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Boundary control of a one-dimensional, linear, thermoelastic rod
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Abstract. We examine boundary control of a linear partial differential equation which describes the
temperature distribution and displacement within a one-dimensional thermoelastic rod. In particular, we
show that temperature or heat flux control at an endpoint is sufficient to obtain exact null-controllability.
This improves earlier results for similar systems in which only partial null-controllability is obtained. We
also obtain sharp regularity results for the controlled system.
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1. Introduction.

Though there is extensive literature on the topic of control and stabilization of elastic
systems, relatively little has been published which includes the thermoelastic coupling.
This is probably due, in part, to the relatively small affect thermoelastic damping has
upon most systems of interest. However, for certain applications such as stabilization of
satellite antennas, where large temperature variations are common (e.g., due to moving
in and out of shadows), the need to model this coupling becomes critical. Furthermore,
the recent work of Gibson et al [5], illustrates the importance of modelling even light

thermoelastic damping in the design of finite-dimensional compensators.

Some notable literature on stabilization of thermoelastic systems include [13], [14], [16],
[17], [18] and references therein. Very little, however, is known about the controllability
structure of thermoelastic systems. In Lagnese and Lions [14], boundary control (e.g.,

velocity or position control on the boundary) is used to exactly control the mechanical



portion of the state space. This type of controllability is called partial ezact controllability.
When this type of control is used, the thermal component of the state is ignored, and
consequently if the mechanical portion is driven to rest, it will not in general remain there
due to the thermal stresses which remain. The main purpose of this paper is to show
that, at least for the case of a one-dimensional thermoelastic rod, exact controllability (to
zero) of both mechanical and thermal components of the state space is possible by only

controlling the thermal (or mechanical) component on the boundary.

A derivation of the equations of one-dimensional nonlinear thermoelasticity can be

found in e.g., [21]. In the case of a homogeneous rod with uniform cross sections (see [2],

[6] for the precise assumptions), the linearization of these equations can be written

00 0?6 y&*w
) a(h7) = a2 he) ~ g (07
O*w , 0*w 6

which holds on (t,2) € (0,00) x @ (@ = (0,1)). Here 6 represents a relative temperature
about the stress-free reference state § = 0, and w is proportional to the displacement.
The constants v > 0 and ¢ > 0 represent, respectively, the amount of thermal-mechanical
coupling, and the small-amplitude wave speed about a constant temperature state. (See
[6] for a precise definition of v and ¢.) In most materials of interest, v is several orders of

magnitude smaller than 1.

The physical quantities relevant to the formulation of boundary conditions for (1.1)

are the velocity v, heat flux ¢, stress o and temperature 8, where the first three of these

are 810
v(t>$) = —(B—t(t’x)
00
alt,2) = —-{t,2)
Oow

o(t,z) = E(t,x) —v6(t, ).

In [6] it was shown that under any of the boundary conditions

(1.2) v(t,2) =0, q(t,1) =0 1 =0,1;
(1.3) o(t,i) =0,  8(t,i)=0 =01
(1.4) a(t,0) =6(t,0) = v(t,1) = ¢q(t,1) =0,
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the eigenfunctions associated with (1.1) form a Riesz basis for the space of finite energy
states and the corresponding eigenvalues are uniformly shifted into the left half-plane,
except for possibly one or two eigenvalues located at the origin. This result is partially
restated in Theorem 2.1 and will be our starting point in our examination of associated

control problems.

In the case of boundary conditions (1.4), there are no eigenvalues at the origin. For this
reason it will be notationally convenient to restrict our presentation to control of boundary
conditions of the type (1.4), though similar results apply for control of boundary conditions
of type (1.2) or (1.3).

Let y(t) = (y1(2),v2(t), y3(t))" = (we(t,-),we(t,-),0(t,)) represent the state of the
system (1.1) at time ¢ and let (vy(z), gy(2), 0y(z),8y(2)) represent the velocity, heat flux,
etc., in terms of the state y. We will mainly be concerned with the following boundary

control problem associated with (1.1):

0 D 0
TY = ctD 0 —fyc?D y (t,z) € (0,00) x Q,
0 —-~D D?
(1.6) y(0) =y" in Q,
{ oy(0) =0 8,p(0) =g(t) ¢>0
vy(1) =0 gquup(1) = f(t) t20.

dy _

(1.5) -

(1.7)

where D = d/dz, v > 0, ¢ > 0. Thus at the left end, the temperature is controlled and the

stress vanishes. At the right end the heat flux is controlled while the position is fixed.

We need to define some function spaces to describe our main results. Let H = (LZ(Q))3

with the energy inner product

1

_ 1 _ _
(ya2> = [ y1z21 + C—2y222 + Y323 dx,
0

and let

D(A) = {y € H'[0,1] x H'[0,1] x H?[0,1]|
oy(0) = 0y(0) = vy(1) = gy(1) = 0}.
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Now define A : D(A) — H by
(1.8) Ay =71y Vy e D(A).

We denote 1> = {(ck)rer | Cper lck|* < 00}, where | is a countable index set (usually either

the integers Z or positive integers N). For a € R define

(1.9) Sy = {iaksin (kw—g)ﬂ(akko‘)e 12},

k=1

(1.10) Co = {iak cos (kw — g) z | (ark®) € 12} .

k=1

S, and C\, become Hilbert spaces with e.g., ||y|ls, = ||[(axk®)||;z2. (When o < 0, Sy and
C\, are the dual spaces to S_, and C_,, respectively.) C((a,b), M) will denote the set of

functions which are continuous on the interval (a, b) with values in the space M.

Our main results are the following, together with related results given in Sections 3-5.

THEOREM 1.1. Let 4° = 0, f € L?(0,00), and g € L%(0,00). Then the solution to
(1.5)-(1.7) belongs to C([0,00), S0 x Co X S_1/2). If additionally, g = 0, then the solution
belongs to C([0,00),S1 x Cy x Sy/3). These solution spaces are optimal in the sense that
none of the indices {0,1,1/2,—1/2} may be increased.

THEOREM 1.2. Assume 0 <y <1in (1.5) and T > 2/c.

(i) For the boundary control problem (1.5)-(1.7), with f = 0, given any y° € H, there
exists g € L*[0,T] such that y € C([0,T],So x Co x S_;3) and y(T) = 0.

(ii) For the boundary control problem (1.5)-(1.7), with g = 0, given any y° € D(A) there

exists f € L*[0,T] such that y € C([0,T],S1 x Cy x Sy,) and y(T) = 0.

In either case, T can not in general be reduced to 2/c.

4



Remark 1.3. The following identifications hold.

So=Cy = LQ(Q),

S1={f e H'(Q)] £(0) =0},

Ci={fe H'(Q)] f(1) =0},

Sij2 = 1S1:80]1/2 = {f € H'A(Q) | 272 f(z) € L)},
S_172 =512

H =25y x Cy xSy,

D(A) = S; x Cy x Sy,

with equivalent norms; see [15] and Section 2. (In the above, H® denotes the usual Sobolev
space of order a, [F, G];/, denotes the usual interpolation space between spaces F' and G,

as defined in [15], and ' denotes duality with respect to L?(2).)

In the above theorems, solutions are uniquely defined by continuous extension of the

variation of constants formula; see Section 3 for details.

Proposition 5.1 gives a more general statement of Theorem 1.2 and Remark 5.2 shows

that the spaces used in Theorem 1.2 are optimal in a certain sense.

The proof of Theorem 1.1 is given in Section 3 and involves an application of the
Carleson measure criterion of Ho, Russell [10], and Weiss [22], which gives a sharp criterion
for well-posedness of control systems. The proof of Theorem 1.2 involves reducing the
control problem to a pair of coupled moment problems which are coupled through the
control. A general class of such coupled moment problems are examined in Section 4
where it is shown that there are projections which decouple such moment problems into
simpler ones for which known results are applicable. This leads to various controllability
results, including Theorem 1.2, which are given in Section 5.

Results similar to Theorems 1.1 and 1.2 follow in the same way for boundary control
systems based on the boundary conditions (1.2) or (1.3). Likewise one could also consider
the case where the stress and/or velocity at an end is controlled, and similar results would

follow. We mention some of these results in Section 5.
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A short appendix is included which contains the proof of several technical details which

will be used throughout the rest of the paper.

2. Preliminaries.

Throughout this paper, an isomorphism will be understood to denote a bounded,
invertible operator from one Hilbert space onto another. If X is a separable Hilbert space,
a sequence (@i )pen in X forms a Riesz basis for X if o = Bep (k € N) where (e) is an
orthonormal basis for X and B is an isomorphism. The following theorem and its corollary

was proved in Hansen [6].

THEOREM 2.1. Let A be defined by (1.8). The spectrum of A (and also of A*) consists

of isolated eigenvalues ()‘kj)kel\l,je{l,zs} with A\g; = (km — 7/2)sy;, where
(2.1) (sij—{-cz)(skj—l—kw—7r/2)+72623k]- = 0.

The eigenfunctions of A (and also A*), properly normalized, form a Riesz basis for H.

An analysis of (2.1) in [6] shows that (Ag;) can be decomposed into a real branch

(kk)gen and a non-real branch (o )z With

22) { pr = — (kn — )" + 0(1), keN

or = —L tic(kr — T) + O(k™?), kel

We let (¥1)yer(a) denote the normalized eigenvectors of A* and (¥x)reo(a) denote the
biorthonormalized eigenvectors of A (each eigenvalue is counted up to its multiplicity), so
that (@a,,¥x;) = O, where d;; is the Kronecker delta. There are at most a finite number
of eigenvalues of multiplicity greater than one and all eigenvalues are simple if v <1 (see
Lemma A.1) or if |k| is sufficiently large (see [6]). The form of the eigenvectors of A* are

given in the appendix.

COROLLARY 2.2. A is the generator of a strongly continuous contraction semigroup

(T¢)t>o0 on H for which there exist M > 1 and 3 > 0 such that

| T < Me™Pt vt>0.
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Theorem 2.1 and Corollary 2.2 also hold in the case of boundary conditions (1.2) or
(1.3), although the energy decay occurs the orthogonal complement of the null-space of
the generator [6]. In addition, several recent papers [1], [12], [17] have shown exponential
stability to hold for other sets of natural boundary conditions. These exponential stabil-
ity results are important in that one can infer the existence of optimizing feedbacks for

stabilization problems with quadratic cost criteria; see [5].

For any set S C C we can define an associated spectral projection P(S) € L(H) by

(P(S)) e = ﬁ /R()\;A)x A\ VeeH,
T

where R(A, A) is the resolvent operator of A and I' is an appropriate contour which encloses
the eigenvalues in S. There is no difficulty in defining I" since the spectrum is discrete. In
cases where I" contains infinitely many eigenvalues, convergence for all x € H is guaranteed

by Theorem 2.1. Let us denote
P=P(R), and Q=1I1-P(R),
where I denotes the identity operator on H. Let
A=PH, and ¥ =QH.

Since the projections are continuous, it follows that H = A @ .

PROPOSITION 2.3. Let T denote the semigroup defined in Corollary 2.2. Then for
t>0,

(2.3) Ty =S:P +6:Q,

where G extends to a strongly continuous group (Gi),cg and S extends to an analytic
semigroup (S;)pe ¢>o- LThe infinitesimal generators of S and G are given by the restrictions

of A, A|x and Alg, respectively.

Proof. The spaces A and ¥ are closed, T-invariant spaces and hence the restriction of

T to either of these spaces is a Cy semigroup with respect to the inherited topology. For
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t > 0let S¢ = Ty[p and G, = Ty|z. It follows that for t > 0, T, = T{(P+ Q) = S$,P + G,Q
hence (2.3) is valid. For any z € AN D(4)
Tz —2 Sizx — =z

Az = lim = lim .
t}0 t t]0 t

Thus S is generated by (the densely defined operator) A|, and likewise G is generated by
Als.

It remains to show that G extends to a group (by G_; = G; ') and § has an analytic
extension to Ret > 0. Define F' : H — [% by

j{: ex b — (ea,)
ALEc(A)

Since (¢,,) forms a Riesz basis for H, F' is an isomorphism. Define T = (Tt)tzo by
T, =FT,F~', and for € H define & by # = Fz. Through this mapping, the pair (T, H)
is isomorphic to (T,1?) in the sense that FT,z = T,Z for any t > 0 and any ¢ € H.
Since any Riesz basis becomes an orthonormal basis under some equivalent inner product
(see [25]), it follows that the induced topology ||Z||; = ||z|| is equivalent to the topology
generated by the standard [? inner product. Thus, to show that S extends to an analytic
semigroup (S¢)Re >0, it will suffice to show that T|FA extends analytically to Ret > 0
with respect to the standard I? topology. It is easily seen that T|pA is a diagonal semigroup
on [? (= FA) with (diagonal) generator (FAF™1)|pa. If Ais any diagonal generator, it is
easy to show that ||R(),.A)|| is inversely proportional to the distance X is from o(.A). Since
o(A|p) = o((FAF~1)|pa) is entirely on the negative real axis, the appropriate resolvent
bound ([19, p.62]) holds which shows that T|ra, and hence also S, extends to an analytic
semigroup in Re ¢t > 0. Likewise, since o(FAF~!|ps) is contained in a vertical strip of C,
it follows from e.g., Pazy [19, p.23] that T]'|F>3 extends to a group. Hence G also extends
to a group. []

It will be useful to introduce a notation for certain interpolation spaces. Since 0 € p(A)
(the resolvent set of A) and o(—A) isin {A € C|Re A > 0}, for any a € R, (—A)® may be
defined as in e.g., Pazy [19, p. 69]. For o > 0, (—A)® is an isomorphism from D ((—A4)%)
(with graph-norm topology) to H. For a > 0, we define H, to be the restriction of ‘H to

8



D((—A)*) with

(2.4) [2lla = I(=4)%z]|

For a < 0, we let H, denote the completion of H with respect to the norm also given by
(2.4). The above spaces are explained in more detail in e.g., [8], [23]. For our problem we
have that D(A) = D(A*). Thus it follows that H} = H_; (where the duality pairing is
with respect to the completion of (-,-)). Furthermore, since the eigenfunctions of A form
a Riesz basis, it can be shown that for a € [0,1], Ho = [H1, Ho)1-«, where [H1, Ho]1 -« is
the interpolation space defined in [15]. Using standard properties of interpolation spaces

one can show H;, =H_, Va €R.

We recall a result from Weiss [23], as it applies to our problem:

ProPOSITION 2.4. For any a < 0, A has a unique continuous extension to an operator
on H, also denoted by A, which is an isomorphism from Hyyi to H,. Further if L

commutes with A, i.e., if
LAz = ALz Ve € Hy = D(A),

then the restriction of L to Hs (o > 0) belongs to L(Hs). Further, L has a unique

continuous extension to an operator in L(Hq) for any o < 0.

In particular, the projections P and @, and semigroups T, $ and G each have unique
continuous extensions to H, (for any @ < 0). Throughout this paper we will make no
notational distinction between an operator and its possible extensions. We thus define the

spaces A, and ¥, by
A, =PH, and %,=QH, Va € R.

As a consequence of Proposition 2.4,

(2.5) Ho = Ao @ X0 Va€R.
The spaces A, and ¥, become Hilbert spaces with the norms || - ||z, and || - ||z, inherited
from (2.4).



3. Regularity.

In this section we obtain via the Carleson measure criterion of Ho and Russell [10] and
Weiss [22], the spaces of maximal regularity of the system (1.5)-(1.7). We begin with a

discussion of the Carleson measure criterion.

Consider the control system
(3.1) & = Az + bu(t),

where z(t) € I? is the state, u € L?[0,00) is the control function, A is assumed to be
diagonal with diagonal elements v, which satisfy

(3.2) sup Re v = wp < 0,
kEN

and b € [2,, i.e., is a column vector with components by which satisfy

o0

2

k=1

be

Vg

2
< Q.

Thus A generates a strongly continuous diagonal semigroup (T%),s, on 2.

For any h > 0 and any w € R let
R(h,w)={z€ C|0<Rez<h, |Imz—w| < h}.

Definition 3.1. With A, b and T as above, b satisfies the Carleson measure criterion

for the semigroup T if there is some M > 0 such that for any h > 0 and any w € R,

(3.3) Y P <M-h
—viy ER(h W)

The Carleson measure criterion is used to determine the admaissibility of the input
element b in (3.1). The input element b is admissible for T if for some ¢ > 0, the sequence
( s e"k<t—s>bkv(s)ds)keN lies in {2 for all v € L2[0,00). When b is admissible, for any
7 > 0 the operator ®,: L2[0,00) — I2, defined by

T

(3.4) Q. u= /T,-_sbu(s)ds Vu € L?[0,00)

0

10



maps continuously into [?. In this case, for any initial condition z, € 2 and any u €

L%(0,00) a unique solution of (3.1) is given by
(3.5) z(t) = Tyzg + Pyu,

with z € C ([0,00),%). If b is not admissible then there exists u € L2[0, c0) for which the

solution of (3.1) (if it can be defined at all) is not continuous in time.

Remark 3.2. It should be pointed out that the stability restriction (3.2) is unessential;
we have defined the the Carleson measure criterion as it applies to stable systems. See [10]

for the general definition.

Remark 3.3. In Definition 3.1, it is not necessary to verify (3.3) for every possible value
of (h,w). It is enough to consider the pairs (h,,w,) for which v, = h, +1iw,. (This follows

by a simple geometrical argument.)

THEOREM 3.4. (Ho and Russell, Weiss) With b, A and T as above, b is admissible

for T if and only if b satisfies the Carleson measure criterion for T'.

The above asserts that the control system (3.1) is well-posed on /2 (in the above

discussed sense) if and only if the sequence (b ) satisfies (3.3).

For o € R, we denote 12 = {(ct) | (|vg|%ck) € I2}.

Definition 3.5. Let a« € R. With b, A and T as above, the pair (b,T) is well-posed on

12 if for some T > 0, the operator @, defined in (3.4) maps continuously into I2.

If (b,T) is well-posed on [2, then we may define solutions of (3.1) by (3.5), and these

solutions are continuous in time with values in /2. We have the following.

COROLLARY 3.6. Let o € R. The pair (b,T) in (3.1) is well-posed on [2 if and only if

(br|vik|¥)en satisfies the Carleson measure criterion for T
Proof. Let 7 > 0 and u € L?(0,00). Let ((x) = ®,u as given by (3.4). If (bx|vk|*)ren
satisfies the Carleson measure criterion then ((x|vi|*) € 12, or equivalently, ({x) € 2. O

We now return to the control problem (1.5)-(1.7). In order to apply Theorem 3.4 to

our system, the input elements associated with (1.5)-(1.7) need to be identified.

11



Let G : R — 'H denote the Green’s map associated with (1.5)-(1.7):

G(uy,uz) = w; 7w =0 1in €,

0w(0) =0, vu(1)=0, 6,00)=w1, gu(l)=us.

One finds that G(uy,u2)" = (y(—u2z + u1),0, —ugz + u1). Iff y° =0 and f,¢g € C$°(0, 00)
then the (classical) solution y to (1.5)-(1.7) at time ¢ coincides with an element of H_;
(= D(A*)*), also denoted by y(¢), which is given by (e.g., [3],[24])

(3.6) y(t) = - / AT Gy, f)(+) dr.

Since the appropriate extensions of A and T commute on H,

o(t) = /0 To o(—AG)(g, £)'(s) ds
- /O Te_oB(g, £)'(s) ds.

The boundary control operator B maps R? into H_; continuously and hence is a sum of

two continuous functionals on ‘H;. From integration by parts,

< B(ug,ug),w > =< —G(uy,uz), A*w >

= —u1Gw(0) — ugbu(1), VY w e Hy.

Thus we define by, b; as elements of H_; by

(3.7) { (b0, ®) = —qu(0)  Vw € Hi,
| (bi,w) = —0u(1) Vw e H,

so that (3.6) becomes
¢
(3.8) y(t) = / Ti—s(bog(s)+ b1f(s))ds on H_y.
0
The map (g, f)) — y as given by (3.6) (or (3.8)) is bounded when considered as a map

(L*(0,T))* — C([0,T),H_1), (T >0)

12



and thus defines a generalized solution for (g, f) € (L%(0,T))2. It follows that
(3.9) = Ay +bog(t) + b1 f(t),  y(0)=y"€H

has a unique continuous solution in H_; (given by (3.8) if y° = 0) which satisfies (3.9) on

H_s.

By Propositions 2.3 and 2.4 the projections P and () continuously decompose the
solutions in (3.8) by y(t) = z(t) + z(t) where

(3.10) z(t) = /0 Si—s(Pbog(s) + Pbyf(s))ds on A_y,

(3.11) z(t) = /0 Gi—s(Qbog(s) + Qb1 f(s))ds on X_1.

Note that all of the results in this section which pertain to diagonal systems apply to
the system (3.9) since (as in the proof of Proposition 2.3) A, T, G, S, etc., can be viewed
as diagonal operators on [? relative to the Riesz basis of eigenfunctions. Likewise an input
element b may be identified with a vector in {2, whose components are its respective
Fourier coefficients. As such, one can then use the Carleson measure criterion to check

well-posedness of the pairs (b, T) on H,.

An analysis of the admissibility of the input elements Pby, Pby, Qby and Qb; will
provide the smoothest spaces A, and Lg in which z(t) and 2(¢) are time-continuous for

all L? controls. This then determines the maximal regularity of the solutions y(#) to the

system (1.5)-(1.7). We have the following,.

PROPOSITION 3.7. In the above notation,
(i) (Pbg,S) is well-posed on A, Va < —1/4
(ii) (Pby,S) is well-posed on A, Va < 1/4
(ii1) (Qby,G) is well-posed on ¥, Va <0
(iv) (Qby,6) is well-posed on X, Va < 1.
Furthermore the bounds given for « are sharp.

13



Proof. We first prove (i). By (3.7), by € H_1, and hence Pby, € A_;. Therefore its

series

Pby = Z(Pb07¢uk>¢uk

keN
= Z(I)Oalr[)ltk)(roﬂk = Z CkPuy
keN kEN

converges in A_j. The coeflicients (ci) are easily computed from (3.7) and (A.5) (of the

appendix). One finds that there exist positive constants m and M such that
(3.12) mk < |ex] < Mk VEkeN.

For k € N let by = ci/|ux|'/*. The semigroup S can be identified with the diagonal
semigroup S = diag(e’1?, e”?t, .. ) relative to the Riesz basis of eigenfunctions. Thus by
Corollary 3.6, (i) holds if the sequence (by) satisfies the Carleson measure criterion for
S. Since the eigenvalues (u) grow quadratically (see (2.2)), (3.12) implies that there are

constants my > 0 and M; > 0 for which
mik < |bx|*> < Myk,  VEkeN.
It follows there are positive numbers my, m3, My, M3 for which
mg|un| < mon? < z”: |bk|2 < Myn? < M;|in], Vn e N.

k=1
Thus if N € N and h = |un| we have
(3.13) mgh < > |bef? < Msh.

—ux€R(R.0)

Thus (3.3) holds by Remark 3.3 and hence (7) holds. The first inequality in (3.13) shows

that & = —1/4 can not be increased.

The proof of (ii) is essentially the same. For (iii) and (iv), the eigenvalues lie in a
vertical strip and their imaginary parts possess a uniform asymptotic separation. From

this it is easy to show that (3.3) holds if and only if the sequence (b;) in (3.3) is bounded.
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The estimates (A.5) of the appendix show that @by corresponds to sequence which is
bounded, and bounded away from zero. Hence (iv) follows and « = 0 is optimal. The
same estimates (A.5) also show that AQb; corresponds to a sequence which is bounded
and bounded away from zero. Hence (AQb;,G) is well-posed on ¥y. From this it follows
that (Qb1,G) is well-posed on 3; and a = 1 is optimal. J

The next two lemmas relate the spaces A, and ¥, to the spaces S, and C,.

LEMMA 3.8. Let So and C, be defined by (1.9), (1.10) and assume —1 < o < 1. Then
(3.14) Hoa =Aa B X = 54 X Cy X Soq
with equivalent norms. Furthermore,

(315) Ay C Sz+20 X C1+20 X Saq

(316) Ea C Sa X Ca X Sl-l—a-

Finally, the mapping Pj2 : ¥4 — Sa X Cqo given by Piax = (z1,x2) and the mapping

Py : A, — Sy defined by Psz = x5 are isomorphisms.

The proof relies upon asymptotic properties of the eigenvectors and is given in the

appendix.

LEMMA 3.9. Let |a| < 1, |8] < 1 and |f — 2a|] < 1. The following set-equivalences
hold:

(3.17) Ay + Eﬂ = Sﬂ X Cﬂ X Sou.
In particular,

(318) A_1/4 + X0 = Se x Cp x 5_1/2,
(319) A1/4 +3 = 51 x Cy X 51/2.

Proof. 1t will suffice to prove (3.18). The proof of the general case is done in the same

way. If y = @ + z with « € A_;/4 and 2z € ¥y then by Lemma 3.8 y € So x Co X S_y/2.
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Thus A_y/4 + 3o C So x Cy X S_yj. Now let y = (y1,y2,y3)' € Sp x Cy x S_1/2. Let
P; denote the operator defined in Lemma 3.8 and assume § = (41, 72,93) = P 'ys. Then
Pyy = g3 = y3 and by (3.15) §1 € S3/p and §p € Cyj2. Let = (y1 — §1,y2 — §2,0)". Then
y=z+gandz € SoxCyxSy=Hy=~Ay+3%. Butalsoy € A_y/4 hencey € A_174+ 3.
This proves (3.18). [

Proof of Theorem 1.1. We first examine the case where f = 0 in (3.10), (3.11). Let
t > 0. By Proposition 3.7 z(t) € A_y/4, 2(t) € Xo, and the indices —1/4 and 0 are optimal
in that they may not be increased. Thus by Lemma 3.9 y(t) = z(t)+2(t) € SoxCoxS_1 5.
Furthermore, (3.17) implies that the index —1/2 is optimal, and not both of the first two
indices (0 and 0) may be increased. A sufficient condition that both the first two indices

cannot be increased beyond 0 is that the operator Gr : L%(0,00) — X4 given by

T
QTU—/ Gr-sQbou(s)ds
Jo

map onto a subspace of finite codimension for sufficiently large T'. (Indeed, if this is so and
Py, represents the projection operator defined in Lemma 3.8, then by Lemma 3.8, P;2Gr
can not map into any of the spaces So x Cg with @ > 0 or > 0.) In the case v <1 it is
shown in the proof of Proposition 5.1 that Gr is surjective (for large enough T'). If v > 1,
the possibility of multiple eigenvalues arises, however the same proof shows that Gy maps
onto a subspace of finite codimension. Hence the trajectories y(t) are time-continuous (see
Section 3) with values in Sy x Cy x S_;/, and (pending the proof of Proposition 5.1) each

of the indices are optimal in that none may be increased.

For the case with ¢ = 0 in (3.10), (3.11) we have z(t) € A4 and z(t) € ¥;. Thus by
(3.19) y(t) € S1 x Cy X Sy/2, and as in the previous case, the indices can be shown to be

optimal. [

4. A moment problem of mixed parabolic-hyperbolic type.
As we will see in Section 5, the problem of controlling (3.9) from an initial state to a
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terminal state is equivalent to solving an associated moment problem of the form:

T
(4.1) crp = /e“”u(s)ds kEeN

(4.2) dy

I

0

T
/e””u(s)ds kel
0

The space of all sequences (cj)U(dy) for which there exists some u € L2[0, T] such that
(4.1), (4.2) holds is called the moment space of (4.1)-(4.2). While the individual moment
spaces of (4.1) and (4.2) are rather well understood, one can not directly use these results
to infer properties of the (joint) moment space of (4.1)-(4.2). The main purpose of this
section is to show thét the moment space of (4.1)-(4.2) is the union of of the individual
moment spaces for (4.1) and (4.2) provided T is greater than some nominal value ¢, which

depends upon the sequence (o).

Because the results of this section pertain to a variety of sequences (o), (ux) more
general than those defined by (2.1), (2.2), we shall throughout this section consider (4.1),

(4.2) with the following general assumptions on the exponents (o), (pk)-

HO. {(ok)}rez N {(px)ren = 0.

H1. There exists 8 € C, ¢ > 0 and (vg)rez € [? for which (o) satisfies
(1) o =+ ckmi + vy VkelZ,

(ii) o # o unless j = k.

H2. There exist positive p, B, 6, & and 0 < 8 < Z for which (i) satisfies
(i) larg(—pr)| <6 VEEN,

(i) [k — pjl > 81k = 52| Vk,j €N,

(iii) e(p 4+ Bk?) < |ux| < p+ Bk* VkeN.

Assumptions (HO), (H1) and (H2) will be considered standing assumptions for all the

results of this section.

Eigenvalues associated with one-dimensional hyperbolic systems often satisfy (H1),

while those of one-dimensional parabolic (or “abstract parabolic”) systems often satisfy
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(H2). The quadratic growth and separation assumptions in (H2) parts (ii) and (iii) can be

replaced by more general growth rates (see [7,Theorem 1.1]); however we will avoid this

additional complication here.

It will be convenient to introduce a notation for some spaces we will need to use. For

0<a<blet

Wia,p5 = closed span (e*')  in L*[a, b},

Ejq ) = closed span (e ***) in L*[a, b].

With || - la,5 := || - |22[a,5]» Wia,5) and Ef, ) are Hilbert spaces.
Definition 4.1. Let H be a Hilbert space with closed subspaces M and N. We will say

that M and N are uniformly separated if M NN = {0} and their sum M + N is H-closed.

Equivalently, the subspaces M and N are uniformly separated if and only if there exists
6 > 0 (called the minimum gap in Kato [11]) such that for any f € M and g € N, each of
norm 1, that ||f — g|| > 6. See [11] for details.

The following result is the main one of this section and will allow us to decouple the

moment problem (4.1), (4.2).

THEOREM 4.2. Assume the standing hypothesis (HO), (H1), (H2). For each T' > 2/¢

the spaces Wiy 1) and Ejo ) are uniformly separated. This does not hold for T < 2/ec.

The proof relies upon the several results which follow, and will be given later in this

section.

Throughout the following we will denote
t. = 2/c.
LEMMA 4.3. For any a € R, Wig 444, = L?[a,a + t;]. Furthermore, for T > t,,
(e"kt)kEZ forms a Riesz basis for each of the spaces W4 o477

Proof. The sequence (ok)rez lies in a vertical strip of C, and |Imoy — ckn| — 0 as

|k| — oco. This implies (see [21, p.196]) there exists N such that (e®!)rcz forms a Riesz
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basis for L*(a,a+t.) for any a € R, where s = oy if |[k| > N and s = B+ ckniif |k| < N.
By [21, p.40] and [21, p.129], a Riesz basis of exponentials for L?(a,a + t.) is stable with
respect to a change of finitely many exponentials (i.e., for |k| < N, e®** — e%!), Therefore
the first statement of the lemma holds and the second is true for T = t.. For any N € N,
one can choose a sequence (e***)¢z for which |Im 3y —ckn/N| — 0 as |k — oco| and (o) is
a subsequence of (5;). As in the proof of the first statement, it follows that (e®?) forms a
Riesz basis for L%(a,a + Nt.), for any a € R. Since a subset of a Riesz basis is necessarily
a Riesz basis for the subspace given by its closed span, it follows that (e?*!) forms a Riesz
basis for W, a4 nt,], for any @ € R. Thus the second statement of the lemma is true for
T = Nt. for any N € N. Let t, < T < Nt.. By [21, p.32], (¢7*!) forms a Riesz basis for
Wia.a+17 if and only if there exists positive numbers mr and M7 such that for any n € N
and arbitrary scalars ¢, cg,...c, one has

n 2

E c;e’it

=1

(4.3) mr|| ()|l < < Mr||(c:)||7
[e,a+T]

Let po(t) = > i, cie . Since [a,a + t.]) C [a,a+ T] C [a,a + Nt.] it follows that

'Ipn|‘[2a,a+tc] < ||pn||[2a,a+T] < ”an[Qa,a-f-Ntc]'

Furthermore, (4.3) holds if T = t, or if T = Nt.. It thus follows that for arbitrary
T € (te, Nt.), the inequalities in (4.3) hold with mp = m,, and Mt = My,,. [0

The previous lemma implies that for each f € Wi, o117, with @ € R and T > ¢., there

is a uniquely defined sequence (cy) € {2 for which

(4.4) f=1lim. Z crett t € la,a+T).
kez
Thus given any f € W, 447], we may define an extension fe L (R) by
(4.5) f=lim ) ce™  teR.
kez

LEMMA 4.4. Let a,b € R and assume T > t.. Then the mapping F': Wi, aqy¢] —
Wi+ defined by

-
/ [b.b+T]
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is an isomorphism.
Proof. For a, B € R, with 8 > a + 1., let Jjq g: Wia g — 12 by

Jia,81f = (¢k)pez >

where (cx) is determined by (4.4). Lemma 4.3 implies that Jiq g is an isomorphism.

Therefore F' = J[;1b+T] Jla,a+¢.] 1s an isomorphism as well. []

For a,s € R define J,(s) € £ (L%[a,a +t.]) by

(4.6) (Ja(8)f) (1) = f(t +3) lte[a,a+tc]7

where f and f are given by (4.4) and (4.5). (Lemmas 4.3 and 4.4 show that J, is well-
defined.) By Lemma 4.4, for any a,s € R, J,(s) is an isomorphism. In fact it can be seen

that J, = (Ju(3))ser forms a group. The generator of this group was characterized in

Russell [20].

PROPOSITION 4.5. For any a € R, J, = (Ja(8)),cr 15 a strongly continuous group of

operators on L?[a,a +t.]. J, is generated by the derivative operator d/dt on the domain:

(4.7) D <%> ={f e H'{a,a+1t]| fla+tc)— e’ f(a)

a+t.

- [ ansen),

a

where g € L*(a,a+t,) is uniquely determined by a and (o), and satisfies ||q|| < M,||(vi)|l:2
for some M, > 0.

An explicit formula for ¢ can be found in [20]. This however, will not concern us.

The next result concerns properties of the spaces Fjo 1.

PROPOSITION 4.6. Let 0 < o« < § — 0 (8 is defined in (H2)), and assume T and v
are positive. Each f € Ejp 1) has an analytic extension f to the the region A, = {\ €
C|larg A\| < «,|\| > v}. Furthermore there exist positive constants M, w such that for

any A € A,,

(4.8) IFOOI < M flon  Yf € Eom,
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where M and w depend only upon B, §, € and 0 (of (H2)).

This result was proved in more generality in [7].

A key point in the above proposition is that M and w are independent of p (in (H2))
and the particular sequence (yx)ren. Thus by selectively removing a finite number of p;,
(those with the biggest real parts) from (u), we can increase the p defined in (H2) without
affecting the constants M and w and hence obtain any desired decay rate in (4.8) for the

functions generated by such a subsequence of exponentials.

We restate this key point as follows.

COROLLARY 4.7. Let r and T be positive numbers. The space Ejy 1 can be decom-
posed into the direct sum F @ R, where F is finite dimensional and all functions f € R

have an analytic continuation f(z) which satisfies
(4.9) 1f(2)l < M~ fllo;y  Vz€A,, VfER

Proof of Theorem 4.2. Let ¢ > 0. We wish to show that the spaces Wjg; 4 and
Ej¢,+¢] are uniformly separated. Let J.;, = (Jf/Z(S))seR denote the group defined by
(4.6) and Proposition 4.5. Since groups are obviously invertible, there exist m > 0 and

ro > 0 for which

[ ep2()fll > me™ ™\ fll - Vs >0, VfeL(e/2,t +e/2).
It follows from the above and Lemma 4.4 that there exists m > 0 for which
(4.10) [ fllisseg > me ™Il V>0, Vf€EWeiite

where f is defined by (4.5).

Let r > ro. We may without loss of generality assume that all functions in Ejg s, 4]
have analytic continuations which satisfy (4.9). (This follows since Ejo 4 could be
decomposed as in Corollary 4.7, and since (ux)U(o) are distinct, F' is necessarily uniformly

separated from Wig ¢ 4)-)
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Now assume to the contrary, that the two spaces are not uniformly separated. Then

there exists (fn),en € Ejo,t,+¢) and (9n)nen € Wio,t.+¢]> each of norm 1 for which

“fn - gn”[O,t(,—f-e] -0 as 1 — oo.

Since each f, has an analytic continuation f, which satisfies the bound (4.9) (use
T =t 4 ¢ and the M determined by v = ¢/2), it follows that (f,) forms a normal family
on compact subsets of Ag = {z € C|z # 0, |argz| < o}. It follows that there exists a
subsequence, still denoted ( f,,), which converges uniformly on the interval T = [€/2, tc + €]
to f(t). Since obviously f € L*(I), we know that ||g, — f|[; — 0 as n — co. Thus f € W7,
and by Vitali’s convergence theorem ([9], e.g.) f has an analytic continuation f to A, for

which
(4.11) |F(H)] < Me™™, Yt >e/2.

Assume for the moment that ||f||y = 0. It then follows that ||¢g,|[; — 0, and con-
sequently ||gnlljo.e/2) — 1 as n — oo. This however is impossible by Lemma 4.4. Thus
1fllz > 0.

Let F(s,t) = f(s+1). Since f is differentiable, it follows that or — %—I: for s+t > ¢/2.
Further, f |,= f |,€ Wr. Thus for all s € (0,¢/2)

t.+e/2
(4.12) F(s,te+€/2) — P F(s,e/2) = / q(T)F (s, 7)dr.

e/2
Morera’s theorem can be used to show that the the right-hand side of (4.12) is analytic in
Ag. Since the left-hand side of (4.12) is also analytic in this region, we conclude that (4.12)
holds for all s € (¢/2,00). Hence right-translations of f are given by J,/; (in Proposition

4.5) acting upon f, as are those of f; ie., for s > 0,

~

f

[s+e/2,5+t+e/2] Jesa(s) (f ‘[5/2,5/2+t(.]> =f |[s+e/2.s+tc+€/2] :
It thus follows that f(¢) = f(t) for t > /2, but this is in conflict with (4.10) and (4.11). ]

The following results relate Theorem 4.2 to the moment problem (4.1), (4.2).
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PROPOSITION 4.8. Let (dy);cz € I*. Then for any T > t, there is a unique u € Wio.m
which solves the moment problem (4.2). Any f € L*[0,T] given by f = u + v, with
v € W[é,T] also solves (4.2).

Proof. This follows easily from Lemma 4.3. []

PROPOSITION 4.9. Assume that for any p > 0, (ci)en satisfies
(4.13) |cx|eP® — 0 as k — oo.

Then given any 7 > 0 there exists a unique u € Ej ,) which solves the moment problem

(4.1). Any f € L?[0,7] given by f = u + v, with v € E[jr] also solves (4.1).

Proof. From [7, Theorem 1.1] there is a py > 0 for which the biorthonormal functions

(qx(1)) to (e#**) in Eyg ;) satisfy

lgxllpo,ry < Me?",

[e.e]

for some M > 0. We define u = ckqk- It is easily checked that u € Ej ;) and both u
k=1
and f solve (4.1). [

Remark 4.10. The condition (4.13) can be weakened to
k| - ePoF — 0 as k — oo,

where a suitable py can be found from [7, Theorem 1.1].

THEOREM 4.11. Under the standing hypothesis (HO0), (H1), (H2), given any sequence
(ck)ken which satisfies (4.13) and any (dy)rez € 12, for any time T > t, there exists
u € L%(0,T) which simultaneously solves the moment problems (4.1) and (4.2). This does
not hold for T < t..

Proof. If T = t, the solution to (4.2) is unique (this follows from Lemma 4.3) and
hence it is not in general possible to simultaneously solve (4.1) and (4.2). If T < ¢, then
(4.2) does not necessarily have a solution and hence it i1s necessary that 7' > ¢.. Thus

assume T > t.. By Theorem 4.2, the spaces £ = Ejg 17 and W = W 11 are uniformly
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separated. Thus V := E + W is closed, and hence a Hilbert space with || - ||y = || - lljo, 17-
(SoV =E@W.) Let EX, W' denote the orthogonal complements of E, Win V. Let
Pg denote the orthogonal projection from V onto E. By a theorem in Kato [11, Ch. 4
§4], E+ and W+ are also uniformly separated and hence V = EL @ W+. From this it is
easy to show that (the restriction) Pg|y . is an isomorphism. Likewise we may define an
orthogonal projection Py for which Pw|g. is an isomorphism. By Propositions 4.8 and

4.9 there exist g € Wy 77 which solves (4.2) and f € Ejg 11 which solves (4.1). Let

u=(Pglws)" f+(Pwlps) g

One easily sees that u solves both (4.1) and (4.2), and since Pg|w. and Pw|gL are

isomorphisms, u € L?[0,T]. [

Remark 4.12. If in addition to the hypothesis of Theorem 4.11, it is known that
(drok)rez € [%, then the solution u of (4.1), (4.2) may be assumed to satisfy u(0) = 0
and have a (distributional) derivative in L?. This can be proved by a modification of a
result in [4]. However, without any preconditions on (dg), it can be shown that there do

not in general exist smooth solutions to (4.1), (4.2) no matter how large T is.

5. Controllability.

Consider
(5.1) (1) = Ay(t) + bu(T —t)  0<t<T; y(0)=y",

where A is defined in (1.8), u € L2[0,T)], b represents by or b; in (3.7) and y° belongs
to an appropriate space which we will specify later. If we wish to control the state to
some terminal state y? in time 7', the variation of parameters formula must hold (on an

appropriate space):
T
yl' — Ty = /stv(s)ds.
0
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Using the same decomposition as in (3.10), (3.11), we must have

T

(5.2) a7 — Spz® = /S,.Pbu(T)dT,
0
T

(5.3) 2T — Gp2® = /GTQbu(T)dT,
0

where z = Py, z = Qy and likewise for 7 and z7. In order that the solution to (5.1) exist
pointwise in time, we require that (5.2) and (5.3) hold on the respective spaces in which
(S, Pb) and (G, Qb) are well-posed. Thus if b represents by (resp. by) then (5.2) should
hold on A_y/4 (resp. Ay/4) and (5.3) should hold on X (resp. ¥y).

When (5.2) and (5.3) are integrated against the eigenfunctions of A* one arrives at the
pair of coupled moment problems (4.1), (4.2), where (o)) and (ux) are defined by (2.1)

and

(mT’¢1Lk> B eukT<$07¢uk> _ <ZT’¢01¢> _ eng<zov¢0k)
d

G4 a= XN, k= X, '

The sequences ({b, %, ));en 30d ({6,905, )) ez €ach consist of only nonzero terms and their

asymptotic properties are given in (A.5) of the appendix.
One easily sees from (2.2) that the conditions (H0), (H1) and (H2) of the previous

section are satisfied provided there are no multiple eigenvalues.

To describe the controllability of (5.1), we consider separately the problems of null-
controllability and reachability. We will say that a T-invariant space My is b-null-controllable
in time T if given any y° € My there exists u € L?(0,T) for which (5.2), (5.3) hold (on
the proper spaces) with 27 = 27 = 0. Likewise we will say that a T-invariant space Mr

is b-reachable in time T if given any y? € Mr, (5.2) and (5.3) hold with z° = 20 = 0.

We have the following.

PROPOSITION 5.1. Let T > 2/c, a € R and 0 <y < 1.
(i) The space Sy + Ay 1s bg-null-controllable in time T and ¥ + A, is by -null controllable

in time T.
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(i) Let V = {3 ;en ChPus | (ck) satisfies (4.13)}. The space g + V is bg-reachable in
time T and ¥y + V is by-reachable in time T.

In either case, the result does not remain true for T < 2/c or if 54 or 3; are replaced by

larger G-invariant spaces.

Proof. Let us first prove that ¥y + A, is byp-null-controllable in time 7. (This is the
case where the temperature is controlled at the left end of the rod.) Let y° = z° 4+ 2° with
z% € A, and 2° € 5. Since

T
20 = —G;l/ G,Qbu(T)dr,
0

it is necessary (since G is an isomorphism on Yg) that 2° € Zq in order for (5.3) to hold
on Xy. Thus Xy can not be replaced by a larger G-invariant space. With z° € A, it follows
from the analyticity of S that S72° € Ay. Hence if the moment problem determined by
(5.2), (5.3) has a solution then (5.2) and (5.3) will hold on the appropriate spaces A_ 4
and X, respectively. From Lemma A.1 (in the appendix) and (2.2) one can easily see that
the eigenvalues (o), (ux) satisfy the assumptions (HO), (H1) and (H2) of Section 4. To
compute (cx) and (dy) in (4.1), (4.2), we use (5.4) and (A.5) (in the appendix) and find

there are positive numbers m and M for which

(5.5) m|(z°, %0, )| < |di] < M|(z°,%0,),  Vk €L,

(5.6) ek < ME**eT |20,

Thus (di) € I and (ci) satisfies (4.13). Hence by Theorem 4.11 the moment problem
has a solution for T' > 2/¢ (but not in general for T' < 2/¢). The proof that A, + ¥ is
by-null-controllable is essentially the same. Thus (i) holds.

For the problem of reachability, first note that if y7 = 27 + 27 with 27 and 27 as in
the hypothesis, then (5.2) and (5.3) will hold on the proper spaces provided the moment
problem has a solution. The moment problem which corresponds to (5.3) is easily seen to
satisfy (5.5) and hence is solvable for any (di) € [2. Similarily, with 7 € V it is easily
seen that the coeflicients (¢ ) satisfy (4.13). Thus (7¢) holds by Theorem 4.11. (]
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More general statements can be made about the reachable space for the parabolic

component (see [4]).

The proof of Theorem 1.2 now easily follows.

Proof of Theorem 1.2. Let T > 2/c. First consider (1.5), (1.6) with f(¢) = 0. (This
is equivalent to (5.1) with b = by.) Since y° € H certainly we have that y° € Ty + Ay
By Proposition 5.1, there exists u € L%*(0,2/c + €) for which (5.2) and (5.3) hold with
g7 = 2T = 0. Since ¢ € C([0,T],A_14) and z € C([0,T], %) it follows that by Lemma
3.9 that y = 2+ 2 € C([0,T], So x Co x S_1 ). Part, (ii) of Theorem 1.2 is proved likewise.

Remark 5.2. Theorem 1.2 is optimal in a couple of respects. In part (7), by Proposition
5.1 and Lemma 3.9, the space H = Sy x Cy x Sy is the largest null-controllable space of
the form S, x Cy x Sp. Likewise in part (iz), the space D(A) = S x C; X S, is the largest
null-controllable space of the form S, x Cy X S2. Similar statements can be made regarding
reachability. Furthermore, by Theorem 1.1, the spatial regularity of the solutions given
in Theorem 1.2 is optimal in the sense described in Theorem 1.1. (This means that for
general L2-controls, no improvement in spatial regularity is possible. Of course the spatial
regularity can be improved if the controls are known to be smooth. However, by Remark
4.12, there does not in general exist smooth controls unless the initial/terminal spaces are

restricted.)

Remark 5.3. Proposition 5.1 implies a certain partial ezact controllability result. Namely,
for the case of temperature control (b = by), given any y° € H and any 27 € L*(Q)x L%(Q),
for any € > 0 it is possible to find a control g € L?(0,2/c +¢) which transfers 3 to a state
yT which has 2T for its first two components. (The third component is not controlled.)
More loosely stated, the mechanical components are exactly controllable on (L%(Q2))? in
time T' = 2/c + €. Likewise for the case of heat flux control, the mechanical components

are exactly controllable on S; x Cy in time T'.

The above asserts that it is possible to exactly control the mechanics (position, velocity)
of the rod with temperature (or heat flux) control alone. Furthermore Theorem 1.2 shows
null-controllability of the whole state space (position, velocity, temperature) is possible.

One could ask whether or not it is possible to drive an initial state y° to a terminal state of
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the form y7 = (y{,yf,0)". As the following shows, this is not in general possible without

some severe restrictions.

NEGATIVE RESULT 5.4. Let b denote by or by. For any n > 0 there exists y, € S, xC)p,

for which the state yT = (yn,0) is not b-reachable in any time T > 0.

Sketch of proof. Forn > 0let Pyy : Hy — Sp x Cy, by (y1,92,¥3) — (v1,y2) and define
M, = Pi3A,. If the space M, x {0} were b;-reachable then the corresponding moment
problems must necessarily have solutions. Hence the set C of sequences (¢y) corresponding
to PM, should be in the moment space of (4.1). (P is the projection in (5.2).) From (5.4)
and estimates in the appendix, it follows that there exists NV (which depends upon n) such

that if

(5.7) > lexlkN < oo,

keN
then (cx) € C. Let (gx)ren denote the biorthonormal sequence to (exp(u;t))ren in Eo 71.
(Epo,77 was defined in Section 4.) Tt is known ([7]) that ||gx|| > mie™°F for some mq > 0,
my > 0. The solution to (4.1) is given by

u = chQk

keN

and must converge for all (¢) in the moment space. However there are clearly many

sequences (cy) satisfying (5.7) for which ||cxgr|| — o0 as k — co. [J

As mentioned in the introduction, results similar to Theorems 1.1 and 1.2 apply if the
stress or velocity are controlled instead of the temperature or heat flux at an endpoint. For

example, consider the boundary control problem (1.5), (1.6), with the boundary conditions

oy1)(0) = g(t) Oyy(0) =0 t>0
(5.8) { y()() 9() ()()

vyy(1) = (1) quy(1) =0 ¢ >0.
This system can be shown to be equivalent to

dy

(5.9) = = AY() + b f() +bug(t),  y(0) =y,
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where A is defined by (1.8) and the input elements b, and b, are defined by
{ (bs,2) = —v,(0) = —22(0) Vz = (z1,22,23) € Hy,
(bv75> = Uz(l) - Zl(l) - 723(1) Vz= (21722723)l € Hl‘

Hence (5.8), (5.9) can be analyzed in the same manner as were (3.7), (3.9). In this way

one can obtain the following results which we state without proof.

PROPOSITION 5.5. Let y® = 0, f € L%(0,00), and ¢ € L?(0,00). Then the solution
to (1.5), (1.6), (5.8) belongs to C([0,00), Sy x Cy X Sy/2). If additionally, g = 0, then the
solution belongs to C([0,00), Sy X Cy x Sy). These solution spaces are optimal in the sense

that none of the indices {0,1/2,1} may be increased.

PROPOSITION 5.6. Assume 0 <y <1 in (1.5) and T > 2/ec.

(i) For the boundary control problem (1.5), (1.6), (5.8), with f = 0, any y° € H can be
controlled to zero by some g € L%[0,T]. The resulting solution is in C((0,T], Sy x Co x
S172) N C([0, T], H).

(ii) For the boundary control problem (1.5), (1.6), (5.8), with g = 0, any y° € H can be
controlled to zero by some f € L%[0,T]. The resulting solution is in C((0, T, So x Cp x
S1)NnC([0,T)], H).

In Propositions 5.5 and 5.6, the control time and all the spaces involved can be shown

to be optimal in the same sense that those of Theorems 1.1 and 1.2 are.

Appendix.

As described in Section 2 the eigenfunctions of A* consist of a real branch (ui)ren and
a non-real branch (o )rez, which are determined by the characteristic equations (2.1) and

satisfy the asymptotic estimates (2.2). The non-real branch consists of complex conjugate

pairs for which

(A.l) Ok = O0—k41 Yk € N.

Let rpy = kn — n/2 for k € N. For k € N the associated eigenfunctions are given by

(see [6])
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c2

SINTEZ ——  —sinrie
Ik COSTLT (e /r)? + e ‘
(A2) 1’/}0'k - Tk d’uk = (,uk/rk)c27
—yor . - —— COST}T
5 sin gz (tr/Ti)? + ¢
Ok + 1y SinTiT

For k < 0, %,, are given by conjugation, as in (A.1). The above eigenfunctions are
not normalized (as was assumed in Section 2), but they are almost normalized, that is,
their norms are bounded and bounded away from zero. Since all the estimates we derive
here concern only the asymptotic order, all the estimates remain valid for the normalized

eigenfunctions of Section 2.

For a sequence (ck)ren, let us say that ¢y = O(k®) if there are are positive numbers

m and M for which mk® < |c| < ME®. It can be seen from (2.1) and (2.2) that

O(1) - sinrgz O(k™2) - sinrgz
(A.3) Yo, = | O(1)-cosria Yu, = | O(k™) - cosryz
O(k~Y)sinrga O(1) - sinrgz

By [6, Remark 3.3], the eigenfunctions of A likewise satisfy

O(1) - sinrgz O(k=?) - sinrgz
(A.4) do, = | O(1):cosriz $u, = | O(k™1) cosriz
O(k~Y)sinrgz O(1) - sinrgz

Let by and b; denote the input elements defined by (3.7). From (A.2) and (A.3) we have

<b0’¢0k> = 0(1) (b0?¢#k> = O(k)

(A.5)
<b1?¢0k> = O(k_l) <b1’¢uk> = 0(1)

Proof of Lemma 3.8. The first equality in (3.14) is just (2.5). For the second, note
that H = Sg x Cy x Sp and Hy = 53 x C; x S3. It follows from standard properties of

interpolation spaces (e.g., [15]) that for « € [0, 1],

Ha = [HI)H]I—Q
= [Sl x Cy % 52,50 x Cg X So]l—oz
e Sa X Ca X SQQ.
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The above also holds for a € [—1, 0] by duality.

To prove (3.15), we first note from the eigenvalue estimates (2.1), for any o € R,

(A.6) Ay = {ch%zk | (cxk?*) € 12} :

k=1

Thus if @ = (21,22,23) = ) crppu, € Ay then by (A.4) and (A.6),
k=1

)
T, — ch . O(k‘—Q) -sinrgzr € S2+2a
k=1

Ty = ch cO(k™) - cosrrz € Ciyaa
k=1
O

Ty = ch -O(1)-sinrgz € Saq-
k=1

Hence Ay C Sa424 X Ciq2a X S2q. Theorem 2.1 and (A.6) imply that (k=2%¢,, ) forms a
Riesz basis for A,. Hence an equivalent norm |- | on A, is given by |z| = ||(ckk?%)||;2 =
|Psz||s,. Thus P is an isomorphism from Ay to So. Similar arguments show that (3.16)

holds and that P, IE is an isomorphism. []

LEMMA A.l. Let A be defined by (1.8). For 0 < v < 1 the spectrum of A consists

entirely of simple eigenvalues.

Proof. For k € Nlet ri, = kwm—n/2. First assume that for some k € N the characteristic

equation (2.1) has a double root, i.e., pi(z) = (22 + ¢?)(z + r1) + ¥%cz can be written as
pi(z) = (z +a)(= +b)’,

where a and b are positive. (Any double root is clearly real, and the roots must be negative

since A is dissipative.) Equating coeflicients of the two polynomials leads to

a+2b)(2a+b
gt (2D,

which is impossible with 42 < 8. Thus if A is a double eigenvalue there exists distinct

positive integers j, k such that pr(A/rr) = 0 and p;j(A/r;) = 0. This can be written as
(A.7) N2 LA+ + Py =0
(A.8) AN+ AP (1) + 027";1- = 0.
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Let G=1+42 S=ri+ r;"- and P = T%r?. By eliminating the A% term, and respectively
the constant term in (A.7), (A.8), we find (using A # 0)
M4 AEG+ %S =0,
A2S + AP + PGP = 0.

All the coeflicients are positive. We again eliminate the highest order terms, and respec-

tively the constant terms, to obtain

(A.9) AcGS — P) 4+ ¢*(S* — GP) =0,
(A.10) MGP — §*)+ P(*G* - S) = 0.

It is easy to show that if any of the coefficients in (A.9) or (A.10) are zero, then they all

are. In this case we have GP = S%, but this is impossible for ¥2 < 3 since
(A.11) S% = (ri + 7“?)2 > 4(7‘%7“?) =4P.

We may thus assume that none of the coefficients in (A.9) or (A.10) are zero. Next we

eliminate A from (A.9), (A.10) and find

*G* + *S(S*/PG —3)+ P/G = 0.

2

Since ¢? is positive, the coefficient of ¢? must be negative, and the discriminant (of the

quadratic polynomial in ¢?) must be positive. This leads to

2 2
(;C,—:%) > 4/3,

which is impossible by (A.11) for v2 < 1. ]

Remark A.2. Its worth noting that double eigenvalues are possible if v is larger: if
¢ = 817%/4000 and 4% = 91/9 then X\ = (9/40)7? exp(i27/3) is a double eigenvalue
(corresponding to k = 1 and j = 2 in the notation of (A.7), (A.8)). This shows that
null-controllability does not hold for all ¥ > 0. Our restriction: 0 < v < 1 is only sufficient

to insure that no double eigenvalues occur.
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