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Abstract. One of the approaches to inverse problems based upon their relations to boundary
control theory (the so-called BC method) is presented. The method gives an efficient way to
reconstruct a Riemannian manifold via its response operator (dynamical Dirichlet-to-Neumann
map) or spectral data (a spectrum of the Beltrami–Laplace operator and traces of normal
derivatives of the eigenfunctions). The approach is applied to the problem of recovering a
density, including the case of inverse data given on part of a boundary. The results of the
numerical testing are demonstrated.

Introduction

The goal of this paper is to present one of the approaches to boundary-value inverse problems
(IPs) based upon their relations to boundary control theory. We are dealing with the so-
called BC method proposed by the author in 1986 (see Belishev 1987a); its modernized
version (Belishev 1990b) lies as a basis of this paper.

To demonstrate the opportunities of the method we choose, perhaps, the most impressive
of its achievements: that is a reconstruction of Riemannian manifolds. Moreover, the
problem of recovering a density is considered; this is the problem which the BC method
was created to solve. Let us describe the main results.

(i) Let (�, g) be a smooth compact Riemannian manifold with a border0; consider the
dynamical system

utt −1gu = 0 in �× (0, T ) (1)

u|t=0 = ut |t=0 = 0 (2)

u|0×[0,T ] = f. (3)

Let u = uf (x, t) be its solution (wave) initiated by a boundary controlf . The response
operator (dynamical Dirichlet-to-Neumann map) is defined as the mapRT : f →
∂uf /∂ν|0×[0,T ] (ν being an outward normal). At the final momentt = T the waves moving
from 0 fill the subdomain�T = {x ∈ �| dist(x, 0) < T }. By virtue of a hyperbolicity of
problem (1)–(3) the operatorR2T is determined by the submanifold(�T , g). The remarkable
fact is that the opposite turns out to be true:we show that the operatorR2T determines
(�T , g) up to isometry.

† E-mail address: belishev@pdmi.ras.ru
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(ii) Let {λk}∞k=1 and{ϕk(·)}∞k=1 be the spectrum and the eigenfunctions of the problem

−1gϕ = λϕ in �

ϕ|0 = 0

functions {ϕk} being orthonormalized inL2(�); ψk := ∂ϕk/∂ν. The set of pairs
{λk;ψk(·)}∞k=1 is said to be the (Dirichlet) spectral data of a manifold. One of our results is
that spectral data determine(�, g) up to isometry.

(iii) Consider a bounded domain� ⊂ Rn with a smooth boundary0; let ρ > 0
be a smooth function (density) given in�. The dynamical system of the form (1)–(3)
corresponding to the wave equationρutt − 1u = 0 determines a response operator and
spectral data. We proposean efficient procedure which recoversρ|�T via R2T or ρ|� via
{λk;ψk}. The analogous results are obtained for the case of both kinds ofinverse data given
on any open subset of a boundary.

As an approach, the BC method is of a complex character: it uses geometry, asymptotic
methods (propagation of singularities), control theory and functional analysis. The role
of the organizing frame is played by the system theory. One reason to call the approach
the boundary control method is as follows. One of the central facts which is necessary
to justify the method is a property of controllability of system (1)–(3): the reachable
set UT = {uf (·, T )|f ∈ L2(0 × [0, T ])} is dense inL2(�

T ). Furthermore, the use of
controllability relates the BC method to an approach based upon the Hilbert uniqueness
method (Lions, Puel, Yamamoto and others; see, e.g., Yamamoto (1995)); both approaches
exploit the well known principle of system theory: if a system is controllable, it is the
observable that gives the possibility of extracting information concerning a reachable part
of the system from the corresponding measurements.

The first variant of the BC method (Belishev 1987a) was based upon a transparent
physical idea: operating by a boundary control to create in a domainthe waves of a standard
shape(Dirac δ-functions). Later this idea led to a variant of the method using some of the
multidimensional analogues of the classical Gelfand–Levitan–Krein’s equations (Belishev
1987b, Belishev and Blagovestchenskii 1992). Recently, Rakesh noted that in the one-
dimensional case this variant (see Belishev 1996b) is similar to an approach proposed by
Sondhi and Gopinath (Gopinath and Sondhi 1971, Sondhi and Gopinath 1971).

As one more analogue and predecessor of our method, the ‘local approach’ belonging
to Blagovestchenskii (1971) has to be mentioned. A dynamical variant of the BC method
may be considered as its multidimensional generalization.

The BC method was originated independently and practically simultaneously† with
other approaches to the multidimensional IPs (Kohn, Lee, Nachman, Novikov, Sylvester,
Uhlmann, Vogelius and others). Comparing it with the known methods the following
pecularities should be noted:

(i) the method is of invariant character: it recovers not only coefficients of equations
but Riemannian manifolds ofan arbitrary topology(note that the compactness andC∞-
smoothness of a manifold do not play the central role in reconstruction);

(ii) the BC method gives more than a uniqueness of determination, it proposes the
recovering procedures which may be used as a basis of numerical algorithms;

(iii) the method works in the case of data given on part of a boundary; its dynamical
variant leads to unimprovable (time optimal) results;

† The paper by Belishev (1987a) was submitted toDoklady Akad. Nauk SSSR(presented by L D Faddeev) on 29
April 1986, and published in June 1987. The papers by Belishev and Kurylev (1986, 1987) were written later; the
first paper used the scheme identical with that of Belishev (1987a) and referred to this latter work.
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(iv) a simple and clear background (integration by parts, controllability plus geometrical
optics) makes the method of a rather general character which gives reason to hope for its
applications to more complicated systems of elasticity, electrodynamics etc. First steps in
this direction have already been taken (Avdonin and Belishev 1996, Belishev 1995, 1996a,
Belishevet al 1997).

In conclusion, we describe the contents and the structure of the paper.
Section 1 is devoted to the geometrical preliminaries. In section 2 the direct boundary-

value initial problems are considered; the geometrical optics relations are presented.
Section 3 introduces spaces and operators which describe the dynamical system (1)–(3) in
terms of control theory; the visualizing operatorV T appears in section 3.5. Section 4 deals
with a property of controllability; a duality ‘controllability–observability’ is considered.
Section 5 plays a central role by demonstrating a way to visualize the waves through the
boundary measurements. The operatorV T is represented in the form of an operator integral
which is determined by the inverse data. Section 6 deals with a reconstruction itself. We
describe a way to obtain an isometrical copy of an original manifold from a picture of waves
given by operatorV T . Thus, a reconstruction is realized by the scheme ‘inverse data⇒
the visualizing operator⇒ manifold’. In section 7 a simplified variant of the approach is
applied to a problem of recovering a density in� ⊂ Rn. In particular, the case of inverse
data given on part of a boundary is considered. Section 7.7 contains results of numerical
testing of the algorithms based upon the BC method.

The paper is written so that the reader who prefers applications could ignore the material
of theoretical character. To understand how the method recovers a density one can read the
paper along the path:

section 1: 1.1; 1.2; 1.3; 1.4, (i)–(iii); 1.5, (i); 1.6
section 2: 2.1; 2.2; 2.4; 2.5
section 3: 3.1; 3.2; 3.3; 3.4
section 4: 4.1; 4.3
section 7: completely.
We use the abbreviations: IP, inverse problem; sgc, semigeodesical coordinates; DS,

dynamical system; BCP, boundary control problem; AI, amplitude integral; AF, amplitude
formula.

1. Geometry

The geometrical preliminaries are given. The basic object is the semigeodesical coordinates
considered ‘in the large’ on a Riemannian manifold.

1.1. Eikonal and cut locus

Let (�, g) be a compactC∞-smooth Riemannian manifold with a border0, dim� = n > 2
andg a metric tensor on�.

The function

τ(x) := dist(x, 0) x ∈ �
is calledan eikonal. Its level sets

0ξ := {x ∈ �|τ(x) = ξ} ξ > 0

are calledequidistant surfacesof the border0; 00 = 0. A family of subdomain

�ξ := {x ∈ �|τ(x) < ξ} ξ > 0
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extends with respect toξ . A ‘cross size’ of a manifold is characterized by the number

T∗ := max
�
τ(·) = inf{ξ > 0|�ξ = �}.

Let `γ be a geodesic starting from a pointγ ∈ 0 in the normal direction and̀γ [0, s] its
segment of lengths > 0. The second end point of the segment is denoted byx(γ, s) ∈ `γ ;
for s = 0 we setx(γ, 0) = γ . A critical length s = s∗(γ ) is defined by the conditions:

(i) τ(x(γ, s)) = s for 06 s 6 s∗(γ );
(ii) τ(x(γ, s)) < s for s > s∗(γ ).
Thus, if s 6 s∗(γ ), segment̀ γ [0, s] is the shortest geodesic connectingx(γ, s) with

0, whereas fors > s∗(γ ) the segment does not minimize dist(x(γ, s), 0). Functions∗(·) is
continuous on0 (Gromol et al 1968, Hartman 1964).

The pointx(γ, s∗(γ )) is calleda separation pointon `γ . A set of separation points

ω :=
⋃
γ∈0

x(γ, s∗(γ ))

is said to bea separation set (cut locus)of a manifold with respect to its border (Gromol
et al 1968, Hartman 1964). The well known fact is that a cut locus is a closed set of zero
volume,

ω = ω volω = 0 (1.1)

which is separated from the border:

Tω := dist(ω, 0) = min
0
s∗(·) > 0.

For ξ < Tω the set0ξ ∩ω is empty; if ξ > Tω, the part0ξ \ω of an equidistant surface
is a smooth(n − 1)-dimensional manifold (perhaps, unconnected). Thus, the regularity of
0ξ may be violated on a cut locus only.

1.2. Geodesic projection

Fix x ∈ � and define itsgeodesic projectionon a border:

prx := {γ ∈ 0| dist(γ, x) = τ(x)}.
Thus, prx is a subset on0 containing all the points being nearest tox.

Fix ξ ∈ [0, T∗] and introduce the subsets of a border

σ
ξ
+ := pr(0ξ \ ω) σ ξω := pr(0ξ ∩ ω) σ

ξ
− = 0 \ (σ ξ+ ∪ σ ξ )

which form a partition

0 = σ ξ+ ∪ σ ξω ∪ σ ξ− (1.2)

and may be characterized in terms of the functions∗(·) as follows:

σ
ξ
+ = {γ ∈ 0|s∗(γ ) > ξ} σ ξω = {γ ∈ 0|s∗(γ ) = ξ} σ

ξ
− = {γ ∈ 0|s∗(γ ) < ξ}.

By virtue of the continuity ofs∗(·), the setsσ ξ± are open on0; set sξω is closed. Setσ ξ+ is
decreasing, whereas setσ ξ− is increasing whenξ varies from 0 toT∗.

Denoting�ξ⊥ := � \�ξ , one has the relation

dist(σ ξ−, �
ξ

⊥) > ξ Tω < ξ < T∗ (1.3)

following easily from the definitions.
Let us remark in addition that the map pr :� → 0 turns out to be a diffeomorphism

between0ξ \ ω andσ ξ+. If ξ < Tω, one has pr0ξ = σ ξ+ = 0.
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1.3. Semigeodesical coordinates

A simple fact is that every point outside the cut locus is connected with the border by a
unique shortest (normal) geodesic. Therefore, a projection ofx ∈ � \ ω contains only one
point γ (x) := prx ∈ 0, whereas a pairγ (x), τ(x) determinesx uniquely and may be
considered as its coordinates.

In more detail, let us fix pointx0 and its (small) vicinityB : x0 ∈ B ⊂ � \ ω such that
prB is covered by local coordinatesγ 1, . . . , γ n−1 on0. Systemγ 1 ◦pr, . . . , γ n−1 ◦pr, τ(·)
is said to bethe semigeodesical coordinates(sgc) onB. Below we use the same term for
the pairγ (·), τ(·) if there is no need to putγ 1, . . . , γ n−1 in detail.

Property (1.1) gives a remarkable possibility to use sgc ‘in the large’, i.e. almost
everywhere on� (Hartman 1964).

We denote byg a metric tensor in sgc which has the well known form

g =


... 0

gµν

...

. . . . . . . . . 0
0 . . . . . . 0 1

 µ, ν = 1, . . . , n− 1.

The length and volume elements are

ds2 = gµν dγ µ dγ ν + dτ 2 d� = (detg(γ, τ ))1/2 dγ 1 . . .dγ n−1 dτ = β(γ, τ )d0 dτ

(1.4)

where

β(γ, τ ) :=
(

detg(γ, τ )

detg(γ, 0)

)1/2

and d0 := (detg(γ, 0))1/2 dγ 1 . . .dγ n−1

is a canonical measure on a border. Note thatβ and d0 do not depend on the choice of
local coordinates; functionβ ∈ C∞(� \ ω) is positive everywhere.

Recall that in local coordinatesη1, . . . , ηn the Laplace operator is written as follows:

1g = (detg)−1/2 ∂

∂ηk
(detg)1/2gkl

∂

∂ηl
(1.5)

whereg = {gkl(η1, . . . , ηn)}nk,l=1 is the metric tensor;{gkl} = {gkl}−1. In sgc it takes the
form

1g = (detg)−1/2 ∂

∂γ µ
(detg)1/2gµν

∂

∂γ ν
+ (detg)−1/2 ∂

∂τ
(detg)1/2

∂

∂τ
(1.6)

with smoothgµν .

1.4. Pattern

Here we introduce a geometrical object which plays the central role in the BC method.
Semigeodesical coordinates induce the mapi from � \ ω into the cylinder0 × [0, T∗]

i : x → (γ (x), τ (x)).

The image

2 := i(� \ ω) =
⋃
x∈�\ω

(γ (x), τ (x)) ⊂ 0 × [0, T∗]

is said to bea patternof �.
The following facts may be easily checked.
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(i) The tensorg determines a metric on2. The mapi transforms(�\ω, g) onto (2, g)
isometrically; its inversei−1 coincides with classical exp0.

(ii) For any ξ ∈ [0, T∗) a smooth part0ξ \ ω of equidistant surface is mapped onto the
setσ ξ+ × {τ = ξ} ⊂ 2. Correspondingly, the representation

� \ ω =
⋃

ξ∈[0,T∗)

0ξ \ ω

is transformed into

2 =
⋃

ξ∈[0,T∗)

σ
ξ
+ × {τ = ξ} (1.7)

which may be considered as a ‘horizontal’ bundle of a pattern.
(iii) An ‘upper’ border of a pattern

θ :=
⋃
γ∈0
(γ, s∗(γ ))

is said to bea coast. The continuity ofs∗(·) implies

mesd0 dτ θ = 0 (1.8)

on 0 × [0, T∗].
(iv) The inverse mapi−1 = exp0 may be extended from a pattern onto a coast by

continuity. Everywhere in the following we suppose the extension to be done, denoting it
by the same symboli−1. An extended map transfers2 ∪ θ onto�, andθ ontoω, but not
injectively. If pointm ∈ ω is connected with0 by the shortest geodesics`γ ′ , `γ ′′ , . . . (so
that s∗(γ ′) = s∗(γ ′′) = · · · = τ(m))), then one has

i−1((γ ′, s∗(γ ′)) = i−1((γ ′, s∗(γ ′′)) = · · · = m
i.e. i−1 glues points of a coast.

The objects introduced above are shown in figure 1.

Figure 1. Semigeodesical coordinates and pattern.

In the following, dealing with dynamical problems we shall use reduced patterns. Fix
positive T 6 T∗; the subdomain�T (see 1.1) equipped with the tensorg|�T may be
considered as a separate Riemannian manifold. As such, it has the cut locus

ωT := ω ∩�T
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and the pattern

2T := i(�T \ ωT ) ⊂ 0 × [0, T ]

with the coast

θT := θ ∩ [0 × (0, T )].
Varying T one has an increasing family of patterns2T which exhausts pattern2 = 2T∗ .

(v) The following remark would be useful: the mapi−1 transfers (2T , g) onto
(�T \ ωT , g) isometrically; it glues points of a coast:i−1(θT ) = ωT .

A pattern was first introduced in Belishev (1990b).

1.5. Images

(i) Let us agree to considerβ introduced in section 1.3 as a function on a pattern:
β ∈ C∞(2), β > 0.

Fix T 6 T∗; for any functiony given on�T we define functioñy on6T := 0× [0, T ]
as follows:

ỹ(γ, τ ) :=
{
β1/2(γ, τ )y(x(γ, τ )) (γ, τ ) ∈ 2T

0 (γ, τ ) ∈ 6T \2T .

Functionỹ is said to bean imageof y, the corresponding mapI T : y → ỹ being calledan
image operator.

(ii) Introduce the (real) Hilbert spaceHT := L2(�
T ),

(y, v)HT =
∫
�T

d�y(x)v(x)

and the spaceFT := L2(6
T ),

(f, h)FT =
∫
6T

d0 dτ f (γ, τ )h(γ, τ ).

Let FT2 be the subspace of functions localized on a pattern:

FT2 := {f ∈ FT | suppf ⊂ 2T }.
The (orthogonal) projectorXT2 in FT ontoFT2 cuts off functions on a pattern:

(XT2 f )(γ, τ ) =
{
f (γ, τ ) (γ, τ ) ∈ 2T

0 (γ, τ ) ∈ 6T \2T .

Lemma 1.1. The image operator acts isometrically fromHT into FT , the relations

(I T y, I T v)FT = (y, v)HT RanI T = FT2 (I T )∗I T = 1lHT I T (I T )∗ = XT2.
(1.9)

being valid (1l are identical operators).



R8 Topical Review

Proof. Operator I T is correctly defined onHT by virtue of (1.1). For arbitraryy,
v ∈ C∞0 (�T \ ωT ) one has the equalities

(y, v)HT =
∫
�T

d�y(x)v(x) = (see (1.1))=
∫
�T \ωT

= (see (1.4))

=
∫
2T

d0 dτ β(γ, τ )y(x(γ, τ ))v(x(γ, τ )) = (ỹ, ṽ)FT = (I T y, I T v)FT .

Thus,I T is an isometry.
OperatorI T transfersC∞0 (�

T \ωT ) onto C∞0 (2
T ). Indeed, the inclusionI T C∞0 (�

T \
ωT ) ⊂ C∞0 (2

T ) is obvious; on the other hand, for anyf ∈ C∞0 (2T ) one can find the
preimage(I T )−1f ∈ C∞0 (�T \ ωT ) as follows:

((I T )−1f )(x) = β−1/2(γ (x), τ (x))f (γ (x), τ (x)) x ∈ �T \ ωT .
A density of setsC∞0 (�

T \ ωT ) andC∞0 (2
T ) in HT andFT2 implies RanI T = FT2 . Thus,

two relations in (1.9) are established; the rest of (1.9) is just a corollary of the first. The
lemma is proved. �

Corollary. The operator(I T )∗ : FT → HT acts by the rule

((I T )∗f )(x) = (β−1/2XT2f )(γ (x), τ (x)) x ∈ �T \ ωT .

Suppose functionsy ∈ C2(�T ) andw ∈ C(�T ) to be connected through the Laplacian,

1gy = w in �T .

Let ỹ, w̃ be their images on2T . An image operator induces the corresponding relation on
a pattern:

1̃ỹ = w̃ in 2T (1.10)

with operator1̃ := I T 1(IT )−1, which may be represented in the form

1̃ = g
µν ∂2

∂γ µ∂γ ν
+ g

ν ∂

∂γ ν
+ g

0+ ∂2

∂τ 2

with smooth coefficients. The representation (1.10) may be checked by a simple calculation.

1.6. Domains of influence

In conclusion of the geometrical preliminaries we introduce one class of the sets used below
in dynamical problems.

DenoteQT := �× [0, T ] (0< T 6 T∗); for any point(x0, τ0) ∈ QT definefuture and
past cones

KT
± [(x0, τ0)] := {(x, τ ) ∈ QT | dist(x, x0) 6 ±(τ − τ0)}.

For anyD ⊂ QT the sets

KT
± [D] :=

⋃
(x0,τ0)∈D

KT
± [(x0, τ0)]

are calledfuture and past domains of influenceof subsetD. The following facts may be
simply derived from the definitions given above and in section 1.2.

(i) Let

6T,ξ := 0 × [T − ξ, T ] 0 < ξ 6 T
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be part of the lateral surface6T of cylinderQT ; the representation

KT
+ [6T,ξ ] = {(x, τ ) ∈ QT |τ > τ(x)+ (T − ξ)}

is valid. Thus, this domain lies above the characteristic surface

X T ,ξ := {(x, τ ) ∈ QT |τ = τ(x)+ (T − ξ)}.
(ii) Consider the set�ξ⊥ × {τ = T } lying on an upper base ofQT (recall that

�
ξ

⊥ := � \ �ξ ), and the setsσ ξ± × {τ = T − ξ}, σ ξω × {τ = T − ξ} which form a
partition of the cross section0 × {τ = T − ξ} of 6T . The following relations hold:

(σ
ξ
+ ∪ σ ξω)× {τ = T − ξ} ⊂ KT

− [�ξ⊥ × {τ = T }]
σ
ξ
− × {τ = T − ξ} 6⊂ KT

− [�ξ⊥ × {τ = T }] (1.11)

the latter being meaningful only ifTω < ξ < T∗ (see (1.3)).
Properties (i) and (ii) are illustrated on figure 2 (the part of6T belonging to

KT
− [�ξ⊥ × {τ = T }] is shaded on figure 2(b)).

Figure 2. Domains of influence.

2. Waves

Properties of waves initiated into a manifold by boundary sources (controls) are presented.
The waves play the role of the main tool used by the external observer who investigates a
manifold from its border.

2.1. Boundary-value initial problem

Consider the problem

utt −1gu = 0 in IntQT (2.1)

u|t=0 = ut |t=0 = 0 (2.2)

u|6T = f (2.3)

with a final momentt = T > 0 and functionf = f (γ, t) which is said to be a(Dirichlet)
boundary control; let u = uf (x, t) be its solution (wave).

Let us list briefly some known facts concerning waves.
(i) Introduce a set of smooth controlsMT := {f ∈ C∞(6T )|(∂/∂t)kf |t=0 = 0,

k = 0, 1, . . .}; for any f ∈ MT the problem (2.1)–(2.3) has a unique classical solution
uf ∈ C∞(QT ).
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(ii) The map f → uf acts continuously fromL2(6
T ) into C([0, T ]; L2(�)) (see

Lasieckaet al 1986) its extension by continuity determines a generalized solutionuf for
f ∈ L2(6

T ) satisfying (2.1) as a distribution.
(iii) The hyperbolicity of problem (2.1)–(2.3) leads to a property which is interpreted as

a finiteness of the speed of wave propagation: for anyf ∈ L2(6
T ) one has the inclusion

suppuf ⊂ KT
+ [suppf ]

in QT . Since suppf ⊂ 6T andKT
+(6

T ) = {(x, t) ∈ QT |t > τ(x)} (see section 1.6) this
implies the inclusion

suppuf (·, ξ) ⊂ � ξ 0< ξ 6 T (2.4)

in �. Thus,�ξ may be interpreted as part of a manifold filled by waves up to the moment
t = ξ , that selects the valuet = T∗ as a time needed for waves to fill the whole of the
manifold.

(iv) An independence of the metric tensorg on time leads to the well known stationary
state property. Letf ∈ FT andf ( ; ξ) be adelayedcontrol,

f (γ, t; ξ) :=
{

0 06 t < T − ξ
f (γ, t − (T − ξ)) T − ξ 6 t 6 T .

The relation

uf ( ; ξ)( · , T ) = uf (·, ξ) in � (2.5)

just means that a delay of a control implies the same delay of a wave. As a corollary one
can obtain

u(∂/∂t)
kf =

(
∂

∂t

)k
uf in QT (2.6)

for f ∈MT , k = 1, 2, . . . .
(v) Let ν = ν(γ ) be an outward normal at pointγ ∈ 0, ∂ν := ∂/∂ν; the mapf → ∂ν

uf |6T defined onMT acts continuously from the subspace{f ∈ H 1(6T )|f |t=0 = 0} ⊂
H 1(6T ) into L2(6

T ) (Hα(. . .) be the Sobolev classes) (Lasieckaet al 1986, Lions 1968).

2.2. Dual problem

The boundary-value initial problem

vtt −1gv = 0 in IntQT (2.7)

v|t=T = 0 vt |t=T = y (2.8)

v|6T = 0 (2.9)

is said to bedual to problem (2.1)–(2.3). Letv = vy(x, t) be a solution; the following is a
list of its properties.

(i) For anyy ∈ C∞0 (�) the problem has a unique classical solutionvy ∈ C∞(QT ).
(ii) The mapy → vy is continuous fromL2(�) into H 1(QT )∩C([0, T ]; H 1

0 (�)); this
fact permits the definition of a generalized solution fory ∈ L2(�) extending the map by a
continuity (see Lasieckaet al 1986).

(iii) Defined onC∞0 (�), the mapy → ∂ν v
y |6T acts continuously fromL2(�) into

L2(6
T ) (see Lasieckaet al 1986). Therefore, a trace∂ν vy |6T is correctly defined forvy ,

y ∈ L2(�).
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(iv) A hyperbolicity of a dual problem leads to the inclusion

suppvy ⊂ KT
− [suppy × {t = T }] (2.10)

in QT .
One reason to call problem (2.7)–(2.9) dual to problem (2.1)–(2.3) is the following

relation between their solutions.

Lemma 2.1. For anyf ∈ L2(6
T ), y ∈ L2(�) the equality∫

�

d�uf (x, T )y(x) =
∫
6T

d0 dt f (γ, t)∂ν v
y(γ, t) (2.11)

is valid.

Proof. For f ∈ MT , y ∈ C∞0 and the corresponding classical solutions one has the
equalities

0=
∫
QT

d� dt [uftt (x, t)−1gu
f (x, t)]vy(x, t)

=
∫
�

d� [uft (x, t)v
y(x, t)− uf (x, t)vyt (x, t)]|t=Tt=0

−
∫ T

0
dt
∫
0

d0 [∂νu
f (γ, t)vy(γ, t)− uf (γ, t)∂νvy(γ, t)]

+
∫ T

0
dt
∫
�

d�uf (x, t)[vytt (x, t)−1gv
y(x, t)]

= (see (2.2), (2.3), (2.7)–(2.9))

= −
∫
�

d�uf (x, T )y(x)+
∫ T

0
dt
∫
0

d0 f (γ, t)∂νv
y(γ, t)

which implies (2.11) for smoothf , y. Extending the established equality onf ∈ L2(6
T ),

y ∈ L2(�) by continuity, one can obtain the necessary result. The lemma is proved.�

Solutionvy describes a wave produced by the perturbation of the velocity. Such a wave
propagates (in inverted time!) into a manifold whose border is rigidly fixed.

2.3. Propagation of wave discontinuities

The well known fact is that discontinuous controls generate discontinuous waves. The
discontinuities of waves propagate along bicharacteristic (rays), their amplitudes being
calculated by means of geometrical optics.

Choose a smooth controlf ∈MT and fix parameterξ : 0< ξ < T 6 T∗; let

fξ (γ, t) := θ(t − (T − ξ))f (γ, ξ) =
{

0 06 t < T − ξ
f (γ, t) T − ξ 6 t < T

be its cutting-off function (θ(. . .) is the Heavyside function), suppfξ ⊂ 6T,ξ . In general,
fξ is a discontinuous control having a discontinuity at the momentt = T − ξ :

fξ (γ, t)|t=T−ξ+0
t=T−ξ−0 = f (γ, T − ξ). (2.12)

The corresponding waveufξ is localized in domainKT
+ [6T,ξ ], and our goal is to describe

its behaviour near the characteristic surfaceX T ,ξ which bounds suppufξ from below (see
figure 2(a)).
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Let ωε := {x ∈ �| dist(x, ω) < ε} be a vicinity of the cut locus; denoteQT
ε :=

(� \ ωε)× [0, T ]; s+ := sθ(s).

Lemma 2.2. For arbitrary (small) ε > 0 one can findδ = δ(ε) > 0 such that the
representation

ufξ (x, t) = β−1/2(γ (x), τ (x))f (γ (x), t − τ(x))θ(t − τ(x)− (T − ξ))
+wfε (x, t; ξ)(t − τ(x)− (T − ξ))+ (2.13)

is valid for any(x, t) ∈ QT
ε satisfyingt < τ(x)+ (T − ξ)+ δ (i.e. lying underX T ,ξ−δ). The

functionwfε is bounded:

|wfε | 6 c(T , f, ε)
uniformly onξ ∈ (0, T ).

This result is known (see, e.g., Babich and Buldyrev 1991, Wainberg 1982); the reader
could find a variant of the proof belonging to Kachalov in Belishev and Kachalov (1994).

Representation (2.13) shows that a discontinuity of the wave moves into� from the
border0 with a unit velocity. At the final momentt = T it is localized on the surface
0ξ playing the role of a forward front of wave; an amplitude of the discontinuity being
calculated as follows:

lim
τ→ξ−0

ufξ (x(γ, τ ), T ) = β−1/2(γ, ξ)f (γ, T − ξ). (2.14)

These kind of relations are known as the geometrical optics formulae (see Babich and
Bulydrev 1991, Wainberg 1982). Comparing (2.14) with (2.12) one can say that up to the
factor β−1/2 of a geometrical nature the shape of the wave discontinuity repeats the shape
of the discontinuity of control.

Let us remark that (2.13) describes the behaviour of a wave onlynear the characteristics
X T ,ξ carrying a discontinuity, andout of a cut locus. If T > Tω, far from this area a wave
can possess singularities of more complicated structure.

2.4. Discontinuities in the dual problem

As in system (2.1)–(2.3), the same effect is present in the dual one: discontinuous data
produce discontinuous waves.

Choosey ∈ C∞(�); let

yξ (x) := θ(τ (x)− ξ) y(x) x ∈ �
be its cutting-off function on the subdomain�ξ⊥ = � \�ξ = {x ∈ �|τ(x) > ξ}. Note that,
in general,yξ has a discontinuity at surface0ξ . Consider problem (2.7)–(2.9) with data
v|t=T = 0, vt |t=T = yξ ; let vyξ be the corresponding solution.

Lemma 2.3. In the case of0< ξ < T 6 T∗, the relation

lim
t→T−ξ−0

∂ν v
yξ (γ, t) =

{
β1/2(γ, ξ) y(x(γ, ξ)) (γ, ξ) ∈ σ ξ+ × {t = T − ξ}
0 (γ, ξ) ∈ σ ξ− × {t = T − ξ}

(2.15)

is valid.



Topical Review R13

Equality (2.15) is dual to (2.14), the duality being known as a reciprocity law. Omitting
its proof (see Wainberg 1982), we only give the following ‘physical’ explanation.

The discontinuous perturbation of velocityyξ , suppyξ ⊂ �ξ⊥, generates a discontinuity
of the wavevyξ which propagates (in inverted time) along the rays (see the arrows on
figure 2(b)) towards0. Reaching a border at the momentt = T − ξ , the discontinuity
interacts not with the whole of0 but with the ‘illuminated part’σ ξ+ ∪ σ ξω only (see (1.11)).
In points of σ ξ+ an amplitude of interaction may be calculated by means of geometrical
optics giving the first line in (2.15).

The partσ ξ− ⊂ 0 is not covered by the wave att = T − ξ sinceσ ξ− is placed far from
�
ξ

⊥ (see (1.11), (2.10)) which explains the second line of (2.15).
Let us remark that geometrical optics is not applicable at points ofσ ξω × {t = T − ξ}

lying on a coast of a pattern. Fortunately, in view of (1.8), this will not create problems
later.

Considering the right-hand side of (2.15) as a function of(γ, ξ), and comparing it with
the definition of images (section 1.5) one can rewrite the relation as follows:

lim
t→T−ξ−0

∂ν v
yξ (γ, t) = ỹ(γ, ξ) a.e. on6T . (2.16)

This is the formula which motivates us to introduce images. It represents an image ofy as
a collection of wave discontinuities propagating in a dual system and being detected on a
border.

2.5. Spectral representation

Here we describe briefly the Fourier method for problems (2.1)–(2.3) and (2.7)–(2.9).
OperatorL : L2(�)→ L2(�), DomL = H 2(�) ∩H 1

0 (�),

Lu := −1g u

is self-adjoint and positively defined. Let{λk}∞k=1, 0< λ1 < λ2 6 · · · be its spectrum and
ϕk be the corresponding eigenfunctions(Lϕk = λkϕk) normalized by the condition∫

�

d�ϕk(x)ϕl(x) = δkl .
System{ϕk}∞k=1 forms a basis inL2(�) that gives the possibility of representing waves

by a Fourier series. Denote

ψk := ∂νϕk|0 sTk = sTk (γ, t) := −λ−1/2
k sin[λ1/2

k (T − t) ]ψk(γ ).

Lemma 2.4. (i) For any f ∈ L2(6
T ) the representation

uf (·, T ) =
∞∑
k=1

c
f

k (T ) ϕk c
f

k (T ) =
∫
6T

d0 dt sTk (γ, t)f (γ, t) (2.17)

is valid, the series converging inL2(�).
(ii) For any y ∈ L2(�) the representations

vy(·, t) = −
∞∑
k=1

yk λ
−1/2
k sin[λ1/2

k (T − t)]ϕk yk =
∫
�

d�y(x) ϕk(x) (2.18)

∂νv
y |6t =

∞∑
k=1

yk s
T
k (2.19)

are valid, the series converging inL2(�) andL2(6
T ) correspondingly.
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One can obtain the proof just by integrating by parts (see, e.g., Lions 1968).
The set of pairs{λk;ψk(·)}∞k=1 is said to be(Dirichlet) spectral dataof manifold (�, g).

In what follows it plays the role of data of the spectral IP. In this connection it would
be important to note in advance that the Fourier coefficients in (2.17) are determined by
{λk;ψk}.

3. Dynamics

The boundary-value initial problems introduced previously are equipped with the attributes
of dynamical systems (spaces and operators) as is customary in control theory.

3.1. Control operator

We begin to consider problem (2.1)–(2.3) as a dynamical system (DS). As such, it is denoted
by αT throughout what follows.

The Hilbert space of controls (inputs)FT = L2(6
T ) is calledan outer spaceof the DS

αT .
By virtue of (ii), section 2.1 waves (states)uf (·, t) belong to the spaceH = L2(�)

which is said to bean inner spaceof the DSαT .
An ‘input → state’ correspondence inαT is realized bythe control operatorWT :

FT → H,

WT f := uf (·, T )
acting continuously from an outer space into an inner space. Let us discuss some of its
properties.

Introducethe delay operatorT T ,ξ : FT → FT ,

T T ,ξ f := f ( · ; ξ)
(see (iv), section 2.1) whereξ is a parameter, 06 ξ 6 T ; T T ,0 = OFT , T T ,T = 1lFT . Note
thatξ is an action time of the delayed controlT T ,ξ f . A stationary state property (see (2.5))
of the DSαT may be rewritten as follows:

WT T T ,ξ f = uf (·, ξ) 06 ξ 6 T . (3.1)

Equality (2.6) fork = 2, t = T takes the form

u(∂/∂t)
2f (·, T ) = uftt (·, T )

that implies

WT ∂
2

∂t2
= 1gW

T onMT . (3.2)

The outer spaceFT contains an increasing family of subspaces

FT ,ξ := T T ,ξFT = {f ∈ FT | suppf ⊂ 6T,ξ } 06 ξ 6 T (3.3)

(6T,ξ := 0 × [T − ξ, T ]) formed by delayed controls. In accordance with (2.4) and (3.1)
a control operator maps this family into one of subspaces of the inner spaceH:

Hξ := {u ∈ H| suppu ⊂ �ξ } 06 ξ 6 T (3.4)

so that the relation

WTFT ,ξ ⊂ Hξ 06 ξ 6 T (3.5)

holds.



Topical Review R15

As it was noted in (iii), section 2.1, the valueT∗ coincides with the time needed for
waves moving from a border to fill a manifold. ThisT∗ enters the following important
result.

Lemma 3.1. For T < T∗ a control operator is injective:

KerWT = {0}. (3.6)

The proof can be found in Avdoninet al (1994) and Belishev (1990a).

3.2. Operator of observation

The problem (2.7)–(2.9) determines a dynamical system which is said to bedual to αT and
is denoted byαT∗ .

The operatorOT : H→ FT ,

OT y := ∂ν vy |6T

is calledan operator of observation. It realizes a ‘state→ output’ correspondence in the
DS αT∗ . Due to property (iii), section 2.2, operatorOT is correctly defined.

The following result clarifies finally the meaning of the term ‘duality’.

Proposition 3.1. For anyT > 0 the equality

OT = (WT )∗ (3.7)

holds.

Indeed, the relation

(WT f, y)H = (f,OT y)FT

is no more than a way to write (2.11).

3.3. Response operator

An ‘input→ output’ map in the DSαT is determined bythe response operatorRT : FT →
FT , DomRT = {f ∈ H 1(6T )|f |t=0 = 0},

RT f := ∂νuf |6T

which is correctly defined by virtue of (v), section 2.1. In contrast to operators of control
and observation it is not continuous.

A response operator describes the reply of a dynamical system to an action of a control.
It may be identified with information being obtained by an outer observer from dynamical
boundary measurements.

The hyperbolicity of system (2.1)–(2.3) implies the following well known fact.
Corresponding to double time, the operatorR2T is determined by the submanifold(�T , g)
being independent on(�T⊥, g). In the following the operatorR2T will play the role of
inverse data, and, as such, it contains information on�T only.
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3.4. Connecting operator

The operator introduced here is one of the main objects of the BC method.
Let us define the mapCT : FT → FT ,

CT := (WT )∗WT = OTWT (3.8)

which is said to bethe connecting operatorof the DSαT . This term is explained by the
relation

(CT f, g)FT = (WT f,WT g)H = (uf (·, T ), ug(·, T ))H (3.9)

i.e. operatorCT connects metrics of outer and inner spaces.
By its definition, CT is a continuous non-negative operator inFT . In view of

KerCT = KerWT , one has

KerCT = {0} T < T∗ (3.10)

(see (3.6)).
The role of the connecting operator in our approach stands out due to the following

remarkable fact: CT may be expressed in explicit form through the inverse data (in
particular, through a response operator). To formulate the result we need some auxiliary
operators:

the operator of an odd continuationST : FT → F2T ,

(ST f )(·, t) =
{
f (·, t) 06 t < T

−f (·, 2T − t) T 6 t 6 2T

the reducing operatorN2T : F2T → FT ,

N2T g := g|6T

the operator selecting an odd part of controlsP 2T
− : F2T → F2T

(P 2T
− g)(·, t) = 1

2[g(·, t)− g(·, 2T − t)]
the operator of integrationJ 2T : F2T → F2T ,

(J 2T g)(·, t) =
∫ t

0
ds g(·, s).

One can easily check the relation

(ST )∗ = 2N2T P 2T
− . (3.11)

Let R2T be a response operator of the DSα2T (problem (2.1)–(2.3) with a final moment
t = 2T ).

Theorem 3.1. For anyT > 0 andf ∈ H 1(6T ) the representation

CT f = 1
2(S

T )∗R2T J 2T ST f (3.12)

holds.
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Proof. Fix f ∈ H 1(6T ) and note that controlh := J 2T ST f belongs to DomR2T , being
an even function,h(·, t) = h(·, 2T − t). Let uh be a solution of the problem

utt −1gu = 0 in IntQ2T

u|t=0 = ut |t=0 = 0

u|62T = h.
Denotingw(x, t) := uh(x, t)− uh(x, 2T − t) one can check the relations

wtt −1gw = 0 in IntQT (3.13)

w|t=T = 0 wt |t=T = 2uht (·, T ) (3.14)

w|6T = 0. (3.15)

The derivative in (3.14) may be calculated as follows:

wt |t=T = 2uht (·, T ) = (see (2.6))= 2uht (·, T ) = 2uS
T f (·, T ) = 2uf (·, T ) = 2WT f.

(3.16)

Comparing (3.13)–(3.16) with the dual problem (2.7)–(2.9) we conclude thatw = vy with
y = 2WT f . By definition of the operator of observation, this implies

∂νw|6T = ∂νvy |6T = OT y = 2OTWT f = 2CT f. (3.17)

On the other hand, calculating the same derivative directly one obtains

∂νw(·, t) = ∂νuh(·, t)− ∂νuh(·, 2T − t) = (R2T h)(·, t)− (R2T h)(·, 2T − t)
which may be rewritten in the form

∂νw|6T = N2T 2P 2T
− R

2T h = 2N2T P 2T
− R

2T J 2T S2T f = (see (3.11))= (ST )∗R2T J 2T ST f.

(3.18)

Comparing (3.17) with (3.18) we obtain (3.12). The theorem is proved. �

Unfortunately, representation (3.12) does not hold for arbitraryf ∈ FT . The reason
is that, in contrast to the one-dimensional case, the multidimensional operatorR2T J 2T is
unbounded (Bardos and Lebeau, private communication). Therefore, to findCT f in the
general case one must invoke a passage to the limit.

The set of pairs{λk;ψk(·)}∞k=1 (see section 2.5) will play the role of data in the spectral
IP. The following result shows that the connecting operator is determined by spectral data.

Theorem 3.3. For anyT > 0 the representation

CT =
∞∑
k=1

(·, sTk )FT sTk (3.19)

is valid, the series converging in a strong operator topology.

Proof. Fix f ∈ FT ; in accordance with (2.17) one has

uf (·, T ) = WT f =
∞∑
k=1

(f, sTk )FT ϕk.

Applying the (continuous) operatorOT , one obtains the representation

CT f = OTWT f =
∞∑
k=1

(f, sTk )O
T ϕk = (see (2.19))=

∞∑
k=1

(f, sTk )s
T
k

in the form of a series converging inFT . The theorem is proved. �
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OperatorCT was first used in dynamical IP in Belishev (1987b). It would be interesting
to note that the dual operator3 = WT (WT )∗ plays a basic role in the Hilbert uniqueness
method (Lions 1988).

3.5. Visualizing operator

Completing the list of operators associated with systemsαT andαT∗ , we introduce one more
map which connects dynamics with geometry. Recall that the image operatorI T : y → ỹ

was defined in section 1.5.
The mapV T : FT → FT ,

V T := I TWT

is said to bethe visualizing operator. Acting by the rulef → ũ f (·, T ), it makes the wave
images be objects of an outer space.

The meaning and future role of the visualizing operator may be announced as follows.
An external observer operating on a border (inFT ) cannot see the wavesinto a manifold.
Suppose, that the observer is able to determineV T from boundary measurements (inverse
data). If so, the remarkable possibility of making wave pictures (images) visible on a pattern
is obtained. Moreover, applying an image operator to (3.1) one obtains the relation

V T T T ,ξ f = ũ f (·, ξ) 06 ξ 6 T (3.20)

so that an observer could visualize on a pattern the whole of a wave process. Then the
observer could extract from the pictures information concerning a manifold. It is a program
which will be realized below, when we shall solve the IPs.

Relations (1.10) and (3.2) lead to the equality

V T
∂2

∂t2
= 1̃V T onMT (3.21)

which is required later.

4. Wave shaping

Can one shape a wave by means of a boundary control? In some sense, the answer is
positive which leads to important consequences for IPs.

4.1. Boundary control problem. Controllability

Let y ∈ HT be a function given in subdomain�T filled by waves by the momentt = T ;
the boundary control problem(BCP) is to findf ∈ FT satisfying

uf (·, T ) = y. (4.1)

The problem is evidently equivalent to the equation

WT f = y. (4.2)

Therefore, lemma 3.1 implies the following.

Proposition 4.1. For anyT < T∗ the BCP has no more than one solution.
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The set of all of possible states of the DSαT

UT := WTFT = {uf (·, T )|f ∈ FT }
is said to bereachable(at the momentT ). By virtue of hyperbolicity it lies inHT (see (3.5));
consequently, to analyse a solvability of the BCP is to study the embeddingUT ⊂ HT . The
following result plays the key role in the BC method.

Theorem 4.1. For anyT > 0 the equality

closH UT = HT (4.3)

is valid.

Postponing the proof until section 4.4, let us discuss the meaning of the result and some
of its useful corollaries.

Relation (4.3) shows that any functiony ∈ HT may be approximated by wavesuf

arbitrarily closely inL2-metric. In control theory this property is known as (approximate)
controllability of the DSαT .

Turning back to the solvability of the BCP, the following results can be mentioned.
(i) For timesT < T∗, in spite of its density inHT a reachable set is rather poor: for

any ballBr ⊂ Int�T one hasC∞0 (Br) 6⊂ UT ; so thatUT 6= HT and the control operator
WT does not act isomorphically in contrast to the one-dimensional case (see Avdoninet al
1994). Due to this fact the BCP turns out to be ill-posed.

(ii) For a sufficiently large timeT0 which is determined by the geometry of� one
hasUT0 = H, so that the BCP is solvable but not uniquely (see Bardoset al 1992 and
section 6.8).

4.2. Observability

It is customary in control theory to reformulate a property of controllability in dual terms
(see Avdonin and Ivanov 1995, Lions 1968, Russell 1978).

We say that the dual DSαT∗ is observable(at timeT ) if the relation

KerOT = H	HT (4.4)

is fulfilled. As follows from the well known operator relation

KerOT = Ker(WT )∗ = H	 closH RanWT = H	 closH UT

the observability ofαT∗ is equivalent to the controllability ofαT . Thus, by virtue of (4.3) a
dual system is observable on anyT > 0.

Property (4.4) is of interesting physical meaning. If perturbationy, initiating a wave
processvy in the DSαT∗ , satisfies suppy ∩ �T 6= {∅} (i.e. y is localized not far from a
border), it has to manifest itself on0 during a time interval [0, T ]. Moreover, by virtue of
the relation

HT ∩ KerOT = {0} (4.5)

the party|�T of the perturbation isuniquely determinedby the trace∂ν vy |6T . This relates
an observability to Huygens’s rule known in wave propagation theory (Bardos and Belishev
1995, Belishev 1994): in accordance with the rule, the forward front of wave may be
constructed as the envelope of the spheres whose centres belong to the boundary of suppy.
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4.3. Wave projectors

Consider the reachable sets

U ξ := WTFT ,ξ = (see (3.1))= {uf (·, ξ)|f ∈ FT } 06 ξ 6 T (4.6)

corresponding to intermediate times. The stationary state property of the DSαT together
with its controllability lead to the relation

closHU ξ = Hξ 06 ξ 6 T . (4.7)

The (orthogonal) projectorP ξ acting in closUT onto closU ξ is said to bea wave
projector. It is an intrinsic object of the systemαT .

The projectorGξ in HT ontoHξ acts as follows,

(Gξy)(x) = θ(ξ − τ(x))y(x) =
{
y(x) x ∈ �ξ
0 x ∈ �ξ⊥

cutting off functions on�ξ .
Equality (4.7) implies

P ξ = Gξ 06 ξ 6 T . (4.8)

Being of great importance for IPs, this result merits being commented upon in more detail.
Certainly, ‘geometric’ projectorsGξ as well as wave projectorsP ξ are determined by
a Riemannian metric in�, but the equality (4.8) is far from being evident. Moreover,
it is not a general fact: as a counterexample the so-called two-velocity systems may be
mentioned, where a direct analogue of (4.7) and (4.8) does not hold (Belishevet al 1997,
Belishev and Ivanov 1995).

The personal experience of the author shows that to apply the BC method to a concrete
case one has first to clarify how the wave projectors act. For the DSαT , due to its
controllability, the answer appears to be simple and explicit: these projectors cut off
functions on subdomains filled by waves. As we shall see later, it is a surprise for
IPs. Moreover, a lack of controllability in the two-velocity case mentioned above leads
to essential difficulties in IPs for this kind of dynamical system.

4.4. Proof of theorem 4.1

(i) In view of the equivalence of controllability and observability, to prove (4.3) is to
demonstrate (4.4). SinceH 	 HT ⊂ KerOT by hyperbolicity, it would be enough to
establish KerOT ⊂ H	HT , i.e. that the inclusiony ∈ KerOT implies y = 0 in �T .

(ii) Choosey ∈ KerOT ; let vy ∈ H 1(QT ) be a solution of (2.9)–(2.11) satisfying

∂ν v
y |6T = OT y = 0

by the choice ofy. As may be easily seen, due to conditionvy(·, T ) = 0 the odd continuation

w(x, t) :=
{
vy(x, t) in �× [0, T ]

−vy(x, 2T − t) in �× [T , 2T ]

turns out to be a function of the classH 1(Q2T ) satisfying

wtt −1gw = 0 in Q2T (4.9)

w|62T = 0 ∂νw|62T = 0. (4.10)

(iii) ( The Holmgren–John–Tataru uniqueness theorem.) Denote

K2T := {(x, t) ∈ Q2T |06 τ(x) < T − |t − T |}.
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Let us show that (4.9) and (4.10) imply

w = 0 in K2T . (4.11)

Indeed, by virtue of Tataru’s result (Tataru 1993, 1995) concerning a uniqueness of the
(zero) continuation of a solution of the wave equation across a non-characteristic surface,
any point(γ, t) lying on a time-likesurface0× (0, 2T ) has a vicinity (inQ2T ) in whichw
vanishes identically. Therefore, in any smaller cylinderQ2T−ε

ε := �× [ε, 2T − ε] ⊂ Q2T

(ε > 0) the set suppw is separated from a lateral surface
∑2T−ε

ε := 0 × [ε, 2T − ε]:
suppw ∩ {�ξ × [ε, 2T − ε]} = {∅}

with small enoughξ = ξ(ε) > 0. This is the first step of zero continuation ofw from 62T

into K2T .
(iv) Fix ε and consider a subdomain inQ2T−ε

ε of the form

K2T−ε
ε := {(x, t)|06 τ(x) < T − |t − T | − ε}

bounded by62T−ε
ε and two characteristicst = τ(x)+ ε, t = 2T − τ(x)− ε. There exists

(see John 1948, Russell 1971) an increasing family of ‘lens-shaped’ sets{L(λ)}, λ ∈ [0, 1)
such that:

(1)L(λ′) ⊂ L(λ′), λ′ < λ′′; L(λ) ⊂ �ξ×[ε, 2T −ε] for λ < λ0 (with someλ0 ∈ (0, 1));
(2) for everyλ the partS(λ) := [∂L(λ)] ∩ IntQ2T−ε

ε of a boundary ofL(λ) is a smooth
time-like surface;

(3) the family exhausts the subdomainK2T−ε
ε :

⋃
λ∈[0,1) L(λ) = K2T−ε

ε .
Assume that

suppw ∩K2T−ε
ε 6= {∅}. (4.12)

Increasingλ from zero one can findλ = λ∗ such that

suppw ∩ L(λ) = {∅} λ 6 λ∗ suppw ∩ S(λ∗) 6= {∅}
(i.e. the valueλ∗ corresponds to the first contact ofL(λ) with suppw). Evidently, in some
vicinity of point p ∈ suppw ∩ S(λ∗) the uniqueness of the zero continuation ofw across
S(λ∗) is broken. Therefore, assumption (4.12) leads to a contradiction, which impliesw = 0
in K2T−ε

ε . In view of an arbitrariness ofε we obtain (4.11).
(v) The equality (4.11) implieswt = 0 in K2T , so thatwt(·, T ) = y = 0 in

K2T ∩ {t = T } = �T . Therefore (see (i)), one has the inclusion KerOT ⊂ H 	 HT .
The theorem is proved. �

The idea of the proof is taken from Russell’s paper (1971) which used the classical
work of John (1948).

The reader should note a central role of the uniqueness theorem used in the proof. The
theorem has been known for the wave equation with (real) analytical coefficients (John
1948, Russell 1971) for a long time. Its generalization to a non-analytical case has taken
much time and effort. Recent progress in this direction was stimulated by Robbiano (1991)
and developed by Ḧormander (1992). In 1993 it was crowned by a remarkable result of
Tataru (1993, 1995) which settled the question forC1(�)-coefficients.

The first papers devoted to the BC method referred to the formulation of the Holmgren–
John theorem declared in Russell (1978, p 685). Unfortunately, private communications
found out an absence of the proof. That is why, beginning from Belishev (1990a) we were
forced to postulate property (4.3). Thus, during a period 1986–1993 the BC method covered
some unclear class of ‘controllable’ dynamical systems, and it was Tataru’s result which
permitted us to justify our approach.
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5. Visualization of waves

We demonstrate that boundary measurements determine the visualizing operator. The
efficient constructions (amplitude integral and amplitude formula) are proposed to represent
V T via R2T or {λk, ψk}. They are based upon results of sections 2.3 and 2.4 concerning
the propagation of discontinuities.

5.1. Inverse problems

Let us begin with the statement of the IPs to be solved in sections 5 and 6:
(i) (dynamical IP) given the response operatorR2T to recover the manifold(�T , g);
(ii) (spectral IP) given the spectral data{λk;ψ(·)}∞k=1 to recover the manifold(�, g).
Just for simplicity a metric on a border is assumed to be known. It can be shown that

tensorg|0 is determined by either kind of inverse data.
Speaking about the ‘recovering’ we mean the determination of a manifold up to isometry.

5.2. Operator sums

We begin to describe an operator construction which solves the IPs.
Let {FT ,ξ }, 06 ξ 6 T be a family of subspaces inFT andXT,ξ be a projector inFT

ontoFT ,ξ ,

(XT,ξf )(·, t) = θ(t − (T − ξ))f (·, t) 06 t 6 T .
Recall that{Hξ }, 06 ξ 6 T , is a family of subspaces inH; Gξ projects inH ontoHξ .
Choose a partition4 = {ξj }Nj=0: 0= ξ0 < ξ1 < · · · < ξN = T of the interval 06 t 6 T ;

let r(4) = maxj 1ξj be its range;1ξj := ξj − ξj−1. Projectors1jXT,ξ := XT,ξj − XT,ξj−1

act by the rule

(1jX
T,ξf )(·, t) =

{
f (·, t) ξj−1 6 t < ξj

0 for other t ∈ [0, T ]

and satisfy

N∑
j=1

1j X
T,ξ = 1lFT 1jX

T,ξ1k X
T,ξ = OFT j 6= k. (5.1)

Projectors1j Gξ := Gξj −Gξj−1 act as follows:

(1j G
ξy)(x) =

{
y(x) x ∈ �ξj \�ξj−1

0 for other x ∈ �
the relations

N∑
j=1

1j G
ξ = GT 1jG

ξ1kG
ξ = OH j 6= k (5.2)

are valid. An operator sum of the form

AT4 :=
N∑
j=1

1jG
ξWT1jX

T,ξ (5.3)

corresponds to the partition4.
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Lemma 5.1. The sumAT4 : FT → H is a continuous operator, the estimate

‖AT4‖ 6 ‖WT ‖ (5.4)

being valid.

Proof. For anyf ∈ FT the orthogonality (5.2) and (5.3) imply

‖AT4 f ‖2
H =

N∑
j=1

‖1jGξWT1jX
T,ξf ‖2

H 6 ‖WT ‖2
N∑
j=1

‖1jXT,ξf ‖2
FT = ‖WT ‖2 ‖f ‖2

FT

that gives (5.4). The lemma is proved. �

5.3. Amplitude integral

A convergence of sums (5.3) is established here. Some heuristic considerations are prefaced
to a rigorous result to make clear what limit ofAT4 should be expected.

Assume for simplicityT < Tω, so that a cut locus plays no role. Fixf ∈ MT , and
consider a separate term of (5.3):

1jG
ξWT1jX

T,ξf = 1jGξWTXT,ξj f −1jGξWTXT,ξj−1f = 1jGξWTXT,ξj f. (5.5)

Indeed, the set suppWT XT,ξj−1 lies in�
ξj−1; therefore, it does not get into a layer�ξj \�ξj−1

that implies1jGξWT XT,ξj−1f = 0.
ControlXT,ξj f coincides withfξj (see section 2.3) and, therefore, waveWT fξj has a

discontinuity on its forward front0ξj . Projector1jGξ selects a part of this wave lying near
the discontinuity, and ifr(4) is small enough this part may be described by geometrical
optics: relation (2.14) gives the approximate equality

1jC
ξWT fξj ≈

{
β−1/2(γ (x), ξj )f (γ (x), T − ξj ) x ∈ �ξj \�ξj−1

0 for other x ∈ �.

Taking into account the fact that

ξj ≈ τ(x) for x ∈ �ξj \�ξj−1

and summing the terms (5.5) one obtains

(AT4f )(x) ≈

{
β−1/2(γ (x), τ (x))f (γ (x), T − τ(x)) x ∈ �T
0 for other x ∈ �.

Recalling the corollary of lemma 1.1 (withXT2 = 1lFT for T < Tω) one can rewrite

AT4f ≈ (I
T )∗YT f

whereYT : FT → FT ,

(Y T f )(·, t) := f (·, T − t) 0< t < T .

So, the convergenceAT4→ (I T )∗YT should be expected.

Theorem 5.1. For anyT : 0< T 6 T∗ a refinement of a partition leads to the convergence

lim
r(4)→0

AT4 = (I T )∗YT (5.6)

in a weak operator topology.
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Proof. Fix f ∈MT , ε > 0 and choosey ∈ C∞0 (�T ) such that suppy ⊂ �T \ ωε; find
δ = δ(ε) (see lemma 2.2); choose a partition satisfyingr(4) < δ.

Applying (2.13) fort = T , ξ = ξj (j = 1, . . . , N) one obtains the representation

u
fξj (x, T ) = β−1/2(γ (x), τ (x))f (γ (x), T − τ(x))θ(ξj − τ(x))+ wf (x, T ; ξj )(ξj − τ(x))+

being valid forx ∈ �T \ ωε, τ(x) > ξj − δ > ξj − ξj−1, i.e. on the set [�ξj \ �ξj−1] \ ωε
(‘thin layer’). All of this may be rewritten as follows:

1jG
ξ [ufξj (·, T )− (I T )∗YT f ] =

{
wf (·, T ; ξj )(ξj − τ(·)) in [�ξj \�ξj−1] \ ωε
0 for other points of�T .

(5.7)

Representing in the layer

u
fξj (·, T ) = WTXT,ξj f = WT1jX

T,ξf

and summing terms (5.7) one can obtain

[AT4 − (I T )∗YT ]f =
N∑
l=1

1jG
ξwf (·, T ; ξj )(ξj − τ(·)) in �T \ ωε

that implies

|([AT4 − (I T )∗YT ]f, y)H| =
∣∣∣∣ N∑
j=1

∫
�
ξj \�ξj−1

d�wf (x, T ; ξj )(ξj − τ(x))y(x)
∣∣∣∣

= (see (1.4), (1.7))

=
∣∣∣∣ N∑
j=1

∫ ξj

ξj−1

dτ (ξj − τ)
∫
σ τ+

d0 β(γ, τ )wf (x(γ, τ ), T ; ξj )y(x(γ, τ ))
∣∣∣∣

6 (see (2.13))

6 max
�T \ωε

β(γ (·), τ (·))c(T , f, ε)max
�T
|y|

N∑
j=1

(ξj − ξj−1)
2

2
6 c(T , f, ε, y)r(4).

As a result, we have

([AT4 − (I T )∗YT ]f, y)HT −→
r(4)→0

0.

Taking into account a density ofC∞0 (�
T \ω) in HT and a boundedness of sums (see (5.4))

one obtains (5.6). The theorem is proved. �

The heuristic considerations presented before the theorem motivate to call the limit

AT := lim
r(4)→0

AT4 =:
∫ T

0
dGξWT dXT,ξ

an amplitude integral(AI). Indeed, it was constructed by summing amplitudes of wave
discontinuities (2.14). The AI was first introduced in Belishev (1990b) and developed
in Belishev and Kachalov (1994). Moreover, in the latter paper astrong convergence
AT4→ AT is established forT < Tω.

The next relation is a simple corollary of (5.6): the adjoint operator(AT )∗ : HT → FT
may be represented in the form

(AT )∗ =
∫ T

0
dXT,ξ (WT )∗ dGξ = YT IT (5.8)

with the same kind of convergence (weak).
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5.4. Images via AI

The following result represents an image operator in the form of an amplitude integral.

Lemma 5.2. The representation

I T = YT
∫ T

0
dXT,ξ (WT )∗ dP ξ (5.9)

holds.

Proof.

I T = (see (5.8))= YT (AT )∗ = YT
∫ T

0
dXT,ξ (WT )∗ dGξ = (see (4.8))

= YT
∫ T

0
dXT,ξ (WT )∗ dP ξ .

The lemma is proved. �

A remarkable peculiarity of this result is that it relates geometry and dynamics: being
an object of geometric nature, the image operator is represented via intrinsic operatorsWT ,
P ξ of the DSαT (and standard operatorsYT , XT,ξ ). The reader should note the role of
controllability.

Introduce the operators5T,ξ : FT → FT ,

5T,ξ := (WT )∗P ξWT = OT P ξWT 06 ξ 6 T .
As a simple corollary of (5.9) we obtain the following principal result.

Theorem 5.2. The visualizing operator may be represented in the form of AI:

V T = YT
∫ T

0
dXT,ξ d5T,ξ . (5.10)

Proof.

V T = I TWT = (see (5.9))= YT
∫ T

0
dXT,ξ (WT )∗ dP ξWT

= YT
∫ T

0
dXT,ξ d[(WT )∗P ξWT ] = YT

∫ T

0
dXT,ξ d5T,ξ .

The theorem is proved. �

In conclusion, observe that representation (5.10), as well as the amplitude integral, itself
is related to the problem of triangular factorization of operators (Belishev 1990b, Belishev
and Pushnitski 1996). That is not surprising in view of the well known and deep connections
between IPs and factorization (Belishev 1996b, Faddeev 1974, Gokhberg and Krein 1970,
Nizhnik 1991).

5.5. Amplitude formula

Another way to express images via amplitudes of discontinuities is given by formula (2.16).
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Theorem 5.3. For anyf ∈MT the representation

(V T f )(γ, ξ) = ( ˜uf (·, T ))(γ, ξ) = lim
t→T−ξ−0

((WT )∗P ξ⊥W
T f )(γ, t) (5.11)

(P
ξ

⊥ := 1lHT − P ξ ) is valid for almost all(γ, ξ) ∈ 6T .

Proof. The expression under the limit sign in (2.16) may be transformed as follows,

∂νv
yξ = OT yξ = OTG

ξ

⊥y = (see (3.7), (4.8))= (WT )∗P ξ⊥y.

Taking y = WT f one obtains (5.11). The theorem is proved. �

To emphasize the dynamical nature of relation (5.11) (see considerations around (2.16))
we call it an amplitude formula (AF). The AF was introduced in Belishev (1990b).

5.6. Models

Investigating a dynamical system through boundary measurements, an external observer
looks for its intrinsic structure and properties. As a first step, some kind of a copy (model)
of a DS may be constructed. Note that from the point of view of system theory we are
speaking aboutrealizationsof a DS corresponding to the boundary measurements (Kalman
et al 1969).

The DSαT is determined by spacesFT andH, and the control operatorWT ; thus, one
can identifyαT with the triple{FT ,H,WT }.

Let H# be a Hilbert space,WT
# : FT → H# be an operator; the tripleαT# =

{FT ,H#,W
T
# } is said to bea modelof αT if there exists an isometric operatorU : H#→ H

satisfying

U ∗U = 1lH# WT = UWT
# . (5.12)

H# andWT
# are called the (model) inner space and control operator, respectively;U is a

transform operator. The sets

U ξ# := WT
# FT ,ξ = U ∗U ξ 06 ξ 6 T

are called reachable; the (model) wave projectorsP
ξ
# are introduced as those in closH# UT#

onto closH# U
ξ
# , so that

P ξU = UP ξ# P
ξ

⊥U = UP ξ#⊥ 06 ξ 6 T (5.13)

whereP ξ#⊥ = 1lH# − P ξ# . Relations between the DSαT and its model are illustrated in
figure 3.

The following fact justifies the introduction of models.

Proposition 5.1. Any model determines the visualizing operator.

Indeed,V T is determined by operators5T,ξ which may be expressed in model terms:

5T,ξ = (WT )∗P ξWT = (see (5.12))= (UWT
# )
∗P ξUWT

# = (see (5.13))= (WT
# )
∗P ξ#W

T
#

so that (5.10) takes the form

V T = YT
∫ T

0
dXT,ξ d[(WT

# )
∗ P ξ#W

T
# ]. (5.14)
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Figure 3. Model.

Relation (5.11) also may be rewritten in invariant form:

( ˜uf (·, T ))(γ, ξ) = lim
t→T−ξ−0

((WT
# )
∗P ξ#⊥W

T
# f )(γ, t) a.e. on6T . (5.15)

In the remainder of section 5 we construct the concrete models corresponding to both
kinds of inverse data, dynamical and spectral. The goal is to recover the visualizing operator
along the scheme

inverse data⇒ model ⇒ V T . (5.16)

Models were first used in the BC method in Belishev (1995) and Belishev and Ivanov
(1995); later they were applied to the dynamical IP for the heat equation (Belishev 1996a).

5.7. Dynamical model

Let

WT = UT |WT |
be a polar decomposition of a control operator and

|WT | := [(WT )∗WT ]1/2

be its operator module;UT is a canonical isometry from closFT Ran|WT | onto closH RanWT

(see, e.g., Kato 1966). An obvious fact is that the triple

αTdin := {FT , closFT Ran|WT |, |WT |}
forms a model of the DSαT , with the isometryUT playing the role of a transform operator.

Model αTdin may be constructed via a response operator. Indeed,R2T determinesCT

(see (3.12)), whereas

|WT | = (CT )1/2.
Thus, denoting closFT Ran(CT )1/2 =: FT1/2, one can represent

αTdin = {FT ,FT1/2, (CT )1/2}.
The setsU ξ1/2 := (CT )1/2FT ,ξ are reachable ones in the model. DenoteFT ,ξ1/2 := closFT

U ξ1/2; let P ξ1/2 be the projector inFT1/2 ontoFT ,ξ1/2 ; representation (5.14) takes the form

V T = YT
∫ T

0
dXT,ξ d[(CT )1/2P ξ1/2(C

T )1/2] (5.17)

determiningV T via CT , and, consequently, viaR2T .
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5.8. Spectral model

The Fourier expansion of waves (see section 2.5) gives a method to construct a model via
spectral data.

Let c = {ck}∞k=1 be a (real) sequence belonging to the space`2; introduce the unitary
operatorU ; `2→ H,

Uc =
∞∑
k=1

ckϕk.

The representation (2.17) induces the operatorWT
sp : FT → `2

WT
spf := {cfk (T )}∞k=1 c

f

k (T ) = (f, sTk )FT
the relation

WT = UWT
sp

being valid.
From the aforesaid it may be concluded that the triple

αTsp := {FT , `2,W
T
sp}

turns out to be a model of the DSαT . Evidently,αTsp is determined by data{λk;ψk(·)}∞k=1.

Let P ξsp be projectors iǹ 2 onto the subspaces clos`2 W
T
spFT ,ξ ; in accordance with (5.14)

we obtain the representation

V T = YT
∫ T

0
dXT,ξ d[(WT

sp)
∗P ξspW

T
sp] (5.18)

which expresses the visualizing operator in terms of a spectral model. Note, in addition,
that the adjoint operator entering in (5.18) acts by the rule

(WT
sp)
∗c =

∞∑
k=1

cks
T
k

with the series converging inFT (see (2.19)).
An important peculiarity of data{λk;ψk} is that they determineV T for any T > 0,

whereasR2T determinesV T for givenT . This reflects a global character of spectral data.

6. The solving of inverse problems

We describe a way to recover part of a manifold filled by waves through the visualizing
operator. Supplementing the diagram (5.16), the stepV T ⇒ (�T , g) completes the
reconstruction.

6.1. Clloc-controllability

We are going to extract information about an intrinsic geometry from wave images. Some
additional properties of waves are required for this purpose. Here we present a result
which strengthens property (4.3): a set of smooth waves turns out to be dense in classes of
differentiable functions.
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Introduce the classes of controlsCN0 ⊂ FT ,

CN0 := closCN(6T )MT =
{
f ∈ CN(6T )

∣∣∣∣( ∂∂t
)j
f

∣∣∣∣
t=0

= 0, j = 0, 1, . . . , N

}
N = 0, 1, . . .

and denote

UTN := WTCN0 ⊂ UT .

Lemma 6.1. For integerN and l satisfyingN > l + 1+ [n/2] the relation

closCl UTN |D = Cl(D) T > 0 (6.1)

is valid on any compactD ⊂ Int�T .

The proof can be found in Belishev and Dolgoborodov (1997). This is the result which
gives the title of this section. As a corollary, we obtain the following. Let{fj }∞j=1 ⊂MT

be aCN0 -complete system of controls, i.e.

closCN Lin{fj }∞j=1 = CN0 (6.2)

(Lin is the linear span) anduj = WT fj be the corresponding waves; in the conditions of
lemma 6.1, relation (6.1) is equivalent to the following:

closCl Lin{uj |D}∞j=1 = Cl(D). (6.3)

Everywhere in the following we putN = 3+ [n/2] so thatthe waves{uj }∞j=1 form a

C2
loc-complete system in�T .

6.2. Wave coordinates

Property (6.3) opens the possibility of using smooth waves as coordinates on�T .

Lemma 6.2. (i) System{uj } separates points in�, i.e. for anyx ′, x ′′ ∈ �T , the following
conditions are equivalent:

(a) x ′ = x ′′;
(b) equalityuj (x ′) = uj (x ′′) is valid for all j .
(ii) For any x0 ∈ Int�T one can chooseuj1, . . . , ujn such that the gradients

∇uj1(x0), . . . ,∇ujn(x0) form a basis in tangent spaceTx0�
T .

Proof (sketch). For (ii) fix point x0 ∈ Int�T and choose its compact vicinityD ⊂ Int�T

covered by local coordinatesη1, . . . , ηn so that

dim Lin{∇ηk(x0)}nk=1 = n.
TheC1

loc-completeness permits us to approximate∥∥∥∥ηk − p∑
j=1

αkj uj

∥∥∥∥
C1(D)

< ε k = 1, . . . , n

that implies ∣∣∣∣∇ηk(x0)−
p∑
j=1

αkj ∇uj (x0)

∣∣∣∣ < ε.
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Taking ε small enough, the latter obviously leads to the equality

dim Lin{∇ηk(x0)}nk=1 = dim Lin{∇uj (x0)}pj=1 = n
and, therefore, one can select subsystem{ujk }nk=1 which generatesTx0�

T .
Statement (i) may be justified along the same way using theCloc-completeness of the

system{uj }. The lemma is proved. �

Property (ii) permits the use of{uj } as local (wave) coordinates.

Proposition 6.1. For anyx0 ∈ Int�T one can choose a subset of wavesuj1, . . . , ujn which
forms a coordinate system in a vicinity ofx0.

Another useful property of smooth waves is the following.

Proposition 6.2. (i) The representation

�
T =

⋃
j

suppuj T > 0 (6.4)

is valid.
(ii) The set of pairs{uj ,1guj }∞j=1 determines the tensorg in �T .

Indeed, (6.4) is an evident corollary of (i), lemma 6.2. Furthermore, fixingx0 ∈ Int�T

and denotinghj := 1guj one has the equalities in local coordinates

gkl(x0)
∂2uj (x0)

∂ηk∂ηl
+ gk(x0)

∂uj (x0)

∂ηk
= hj (x0) (6.5)

(see (1.5)) which may be considered as an algebraic system to find unknowngkl(x0),
gk(x0). Extending, if necessary, a number of equationsj = 1, 2, . . . , p one can achieve its
solvability, which simply follows from aC2

loc-completeness of the system{uj }.
The coordinate properties of waves lead to the analogous properties of their images.

Proposition 6.3. (i) The representation

2
T =

⋃
j

suppũj T > 0 (6.6)

is valid.
(ii) The pairs{ũj , 1̃ũj }∞j=1 determine the tensorg on2T .

Indeed, relation (6.6) follows directly from (6.4) by virtue ofβ|2T > 0. Tensorg may
be found from equations̃1ũj = h̃j which are written in sgc as follows:

g
µν ∂

2ũj (γ0, τ0)

∂γ µ∂γ ν
+ g

ν(γ0, τ0)
∂ũj (γ0, τ0)

∂γ ν
+ g

0(γ0, τ0)ũj (γ0, τ0)+ ∂
2ũj (γ0, τ0)

∂τ 2
= h̃j (γ0, τ0)

(6.7)

for (γ0, τ0) ∈ 2T , j = 1, 2, . . . (see (1.10)). As one can show, wave images{ũj }∞j=1 form a
C2

loc-complete system on2T that provides a solvability of (6.7) with respect togµν , gν , g0.
Note, in addition, that images{h̃j } are also determined by the visualizing operator,

h̃j = 1̃ũj = (see (3.21))= V T ∂
2

∂t2
fj . (6.8)
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6.3. Reconstruction of(2T , g)

The following result is an important step along the way from inverse data towards a manifold.

Theorem 6.1. The visualizing operatorV T determines the manifold(2T , g).

Proof. This is presented in the form of the recovering procedure.
Step 1. Choose controls{fj }∞j=1 ⊂MT satisfying (6.2) (withN = 3+ [n/2]) and find

imagesũj = V T fj on6T . Recover pattern2T by means of representation (6.6).
Step 2. To recover the tensorg visualize images̃hj = V T ∂2fj/∂t

2 (see (6.8)) and find
componentsgµν from equations (6.7).

The manifold is recovered; the theorem is proved. �

Manifold (2T , g) is an isometric copy of(�T \ ωT , g) (see (v), section 1.4), and,
therefore, the latter is recovered up to isometry.

To complete a reconstruction it remains for us to turn(2T , g) into a copy of(�T , g).
To do this we need, roughly speaking, to glue2T along the coastθT and extend a metric
tensor onto the glued points. An accurate realization of this plan requires us to invoke one
more object described below. A reconstruction itself is postponed until section 6.5.

6.4. Wave copy

Whereas pattern2T may be characterized as ‘�T in semigeodesical coordinates’, the
manifold introduced could be called ‘�T in wave coordinates’.

Let R∞ be a space of real sequences{rj } with the metric

d(r ′, r ′′) =
∞∑
j=1

2−j
|r ′j − r ′′j |

1+ |r ′j − r ′′j |

{uj } being the system of smooth waves used previously. Consider the mapu : �T → R∞,

u(x) := {uj (x)}∞j=1

and denote�Tu := u(�T ). The injectivity and continuity of this map follow from lemma 6.2;
moreover, it is not difficult to show thatu maps�T onto�Tu homeomorphically.

Map u transfers a Riemannian structure from�T on�Tu as follows.
(i) The subset�Tu \ ωTu (ωTu := u(ωT )) may be covered by ‘sgc’γ ◦ u−1, τ ◦ u−1 and

equipped with the metric tensorgu := g(γ ◦ u−1, τ ◦ u−1). This turns it into an isometric
copy of (�T \ ωT , g). To extendgu onto the whole of�Tu let us apply a trick which is
useful in a future reconstruction.

(ii) Fix m ∈ ωTu ; letM be its (small)R∞-vicinity. As proposition 6.1 guarantees, one can
chooseuj1 ◦u−1, . . . , uju ◦u−1 to be local (wave) coordinates onM ∩�Tu . Find components
of gu in these coordinatesout of the cut locusωTu and then extend the components onm
by continuity. Thus, tensorgu is determined everywhere on�Tu .

As it was constructed, manifold(�Tu , gu) appears to be isometric to(�T , g). We say
it is a wave copyof the original manifold. Relations between a manifold, its pattern, and
wave copy are shown on figure 4.

The following result clarifies the role of a wave copy in reconstruction.

Lemma 6.3. Pattern(2T , g) and system{ũj } determine manifold(�Tu , gu).
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Figure 4. Wave copy.

Proof. The tensorg determines the functionβ|2T (see section 1.3); thus, functions

wj := β−1/2ũj = (see definition of images)= uj ◦ i−1

may be considered as given on2T . One can extendwj on the coastθT by continuity (see
(iv), (v), section 1.4).

As is seen from equalities

wj(γ, τ ) = β−1/2(γ, τ )ũj (γ, τ ) = uj (x(γ, τ )) (γ, τ ) ∈ 2T

the mapw : 2T ∪ θT → R∞,

w : (γ, τ )→ {wj(γ, τ )}∞j=1

coincides with compositionu ◦ i−1 which implies

w(2T ∪ θT ) = �Tu .
To determine the tensorgu on �Tu one can repeat the steps (i) and (ii) described above,
usingw instead ofu:

(i) introduce the sgcγ ◦w−1, τ ◦w−1 on�Tu \ωTu and tensorgu = g(γ ◦w−1, τ ◦w−1);
(ii) using local wave coordinateswj1 ◦ w−1, . . . , wjn ◦ w−1 on ωTu = w(θT ), extendgu

on the cut locus.
Thus,(�Tu , gu) is constructed; the lemma is proved. �

Note that mapw glues points of coastθT : w(γ ′, τ ) = w(γ ′′, τ ) iff i−1((γ ′, τ )) =
i−1((γ ′′, τ )) ∈ ωT (compare with (iv), section 1.4).

6.5. The recovering of(�T , g)

To complete a reconstruction we need just to join up the results obtained above.

Theorem 6.2. (i) The response operatorR2T determines the manifold(�T , g).
(ii) The spectral data{λk;ψk(·)}∞k=1 determine the manifold(�, g).

Proof. Either kind of data determines a model (see sections 5.7 and 5.8); models determine
the visualizing operatorV T . Knowing V T one can recover pattern(2T , g) (theorem 6.1),
after which the wave copy(�Tu , gu) may be found (lemma 6.3). The latter is isometric to
(�T , g).

The spectral data permit us to findV T for any T > 0 (see the end of section 5.8).
Therefore, they determine(�T , g), T > 0 and, thus, the manifold(�, g) in a whole. The
theorem is proved. �
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So, a reconstruction is implemented in accordance with the scheme: inverse data⇒
model⇒ operatorV T ⇒ pattern(2T , g)⇒ wave copy(�Tu , gu)↔ (�T , g).

6.6. Remarks

Besides the recovering of a wave copy, there exist other ways to extract geometry from
wave images.

(i) In the case of spectral reconstruction, one can visualize the images{ϕ̃k} of
eigenfunctions and, thereafter, use them as coordinates (instead of{ũj }) to construct a
copy of (�T , g) (see Belishev and Kurylev 1992).

(ii) Let lγ,α be a geodesic starting into� from γ ∈ 0 in the directionα ∈ Sn−1
+ .

There exists a controlf which generates the waveuf (the so-called quasiphoton, a kind of
Gaussian beam) with the following remarkable property: the waveuf is localized nearlγ,α.
Its imageũf traces on6T a curve ˜̀γ,α := i(`γ,α \ ω) and, therefore, an external observer
possessing the operatorV T is able to visualize this curve. Varyingγ andα the observer
can recover a family{ ˜̀γ,α} which is rich enough to recover the pattern(2T , g), to glue it
along a coast and, eventually, to reconstruct(�T , g) (see Belishev and Kachalov 1992).

Later, this technique was applied to the problem with incomplete data (Kachalov and
Kurylev 1993). This paper generalizes one of the results of Novikov (1988) on the more
complicated case of manifolds.

(iii) The following scheme of reconstruction, in a sense, is dual to the previous one. Fix
γ0 ∈ 0; let f = δγ0(γ )θ(t) be a pointwise control,uγ0 be the corresponding wave. In this
case the hemisphereSξ [γ0] = {x ∈ �| dist(x, γ0) = ξ} necessarily belongs to suppuγ0(·, ξ)
(see Bardos and Belishev 1995, Belishev 1994). Therefore, determining the imageũγ0(·, ξ)
one can visualize on6T the surfaceS̃ξ [γ0] := i(Sξ [γ0] \ω) as a boundary of supp̃uγ0(·, ξ).
The family {S̃ξ [γ0]}; {γ0 ∈ 0, ξ ∈ [0, T ] turns out to be a sufficiently informative object to
determine(2T , g) and, further, to get(�T , g). Moreover, this scheme permits us to find
g|0 from inverse data; thus, a reconstruction may be fulfilled without setting a metric on0.

Spectral reconstruction was first realized in Belishev and Kurylev (1992). Note, that the
scheme used in this paper is overloaded with unnecessary details. Dynamical reconstruction
was given in Belishev and Kachalov (1992). Both papers are based upon the work of
Belishev (1990b).

(iv) The smoothness of a manifold is required to work with classical solutions of (2.1)–
(2.3), to justify the geometrical optics (2.13) and (2.15), and to use the Holmgren–John–
Tataru theorem. All of these demands may be satisfied by theCN -smoothness with large
enough finiteN (see Belishev and Kachalov 1994).

(v) Note in addition that the BC method gives some results for the Kac’s problem of
recovering the shape of a drum. A simple generalization of the scheme (Belishev 1988)
leads to the following: for a wide class of manifolds, a Riemannian compact with a border
is determined by its Beltrami–Laplace operator given inany representation. In other words,
compact(�, g) is a unitary invariant of1g.

6.7. On recovering metrics

Let � ⊂ Rn be a bounded domain equipped with metric ds2 = gkl(x) dxk dxl which turns
the domain into a Riemannian manifold; letR2T and{λk;ψk} be the inverse data of(�, g).
Can one recovergkl(·) in � via inverse data?

As it is stated, the question has a negative answer. The well known fact (see, e.g.,
Sylvester and Uhlmann 1991) is that any diffeomorphism8 : � → �, 8|0 = Id gives
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another metricg′ = 8∗[g] having the same inverse data, so that it is impossible to distinguish
g′ from g via boundary measurements.

One way to remove this kind of non-uniqueness was proposed by Lee (see Sylvester
and Uhlmann 1991). Suppose that a family of metrics produced by the group{8} contains
a unique metric gextr which minimizes the energy (Dirichlet) functional. This selected
metric is determined by inverse data uniquely. To obtaingextr in the framework of the BC
method one can recover a wave copy(�u, gu), and then equip it withharmoniccoordinates
π1, . . . , πn : 1guπ

k = 0. The mapπ : �u → Rn, π(x) = {πk(x)}nk=1 will determinegextr

in �.
Another way is to use the pecularities of a metric. As an example, consider the case

of a strictly convex surfaceS in R3 with a border lying on a plane (hatlet). The Euclidean
R3-metric induces onS an intrinsic metricg of positive curvature. The classical result of
A V Pogorelov is thatg determinesS up to isometry inR3. Therefore, having a wave copy
of (S, g), one can embed it intoR3 uniquely and recover a hatlet. The same trick works
for any rigid surface withfixed border. This situation has multidimensional analogues.

The reasons concerning the group{8} may be applied to the case of manifolds to
recover not only Laplacian but a wider class of self-adjoint operators of Schrodinger type.
This extension of the BC method has been developed by Kurylev (1992, 1994a, b).

6.8. Dynamical reconstruction of vector fields

Here we would like to announce one more result of the BC method which is planned for a
future publication.

Let b = bk∂/∂xk be a smooth vector field on�; consider the problem

utt −1gu− bu = 0 in IntQT (6.9)

u|t=0 = ut |t=0 = 0 (6.10)

u|6T = f. (6.11)

Let uf be its solution. As a dynamical system, problem (6.9)–(6.11) is described by the
same spaces and operators as the systemαT . The peculiarity of this case is that the operator
1g + b governing an evolution is not self-adjoint.

Assume, in addition, that the manifold(�, g) possesses the ‘non-trapping property’:
any geodesic starting from any point of� in an arbitrary direction reaches the border0 in
a time which does not exceedT0. This property guarantees the equality

UT = H T > T0/2

i.e. the system (6.9)–(6.11) turns out to beexactly controllablefor large enough time (Bardos
et al 1992, Bardos and Belishev 1995). The last fact permits us to obtain the following
result.

Theorem 6.3. The response operatorR2T , T > T0, determines(�, g) andb.

Moreover, an efficient procedure using the amplitude integral permits us to reconstruct
a manifold together with a vector field on it. The proof is based upon the results of Avdonin
and Belishev (1996) and the present paper.

A bounded domain inRn (with the Euclidean metric) is an important example of the
non-trapping manifold. Thus, the BC method is able to recover arbitrary vector fields in
� ⊂ Rn.

Let us note in conclusion that there exist some reasons to hope for an optimal result:
the hypothesis is thatR2T determines(�T , g) andb|�T for any T > 0.
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7. The recovering of density

Originally the BC method was proposed to recover the density of an inhomogeneous
membrane. From the geometrical point of view, this case corresponds to a conformally-
flat metric, and it looks naturally that the recovering procedure is based upon the relations
between Cartesian and semigeodesical coordinates.

7.1. Direct and inverse problems

Let � ⊂ Rn be an open bounded domain with boundary0 ∈ C∞; ρ be a function (density)
satisfyingρ > 0; ρ, ρ−1 ∈ C∞(�). A density induces the metric

ds2 = ρ|dx|2 (7.1)

turning� into a Riemannian manifold, so that all of the objects introduced in section 1 are
defined. We denote them as before:τ , �ξ , 2T etc, relating them to the metric (7.1) (not
the Euclidean one!).

Consider the problem

ρutt −1u = 0 in �× (0, T ) (7.2)

u|t=0 = ut |t=0 = 0 (7.3)

u|6T = f (7.4)

with 1 = ∑n
k=1 ∂

2/∂(xk)2. The corresponding dynamical systemαT is described by the
same spaces and operators as system (2.1)–(2.3), but since the density enters into the wave
equation in a special manner, some of the definitions have to be slightly corrected:

(i) the outer space of the DSαT is FT = L2(6
T ; d0dt), d0 being a Lebesgue surface

measure on0;
(ii) the inner space isH = L2(�; ρ dx),

(u, v)H =
∫
�

dx ρ(x)u(x)v(x)

the subspacesHξ = {y ∈ H| suppy ⊂ �ξ }, 0 6 ξ 6 T corresponding to subdomain�ξ

filled by waves;
(iii) operators of control and observation are defined as before:WT f = uf (·, T );

OT y = ∂νvy |6T (with Euclidean outward normalν); the relation(WT )∗ = OT holds;
(iv) the response operator isRT : FT → FT , DomRT = {f ∈ H 1(6T )|f |t=0 = 0},

RT f = ∂νuf |6T . By virtue of the hyperbolicity of problem (7.2)–(7.4), the operatorR2T is
determined by valuesρ|�T being independent on the behaviour of the density in� \�T ;

(v) a spectral representation (see section 2.5) is related to the operatorL : H → H,
DomL = H 2(�)∩H 1

0 (�), Ly := −ρ−11y which is self-adjoint inH. To find the Fourier
coefficients of a wave one can use (2.17) with Lebesgue’s d0.

The dynamical IPis to recover the densityρ in �T via a given operatorR2T ; the
spectral IPis to recoverρ in � via given spectral data{λk;ψk}∞k=1.

7.2. Amplitude formula

Here we transform the geometrical optics relation (2.15) into the form to be convenient for
the use in the IPs.



R36 Topical Review

As can be shown, in the special case of the wave equation (7.2) the relation (2.15) takes
the form

lim
t→T−ξ−0

∂νv
yξ (γ, t) =

{
µ(γ, ξ)β1/2(γ, ξ)y(x(γ, ξ)) (γ, ξ) ∈ σ ξ+ × {t = T − ξ}
0 (γ, ξ) ∈ σ ξ− × {t = T − ξ}

(7.5)

with an additional factor

µ(γ, ξ) :=
(
ρ(x(γ, ξ))

ρ(x(γ, 0))

)(2−n)/4
(n = dim�). Considering the limit as a function of(γ, ξ), recalling the definition of images
(section 1.5) and taking into account (1.8), one can rewrite (7.5) as follows,

lim
t→T−ξ−0

∂νv
yξ (γ, t) = µ(γ, ξ)ỹ(x(γ, ξ)) a.e. on6T . (7.6)

We have

∂νv
yξ |6T = (see section 3.2)= OT yξ = (see section 4.3)= OT (1lH −Gξ)y

= (see (4.4))= OT (GT −Gξ)y = (see (4.8))= OT (P T − P ξ )y
which leads to the relation

lim
t→T−ξ−0

(OT (P T − P ξ )y) = µ(γ, ξ)ỹ(x(γ, ξ)) a.e. on6T (7.7)

which is said to bethe amplitude formula(AF). It represents an imagẽy as a collection of
amplitudes of wave discontinuities propagating in the dual systemαT∗ .

A further transformation of the AF is connected with the wave projectors entering in
(7.7). They will be represented through bases consisting of waves.

The amplitude formula was first introduced in Belishev (1990b).

7.3. Wave bases

A useful corollary of the controllability of the DSαT is that there exist bases inHξ consisting
of waves.

Fix ξ ∈ (0, T ], T < T∗; let {f ξj }∞j=1 ⊂ FT ,ξ (see (3.3)) be a complete system of controls,
i.e.

closFT Lin{f ξj }∞j=1 = FT ,ξ

(Lin is the linear span); the relation (4.7) obviously implies

closH Lin{WT f
ξ

j }∞j=1 = Hξ .
The property (3.10) provides the possibility of orthogonalizing the system{f ξj } by means

of the Schmidt process

g1 = f ξ1 h
ξ

1 = (CT g1, g1)
−1/2
FT g1

...

gk = f ξk −
k−1∑
j=1

(CT fk, h
ξ

j )FT h
ξ

j h
ξ

k = (CT gk, gk)−1/2
FT gk

.... (7.8)
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The obtained system satisfies

closFT {hξj }∞j=1 = FT ,ξ (CT h
ξ

i , h
ξ

j )FT = δij (7.9)

so therefore the system of waves{uξj }∞j=1, uξj := WT h
ξ

j forms an orthonormalized (wave)
basis inHξ :

closH Lin{uξj }∞j=1 = Hξ (u
ξ

i , u
ξ

j )H = (see (3.9), (7.9))= δij . (7.10)

The following has to be emphasized: to carry on theCT -orthogonalization one needs
the connecting operatoronly. Therefore, an outer observer who knowsR2T or {λk, ψk} is
able to construct system{hξj } producing a wave basis with the help of representations (3.12)
and (3.19).

A wave projector may be represented through a wave basis as follows:

P ξ =
∞∑
j=1

(·, uξj )H uξj .

Suppose that system{hξj } is constructed (via inverse data) for everyξ ∈ (0, T ]; then one
can represent functionsOT P ξy entering the AF in the form

OT P ξy =
∞∑
j=1

(y, u
ξ

j )HO
T u

ξ

j =
∞∑
j=1

(y, u
ξ

j )HO
TWT h

ξ

j =
∞∑
j=1

(y, u
ξ

j )H C
T h

ξ

j

0< ξ 6 T . (7.11)

7.4. Images of harmonic functions

In the case of harmonic functions the coefficients (inner products) entering (7.11) can also
be expressed in terms of inverse data.

DenoteκT (t) := T − t .

Lemma 7.1. (i) If a ∈ C1(�
T
) ∩ C2(�T ) satisfies1a = 0 in �T , the equality

(a, uf (·, T ))HT = ((RT )∗(κT a|0)− κT ∂νa|0, f )FT (7.12)

is valid for anyf ∈ FT .
(ii) If a ∈ C1(�) ∩ C2(�) satisfies1a = 0 in �, the equality

(a, uf (·, T ))H = −
∞∑
k=1

λ−1
k (a|0, ψk)L2(0)(f, s

T
k )FT (7.13)

is valid for anyf ∈ FT .

Proof. (i) For f ∈MT one has the relations

(a, uf (·, T ))HT =
∫
�

dx ρ(x)a(x)uf (x, T ) =
∫
�

dx ρ(x)a(x)
∫ T

0
dt (T − t)uftt (x, t)

=
∫ T

0
dt (T − t)

∫
�

dx a(x)1uf (x, t)

=
∫ T

0
dt (T − t)

∫
0

d0 [a(γ )∂νu
f (γ, t)− (∂νa)(γ )uf (γ, t)]

=
∫
6T

d0 dt{[κT (t)a(γ )](RT f )(γ, t)− [κT (t)∂νa(γ )]f (γ, t)}.



R38 Topical Review

One can justify the inclusionκT a|0 ∈ Dom(RT )∗, which permits one to transform the last
integral into the right-hand side of (7.12). Then the equality is extended fromMT on FT
by continuity.

(ii) Let a = ∑∞
k=1 akϕk be the Fourier expansion with respect to the eigenbasis of

operatorL. Integrating by parts one can easily find the coefficients

ak = −λ−1
k

∫
0

d0 a(γ )∂νϕk(γ ). (7.14)

Calculating the inner product through the Fourier coefficients (see (2.17) and (7.14)) one
obtains (7.13). The lemma is proved. �

Blagovestchenskii was the first to discover the possibility of expressing products
(a, uf )H and (uf , ug)H via dynamical inverse data (see Belishev 1987a, Belishev and
Blagovestchenskii 1992).

Let a ∈ C1(�) be harmonic in�; the result of lemma 7.1 together with the amplitude
formula give the possibility of recovering the functionµã on6T through the inverse data.
To do so the following procedure may be used.

Step 1. Find the operatorCT by means of (3.12) or (3.19).
Step 2. For everyξ ∈ (0, T ] construct a system{hξj } ⊂ FT ,ξ satisfying (7.9).
Step 3. Determine the function

OT (P T − P ξ )a = (see (7.11))=
∞∑
j=1

[(a, uTj )H C
T hTj − (a, uξj )H CT hξj ]

calculating the inner products by means of (7.12) or (7.13).
Step 4. Find µã|6T with the help of AF (7.7).
Let 1 (·) = 1 be a unit function in�;π1, . . . , πn are the Cartesian coordinate functions:

πk(x) = xk, x = {x1, . . . , xn}. All of them are harmonic; therefore, applying the procedure
described above one can recover the functions

µ1̃, µπ̃1, . . . , µπ̃n on6T (7.15)

via R2T or {λk;ψk}.

7.5. The solving of the IPs

To recover the density it remains for us to show that functions (7.15) determineρ in �T .
First, let us note that the functionµ1̃ determines a pattern on6T :

2
T = suppµ1̃. (7.16)

Furthermore, one can find functions

µπ̃1

µ1̃
, . . . ,

µπ̃n

µ1̃
on2T (7.17)

which determine a connection between sgc and Cartesian coordinates. Indeed, recalling the
definition of images (section 1.5) one obtains

µπ̃k

µ1̃
= µ(γ, ξ)β1/2(γ, ξ)πk(x(γ, ξ))

µ(γ, ξ)β1/2(γ, ξ)1
= πk(x(γ, ξ)).

So therefore, for given(γ, ξ), one can find pointx(γ, ξ) as follows:

x(γ, ξ) = {π1(x(γ, ξ)), . . . , πn(x(γ, ξ))} =
{
µπ̃1

µ1̃
(γ, ξ), . . . ,

µπ̃n

µ1̃
(γ, ξ)

}
∈ Rn. (7.18)
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In other words, functions (7.17) determine the mapi−1 : 2T → �T \ ωT transferring
(γ, ξ) in x(γ, ξ) (see section 1.4). Applyingi−1 to a horizontal cross section of a pattern
we can recover an equidistant surface in a domain:

i−1 : {(γ, τ ) ∈ 2T |τ = ξ} → 0ξ \ ωT
(see (ii), section 1.4).

A family of surfaces0ξ \ ωT ⊂ �, 0 < ξ < T determines an eikonal in�T \ ωT by
the rule

τ |0ξ = ξ 0< ξ < T . (7.19)

An eikonal determines the density,

‖∇xτ‖2
Rn = ρ in �T \ ωT (7.20)

i.e. almost everywhere in�T . By virtue of continuity ofρ, it may be taken as recovered
in the whole of�T .

The aforesaid may be summarized in the form of a procedure completing steps 1–4,
section 7.4.

Step 5. Find functionsµ1̃, µπ̃1, . . . , µπ̃n on6T ; recover a pattern via (7.16).
Step 6. Using the correspondence(γ, ξ) → x(γ, ξ) (see (7.18)), recover surfaces

0ξ \ ωT , 0< ξ < T in � and find an eikonal in�T \ ωT (see (7.19)).
Step 7. Recover the density in�T by means of (7.20).
In the case of spectral data the density may be recovered in�T for any T > 0, i.e. in

�.
The inverse problems are solved. Concerning the possibility of using the procedure

for real calculations, the following should be noted. To obtain system{hξj } by means of
process (7.8) is, roughly speaking, the same as finding the operator(CT )−1. To invertCT

is similar to solving the BCP which is ill-posed (see (i), section 4.1). These reasons may
be considered as an explanation given by the BC method for the fact of the ill-posedness
of multidimensional IPs.

7.6. The recovering from part of a boundary

The BC method works in the case of inverse data given on part of a boundary. Here we
describe briefly one variant of the recovering procedure proposed in Belishev (1987b).

(i) Partial data. Let σ be an open subset on0 andFTσ be a subspace of controls acting
from σ ,

FTσ := {f ∈ FT | suppf ⊂ σ × [0, T ]}.
The operatorRTσ : FTσ → FTσ , DomRT = FTσ ∩ DomRT ,

RTσ f := (RT f )|σ×[0,T ]

is said to be a partial response operator.
The set of pairs{λk;ψk|σ }∞k=1 is said to be the partial spectral data.
It is easy to see that either kind of partial data determines the partial connecting operator

CTσ : FTσ → FTσ , CTσ f = CT f |σ×[0,T ] as previously:

CTσ = (see (3.12))= 1

2
(ST )∗R2T

σ J
2T ST = (see (3.19))

=
∞∑
k=1

(·, sTk |σ×[0,T ])FT s
T
k |σ×[0,T ] . (7.21)
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The waves moving fromσ fill the domains

�ξσ := {x ∈ �| dist(x, σ ) < ξ} 0< ξ 6 T
(distance inρ-metric!). The dynamical IP is to recoverρ in �Tσ via a given operatorR2T

σ .
The spectral IP is to recoverρ in � via given{λk;ψk|σ }∞k=1.

(ii) Controllability. Let

FT ,ξσ = {f ∈ FT | suppf ⊂ σ × [T − ξ, T ]} = FTσ ∩ FT ,ξ 06 ξ 6 T
be a subspace of delayed controls; the corresponding reachable sets

U ξσ = WTFT ,ξσ

lie in the subspaces

Hξσ := {y ∈ H| suppy ⊂ �ξσ }
by virtue of hyperbolicity. Using the Holmgren–John–Tataru theorem one can generalize
relation (4.7) as follows: for any 0< ξ 6 T the equality

closH U ξσ = Hξσ
is valid.

As a corollary we obtain the possibility of constructing a wave basis inHξσ . Let
{f ξj }∞j=1 ⊂ FT ,ξσ be a complete system of controls and{hξj }∞j=1 be a system obtained from

the first by means ofCTσ -orthogonalization (see (7.8));uξj = WT h
ξ

j are the corresponding

waves. In accordance with (7.21) the system{uξj }∞j=1 forms an orthonormalized basis in
Hξσ .

As follows from (7.21), the system{hξj } is determined by either kind of partial inverse
data.

(iii) Mark function. Fix m ∈ � and introduce the function

Em(x) :=


∂

∂x1
ln ‖x −m‖R2 − em(x) if n = 2

∂

∂x1
‖x −m‖−1

R3 − em(x) if n = 3

‖x −m‖−n+2
Rn − em(x) if n > 3

whereem is harmonic in� and is chosen so thatEm satisfies

1Em = 0 in � \ {m} (7.22)

Em|0 = 0. (7.23)

We call Em a mark function; one can easily check that it is not square integrable,

‖Em‖2
H = ∞. (7.24)

(iv) The recovering of eikonal. Fix ξ < T and pointm ∈ �Tσ \ �
ξ

σ , so that the mark
function is harmonic in�ξσ . In this case it may be expanded over a wave basis

Em =
∞∑
j=1

(Em, uξj )Hξ u
ξ

j

with the coefficients

(Em, uξj )Hξ = (see (7.12), (7.23))= −(κT ∂νEm|0, hξj )FT
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Figure 5. Spectral reconstruction in ellipse.

which implies

‖Em‖2
Hξ =

∞∑
j=1

(κT ∂νEm|0, hξj )2FT . (7.25)

An important feature of this representation is that the right-hand side is determined by partial
inverse data.

Let us increaseξ from zero; the valueξ = τ(m) corresponds to the moment when�ξσ
touches pointm. As can be shown, one character of the touching is that the norm (7.25)
tends to infinity (in accordance with (7.24)). Therefore, one can find

τ(m) = sup{ξ > 0|‖Em‖2
Hξ <∞}

which gives a way of detecting an inclusionm ∈ �Tσ and findingτ(m) viaR2T
σ or {λk;ψk|σ }.
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Figure 6. The recovering from part of a boundary.

(v) The recovering of the density. An eikonal determines the density through the Jacobi
relation

‖∇xτ‖2
Rn = ρ a.e. in�Tσ .

Thus, operatorR2T determinesρ|�Tσ ; the data{λk;ψk|σ }∞k=1 determineρ|�Tσ for anyT > 0,
i.e. everywhere in�.

The same procedure, in principle, permits one to detect and recover the unknown
components of a boundary including the inner obstacles. This useful observation belongs
to Ya Kurylev (private communication).

Other variants of the BC method (see Belishev 1987a, b, 1990a, b, Belishev and Kurylev
1987, 1989), including the AF, may also be adapted for partial data. They may all be
generalized to the case of a Riemannian manifold.

7.7. Numerical testing

The algorithms based upon the one-dimensional variant of the BC method were tested by
Belishev and Kachalov (1989), Belishev and Sheronova (1990) and, later, by He (1995).

The numerical testing in two-dimensional spectral IP was first realized by Filippov
(Belishev et al 1994). This work was continued by Gotlib and Ivanov (Belishevet al
1997), who recovered a pattern of an ellipse and a family of wavefronts0ξ in it via spectral
data (see figure 5).

Recently Ivanov and Shirota have demonstrated that the amplitude formula permits one
to reconstruct a picture of forward wavefronts0ξσ moving froma part σ of a boundary. A
reconstruction was implemented via spectral data in a subdomain of a rectangle covered by
normal geodesics starting fromσ (see figure 6). The computations were performed on an
IBM PC.
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