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Boundary Control Theory for Hyperbolic
and Parabolic Partial Differential Equations

with Constant Coefficients (*).

WALTER LITTMAN (**)

~ 

dedicated to Hans Lewy

1. - Introduction.

Suppose we have a well-posed initial-boundary value problem for a
hyperbolic or parabolic equation Lu = 0 in a cylindrical domain D = D X
X[0, oo), where D is a bounded domain in Rn. One basic problem of
boundary control theory is that of null-controllability: given initial data
in D at t = 0, can this data be supplemented with appropriate non-homo-
geneous time dependent boundary data, prescribed on the lateral boundary
of S~, such that the solution of the resulting initial boundary value problem
will vanish for t &#x3E; T? Furthermore, how small can T be chosen? For the

wave equation, the heat equation and more general second order equations
this problem has been treated by Russell [9], Fattorini [2], Seidman [10]
and others. For additional references see these works.

The present work was to a large extent inspired by two sources, which
we are happy to acknowledge: A number of very instructive conversations
with L. Markus which acquainted us with the basic problems and work
done in the area; secondly, a lecture given by Frank Jones in November 1973,
the subject of which we shall describe shortly.

Once instance where the problem of boundary control theory has a rather
straight-forward solution is the wave equation in an odd number of space

(*) Partially supported by NSF Grant MCS 76-05853 the University of Min-
nesota.

(**) University of Minnesota, School of Mathematics, Minneapolis, Minnesota.
Pervenuto alla Redazione il 28 Luglio 1977.
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dimensions greater than one. (See Russell [9]). One simply extends the
initial data outside D with support in a slightly larger set, and proceeds
to solve the pure initial value problem with this data. Since the Riemann

function for this problem has support on the surface of a (forward) cone
(Huygen’s principle), the solution restricted to ,~ will vanish for t &#x3E; T,
where T can be determined from the geometry of D. The appropriate
boundary data for the control problem is then simply read off from the
solution determined as described above. Let us note that this procedure works
whenever the Riemann function has an appropriate lacuna.

Frank Jones’ result [7], alluded to earlier, consists in constructing a
fundamental solution to the heat equation which can play the same role
in the boundary control problem for the heat equation that the ordinary
Riemann function plays for the (odd space dimensional) wave equation-a
role for which the ordinary fundamental solution of the heat equation is
not suited. Jones constructs a fundamental solution with support in 0 
with s &#x3E; 0 arbitrary.

The methods just described have several advantages. One is that the
boundary control problem is solved once and for all without reference to
any specific initial boundary value problem. Another is that one need only
have uniqueness for the mixed problem. The existence of a solution to the
control problem is a consequence of the procedure. (Uniqueness of the solu-
tion of the control problem is not asserted here and is, in general, not valid
under our hypotheses.) A third advantage of the procedure is that it is not
restricted to cylindrical domains.

We briefly describe the content in the remainder of the paper. Section 2

reviews some elementary facts about hyperbolic operators for n = 1. In

section 3 we treat the boundary control problem for strictly hyperbolic
equations in one space variable (which curiously enough, is not quite as
immediate as the case n odd &#x3E; 1). We dwell at greater length on the one
dimensional case than might seem necessary mainly because the basis of
the method is encountered here already. In section four we use a plane
wave decomposition to treat the n dimensional hyperbolic case. Section

five deals with a’ parabolic equation in one dimension, while section six
deals with the n-dimensional case, again via a plane wave decomposition.
The main theorem for the parabolic case is stated at the end of that

section.

This paper emphasizes methods and qualitative results. Thus, for the
sake of simplifying proofs, we assume strict hyperbolicity, although results
continue to hold for general hyperbolic operators with constant coefficients
with slight modifications in the proofs. We are also content with stating
all results in the context of C°° functions, at least in the hyperbolic case.
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We intend to discuss estimates in Sobolev norms (for the hyperbolic case),
more general equations, variable coefficients and other aspects of the problem
at another time.

The subject of this paper was presented at the Conference on Partial
Differential Equations held at Oberwolfach, March 1975.

2. - Some elementary facts concerning hyperbolic equations in one space
dimension.

. We first treat the case of a strictly hyperbolic operator corresponding
to a homogeneous polynomial (i. e., with no lower order terms)

where we assume that a 0 0, the a’s are real and, for the sake of simplicity,
distinct. The differential operator t = a(a/ax) -f- alat represents a directional
derivative in the direction (oc, 1) and has two fundamental solutions, g-
and g+, i.e., solutions to the equation £g = (x) b(t), both being measures
with support on the line at = x; g+ vanishing for negative t, g- for posi-
tive t.

Both represent signals propagating with velocity ce and beginning or
ending at x = 0, t = 0.

Let us assume that none of the cxi vanish, i.e., there is no zero velocity
of propagation. Then we gain complete symmetry between the x and t
variables. Moreover each operator ~i = -~- a/at will have two fun-
damental solutions each of which can be uniquely determined by specifying
support either in the upper or lower (closed) half plane--or alternately,
in the right or left half plane. Convoluting the fundamental solutions for Li
with support in the (upper, lower, right, left) half plane we obtain, apart
from a constant factor, a fundamental solution (G+, G_, GR, G,) to the

operator L with support in that half plane. The actual support of G+ is
the sector in the upper half plane bounded by the two lines (passing through
the origin) corresponding to the algebraically lowest and highest velocity
of propagation; min ai and max aii. Letting we see that GR(GL)
will have support in the sector in the right (left) half plane bounded by
the rays corresponding to the algebraically lowest and highest reciprocal
velocity: i.e., min Ai and max Âi. It will be of importance to us to notice
that if we let X = max then the support of GR(GL) is contained in the
intersection of the set  X with the right (left) half plane.
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Next we consider operators with lower order terms

where Q(~, 7:) is a polynomial with complex coefficients of degree  m.

L has four fundamental solutions, y which we again denote by Gt, GR, GL,
having the same supports as those for P m(D). Furthermore these will vary
continuously with the coefficients of the operator, as long as the speeds of
propagation remain separated.

3. - The hyperbolic case, n =1.

Let L = P(Dx, Dt) be a strictly hyperbolic operator (n = 1 ), and let
5 be the reciprocal of the slowest speed of propagation, = 1/min 

THEOREM 1. Let C°° Cauchy data be prescribed at t = 0 in the closed in-
terval 1 on the x axis. Then there exist 000 solution v to Lv = 0 in 1 X [0, 00),
assuming this Cauchy data, vanishing for t &#x3E; T 1, where T 1 is any number

exceeding To =- diameter 1 

We recall that by C°°(I) (for a closed interval Ï) we mean functions
extendable to C°° in a larger interval.

PROOF. Extend the initial data to a Co function with support in a
slightly larger interval 1, contained in an s neighborhood of I, and solve
the equation Luc = 0 with the extended Cauchy data for all - oo  x ~ oo,

Call the solution u. Let cp(t) be a C°° function equal to one for
and zero for t ~ 2 .~’1-~- E, and set L(ugg)

If m denotes the mid-point of I, let W be a C°° function equal to one
for and zero for x&#x3E;m+8, and set

and

« *)} denoting involution, and G, and GR the fundamental solutions described
in the last section. For 8 sufficiently small (which we now so choose) ~IL
and U R are C°° and each vanish in neighborhoods of the sets
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(This is of course a consequence of the estimates of the supports of GL and G,
of the previous section.) Hence the sum TI = does also, and more-
over satisfies Lu = f. Next, set We have Zv = 0, 
v agrees with u near t = 0, has the originally assigned Cauchy data in I,
and vanishes for Hence it is a desired solution.

4. - The n dimensional hyperbolic case.

We shall accomplish the transition from one to several space dimen-
sions by a standard device-a plane wave decomposition. To that affect,
let us recall some basic facts concerning such decompositions, as described
for example by Ludwig [8]. For /e8(.B") (S is the Schwartz space of

rapidly decreasing C°° functions) the Radon transform is defined by

where c~ is a unit vector and represents 11, - 1 dimensional surface area,
oo. For g = g(s, w) define

.H denoting the (one dimensional) Hilbert transform. Then a plane wave
decomposition

is accomplished by setting

If f belongs to then is infinitely differentiable in s and c~. In

our applications the function will depend on another parameter, t, and
part of the last statement has a more quantitative version:
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Here v and y are integers depending on the dimension n; k is an arbitrary
non negative integer; the maximum on the left is taken over all s E .R1 while
the one on the right is taken over all x E Rn. Both maxima may also be

taken over the same closed t interval. « Const. &#x3E;&#x3E; depends only on n.
We are now ready to treat the case of a strictly hyperbolic operator

with constant coefficients in n-space dimensions. Let L = 

be such an operator, and D a bounded domain in Rn. For each (spacial)
direction w (i.e., unit vector in x-space) let . denote the reciprocal of the
slowest speed of propagation in the (o direction. Let dm be the diameter
of the w-projection of D, i.e., D projected on a line parallel to the a) vector.
Let To = sup ~,~, ~ do.

m

THEOREM 2. Given assigned 000 Cauchy data at t = 0 on D (which can be
extended as 000 f unctions in a neighborhood of D) ; then for each Tx &#x3E; T, there
exists a solutions v to Lv = 0 in D X ~t &#x3E; 0} assuming the prescribed Cauchy
data in D and vanishing in 

(Note: D = closure of D.)

PROOF. Let us extend the Cauchy data so as to be C°° and have support
in an 8 neighborhood of D, and let us solve the resulting Cauchy problem in
all of jR"x(00), calling the solution u. Let PI be as in the statement of
the theorem and let, as before,

where is a C°° function such that

For each unit vector co let

i.e., the ro projection of D, and let m. denote the mid point of 1w. Let W(s)
be such that
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and set.

be the plane wave decomposition of f, and let

We note that

where Dt) is a strictly hyperbolic operator in s, t space depending
in a C°° way of (o, having the strict hyperbolicity maintained uniformly
with respect to co. As a matter of fact, the polynomial Pw(a, 7:) is nothing
else but the polynomial P(~, 7:) restricted to the 2-plane in ~ - r space which
contains the t-axis and the OJ vector, with a = ~.

From the case n = 1 we know that the operator Dt) = Lro has
fundamental solutions

with supports contained in the sets

(respectively), where 5m is the maximal reciprocal propagation speed for Zo.
Letting

(with convolutions carried out in s - t space) we notice that these func-
tions are Coo in s, t, w and satisfy

hence

(and the same with « R »), with the supports of U WL and U WR both con-

37 - Annali della Scuola Sup. di Pisa
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tained in a neighborhood S’ of the set

Moreover ~5~, approaches Sm as E - 0. A moment’s reflection shows that
for e sufficiently small (which we now so choose), the set S, is bounded

away from the sets

and hence from the sets

1-1 ’I.

and

which are contained in the above sets (respectively). It follows that the

supports of UroL and UWR both are bounded away from (*) and (~~), uni-
formly in Hence, y if we define

U will be a C°’ solution to

vanishing in neighborhood of (*) and (**). Defining (as in the case n = 1)

we see that v satisfies all requirements of the theorem.

5. - The parabolic case n =1.

To motivate our procedure, we rederive Frank Jones’ result for the
one dimensional heat equation along somewhat different lines. We wish
to imitate the procedure followed in the hyperbolic case. We begin by
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solving the traditional initial value problem, prescribing as initial data d(x),
thus arriving at the standard fundamental solution G+(x, t), with support
in t &#x3E; 0. Our next step would be to multiply G+ by a cut-off function T(t),
this time choosing (p(t) equal to one for It  E and equal to zero for It &#x3E; 28.

To proceed with the analogy, we then must look for the analogue of G,
and GR with supports in neighborhoods of the negative and positive x axis
respectively. Such fundamental solutions do not exist as distributions, but
they do exist formally (see Ehrenpreis [l], p. 209)

where 6"1 is the i-th derivative of 6(t) and x+ = max (x, 0). This « funda-

mental solution » has support in (x &#x3E;- 0, t = 0) and may be interpreted as a
functional in a space of functions satisfying a Gevrey condition of index
 2 in t. A second « fundamental solution » having support on (x ~ 0, t = 0),
may be obtained by replacing x+ by x_ - Let us hasten to add

that the existence of these generalized fundamental solutions is nothing
but a reformulation of the observation of Holmgren [5] to the effect that
the Cauchy problem for the heat equation in one space dimension can be
solved if Cauchy data in an appropriate Gevrey class is prescribed on the
taxis.

Digression on the spaces y-5. From the above discussion it becomes clear
that we should choose the cut-off function 99(t) in an appropriate Gevrey
class. Instead we choose to work with a variation of the ya classes. (For
these spaces and their properties see Hormander [6], p. 146). We say 99(t) E
E c 1~ belongs to y’o if for every 8 &#x3E; 0 there is a constant C~
such that

We define y2 = t) as the space of continuous functions t) belonging
for each x to with bounds uniform in x, and yy 6 = ’5(x, t) the space of
continuous functions belonging for each x to yf(t) with bounds uniform
in x on bounded subsets of x-space. We shall always pick 1 c ~  2.

We now come back to the parabolic equation

where A is a one dimensional differential operator with constant coefficients
of order m &#x3E; 1. (The procedure with some modifications, y also works with
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variables coefficients depending on x only). We assume that the highest
order term in A is of even order and has positive coefficients. Under these
conditions L has a fundamental solution G+ with support in 00 which is
analytic for t &#x3E; 0. We now proceed with the construction of formal fun-
damental solutions analogous to the ones exhibited for the heat

equation. Denoting by T, we set

(with G, defined similarly), where is the unique solu-
tion to A i+1 a --- ~ (x) with support on 0153&#x3E;O (0153:O). A simple computation
verifies that these are indeed formal fundamental solutions.

As a convenience we shall from now on always choose 8 so that 0  8  l.
Having chosen the cut-off with = 0 for t J ~ 2E and
= 1 for we choose E 000 equal to one for x c -1 and zero for

set

and notice that these functions belong to y~, (together with all their x deri-
vatives) and have their supports in the sets (respectively)

We would like to define

provided we can attribute a meaning to these expressions, and then proceed
as in the hyperbolic case. Formally,

x+l
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For y in a bounded interval I, we have the estimate

(similarly for a, and y  0). For fR,L we have the estimate

with a similar estimate holding for any finite number of x derivatives of f
replacing f.

An application of Stirling’s formula now insures the absolute and uniform
convergence of the series defining UR L in any finite interval I. Further-

more, y the series may be differentiated with respect to x or t any number

of times without affecting the convergence, thus justifying the hitherto
formal relations

Setting v = U R - U L we see that Lv = 0 for t &#x3E; 0, v agrees with G+
for t  8 and vanishes for t ~ 2E, hence is our desired fundamental solution.
Let us note that an alternative to the use of G, and GR would have been
to apply Theorem 5.73 of H6rmander[6]. However then the construction

would not generalize to variable coefficients (for n = 1).

6. - The parabolic case n &#x3E; 1.

If we assume that .L is parabolic in the sense that
being the principal part of A. Under these condi.

tions there exists a fundamental solution G(x, t) with support in t &#x3E; 0, ana-

lytic in x and t for t &#x3E; 0. We shall use the following

Estimates for the standard f undamental solution :

where h(x) ---&#x3E; 0 faster than any negative power of l0153l as Ixl - oo, and where
C and K may depend on to and tl . may be estimated similarly
with C replaced by Ck . To see this we examine the proof (see for ex. [3]
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or [4]) of the estimate

valid for 0 C to ~ t ~ t~, and some h &#x3E; 1. We notice that the same estimate
holds for complex t contained in a disk

and 6 sufficiently small, depending on to, ti but not on t2. Standard esti-

mates for derivatives of complex analytic function then give the first esti-
mate. The same argument can be applied to DfG, yielding different con-
stants.

We now proceed as before.
Using Stirling’s formula we see that f(x, t) = L(q(t)G) satisfies an esti-

mate

for 0 &#x3E; 0, with h(x) --&#x3E; 0 faster than any negative power of lxl.
Using the estimates for t) and its derivatives stated in the first part

of section 4, we see that fw(s, t) and each s derivative belongs to y’(,g, t),
uniformly in co. The same may be said for

where ~( ~ ) is the same 000 cut-off function as in the case n = 1.

The operator

defined (as in section 4) by

is again parabolic, uniformly with respect to OJ, and varies smoothy with c~.
We form

as in the case n = 1. The series involved will converge absolutely and
uniformly on bounded s intervals and uniformly in OJ, and the same holds
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for the differentiated series. We use here the fact that because of the para-

bolicity assumption, the operator A.(D,,) has its highest order coefficient
bounded away from zero, uniformly in c~, from which the estimate for a~,,L 1(s)
(analogous to the one in section 5) can be made uniform in (o.

The desired fundamental solution is then

We have thus proved

THEOREM 3. Let L = A(Dx) - alat be a parabolic operator (as defined
earlier in this section) in Rn X (- 00 t  (0). Then 0 there exists

a fundamental solution with support in the strip 0  t  8, which is Coo awacy

f rom the origin.

The following theorem and corollary were proved by Frank Jones for
the heat equation [7]. As he remarks, the proof remains valid for more
general parabolic equations having fundamental solutions with support in
0  t  s. Applying his proof to our operator .L we obtain

THEOREM 4. Let L = P(Dz) - alat be parabolic in the sense of this sec-
tion. Let f belong to and suppose supp f c Rn x [a, b). Then there

exists u in such that Lu = f and supp u c Rn X [a, b].

COROLLARY. Let g be a continuous f unction on Rn and 8 &#x3E; 0. Then there

exists a continuous function u on Ran X [0, (0) such that
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