7; recover a pattern via (7.16).

Step 6. Using the correspondenag’, £) — x(y, &) (see (7.18)), recover surfaces
IM'\w’, 0<& < Tin Q and find an eikonal i2” \ o’ (see (7.19)).

Step 7. Recover the density i®7 by means of (7.20).

In the case of spectral data the density may be recoveréd ifor any T > 0, i.e. in
Q.

The inverse problems are solved. Concerning the possibility of using the procedure
for real calculations, the following should be noted. To obtain sys{tbjm by means of
process (7.8) is, roughly speaking, the same as finding the opécfor!. To invertC”
is similar to solving the BCP which is ill-posed (see (i), section 4.1). These reasons may
be considered as an explanation given by the BC method for the fact of the ill-posedness
of multidimensional IPs.

7.6. The recovering from part of a boundary

The BC method works in the case of inverse data given on part of a boundary. Here we
describe briefly one variant of the recovering procedure proposed in Belishev (1987b).
(i) Partial data Leto be an open subset dhand.F! be a subspace of controls acting
from o,
FI'={f e F'|suppf c o x [0, T]}.
The operatorR! : 7' — FI', DomR” = FI nDomR7,
RIf = (R Hloxp.1

is said to be a partial response operator.

The set of pairdi;; Vil 152, is said to be the partial spectral data.

It is easy to see that either kind of partial data determines the partial connecting operator
CI:FI - FI', CI f = CT fl, 0,17 @s previously:

Ccl' = (see (3.12))= %(ST)*RETJZTST = (see (3.19))

= Z(', ¢ lox0.771) 77 S lox[0.7]- (7.21)
=1
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The waves moving frona fill the domains
Q= {x € Q|dist(x, 0) < &} 0<&LT
(distance inp-metric!). The dynamical IP is to recoverin Q! via a given operatoR?”.
The spectral IP is to recoverin Q via given {Ac; Vls}oo,.
(i) Controllability. Let
FI¥ ={f e Fllsuppf Co x [T — &, T} = FI nF"* 0<ELT
be a subspace of delayed controls; the corresponding reachable sets
U, =wrrls
lie in the subspaces
M = {y € HIsuppy C @5}
by virtue of hyperbolicity. Using the Holmgren—-John—-Tataru theorem one can generalize
relation (4.7) as follows: for any & & < T the equality
clos, Us = HE

is valid.

As a corollary we obtain the possibility of constructing a wave basigtjn Let
{ff};’il C FI¥ be a complete system of controls a[‘hj}j’ﬁl be a system obtained from
the first by means o€ -orthogonalization (see (7.8)3:;5 = WThf are the corresponding
waves. In accordance with (7.21) the systavfl}]?'il forms an orthonormalized basis in
HE.

As follows from (7.21), the syster{hf} is determined by either kind of partial inverse

data.
(iii) Mark function Fix m € @ and introduce the function

0 .
mln lx — m|pz — em(x) ifn=2
B = S = i = e ) it n=23
lx — m||]§,f’+2 —en(x) if n>3

wheree,, is harmonic inQ2 and is chosen so thd}, satisfies

AE, =0 in Q\ {m} (7.22)

Enlr = 0. (7.23)
We call £,, a mark function; one can easily check that it is not square integrable,

1€ 117, = oo. (7.24)

(iv) The recovering of eikonalFix & < 7 and pointm € Q7 \ﬁi, so that the mark
function is harmonic in25. In this case it may be expanded over a wave basis

En = Z;(é'm, uf)Hsuf-

J
with the coefficients

(Ems 5 = (s€€ (7.12), (7.238F — (k" 8,Enlr, h5) pr
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mg‘.ﬂig i

(b)

1.0

Figure 5. Spectral reconstruction in ellipse.

which implies

1EmlZe =Y (kT 0,Emlr. 15)Zr. (7.25)

j=1
An important feature of this representation is that the right-hand side is determined by partial
inverse data.

Let us increasé from zero; the valug = t(m) corresponds to the moment whexj
touches poinin. As can be shown, one character of the touching is that the norm (7.25)
tends to infinity (in accordance with (7.24)). Therefore, one can find

T(m) = supé > 0][|E, |12 < oo}

which gives a way of detecting an inclusiane Q! and findingz (m) via R?" or {As; ¥ils}-
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iy

ju—

Figure 6. The recovering from part of a boundary.

(v) The recovering of the densitAn eikonal determines the density through the Jacobi
relation

2 . T
”vx‘[”]Rn =p a.e. |nQU.

Thus, operatoR?” determinesp|qr; the datafii; Y l,}p2, determinep|qr for any T > 0,
i.e. everywhere in.

The same procedure, in principle, permits one to detect and recover the unknown
components of a boundary including the inner obstacles. This useful observation belongs
to Ya Kurylev (private communication).

Other variants of the BC method (see Belishev 1987a, b, 19904, b, Belishev and Kurylev
1987, 1989), including the AF, may also be adapted for partial data. They may all be
generalized to the case of a Riemannian manifold.

7.7. Numerical testing

The algorithms based upon the one-dimensional variant of the BC method were tested by
Belishev and Kachalov (1989), Belishev and Sheronova (1990) and, later, by He (1995).
The numerical testing in two-dimensional spectral IP was first realized by Filippov
(Belishev et al 1994). This work was continued by Gotlib and Ivanov (Belistetval
1997), who recovered a pattern of an ellipse and a family of wavefiohis it via spectral
data (see figure 5).
Recently lvanov and Shirota have demonstrated that the amplitude formula permits one
to reconstruct a picture of forward wavefroit§ moving froma part o of a boundary. A
reconstruction was implemented via spectral data in a subdomain of a rectangle covered by
normal geodesics starting from (see figure 6). The computations were performed on an
IBM PC.
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