
Ann. I. H. Poincaré – AN 26 (2009) 457–475
www.elsevier.com/locate/anihpc

Boundary controllability for the nonlinear Korteweg–de Vries
equation on any critical domain ✩

Eduardo Cerpa a, Emmanuelle Crépeau b,c,∗

a Université Paris-Sud, Laboratoire de Mathématiques d’Orsay, Bât. 425, 91405 Orsay Cedex, France
b INRIA Rocquencourt, Domaine de Voluceau, 78150 Le Chesnay, France

c Université de Versailles Saint-Quentin en Yvelines, 78035 Versailles, France

Received 27 April 2007; received in revised form 6 November 2007; accepted 6 November 2007

Available online 25 January 2008

Abstract

It is known that the linear Korteweg–de Vries (KdV) equation with homogeneous Dirichlet boundary conditions and Neumann
boundary control is not controllable for some critical spatial domains. In this paper, we prove in these critical cases, that the
nonlinear KdV equation is locally controllable around the origin provided that the time of control is large enough. It is done by
performing a power series expansion of the solution and studying the cascade system resulting of this expansion.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main result

Let L > 0 be fixed. Let us consider the following Neumann boundary control system for the Korteweg–de Vries
(KdV) equation with homogeneous Dirichlet boundary conditions{

yt + yx + yxxx + yyx = 0,

y(t,0) = y(t,L) = 0,

yx(t,L) = κ(t),

(1)

where the state is y(t, ·) : [0,L] → R and the control is κ(t) ∈ R. This equation has been introduced by Korteweg and
de Vries in [16] to describe the propagation of small amplitude long waves in a uniform channel. The KdV equation
also appears in the study of various physical phenomena like long internal waves in a density-stratified ocean, ionic-
acoustic waves in a plasma, etc.

In this paper, we are concerned with the controllability of (1). More precisely, for a time T > 0, we want to prove
the following local exact controllability property.
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P (T ) There exists r > 0 such that, for every (y0, yT ) ∈ L2(0,L)2 with ‖y0‖L2(0,L) < r and ‖yT ‖L2(0,L) < r , there
exist κ ∈ L2(0, T ) and

y ∈ C
([0, T ],L2(0,L)

) ∩ L2(0, T ,H 1(0,L)
)

satisfying (1), y(0, ·) = y0 and y(T , ·) = yT .

In order to deal with the nonlinear term in (1), one can perform a power series expansion of (y, κ) around 0. To
find the different terms of this development, one can write, formally, for a parameter ε small,

y = εα + ε2β + ε3γ + · · · ,
κ = εu + ε2v + ε3w + · · ·

thus, the nonlinear term can be written as

yyx = ε2ααx + ε3(αβ)x + (higher terms)

and therefore the three main orders are given by{
αt + αx + αxxx = 0,

α(t,0) = α(t,L) = 0,

αx(t,L) = u(t),

(2)

{
βt + βx + βxxx = −ααx,

β(t,0) = β(t,L) = 0,

βx(t,L) = v(t),

(3)

and {
γt + γx + γxxx = −(αβ)x,

γ (t,0) = γ (t,L) = 0,

γx(t,L) = w(t).

(4)

In [18] Rosier studies the control system (1) by using a first order expansion, i.e. he considers the linear control
system (2) where the state is α(t, ·) : [0,L] → R and the control is u(t) ∈ R. First, by using multiplier technique and
the HUM method (see [17]), he proves that (2) is exactly controllable if and only if

L /∈ N :=
{

2π

√
k2 + kl + l2

3
; k, l ∈ N

∗
}
, (5)

and then, by means of a fixed point theorem, he gets the following result.

Theorem 1.1. (See [18, Theorem 1.3].) If L /∈ N , then property P (T ) holds for every T > 0.

Remark 1.2. If one is allowed to use more than one boundary control input, there is no critical spatial domain and the
exact controllability holds for any L > 0. More precisely, let us consider the nonlinear control system{

yt + yx + yxxx + yyx = 0,

y(t,0) = u1(t), y(t,L) = u2(t), yx(t,L) = u3(t),
(6)

where the controls are u1(t), u2(t) and u3(t). As it has been pointed out by Rosier in [18], for every L > 0 the system
(6) with u1 ≡ 0 is locally exactly controllable in L2(0,L) around the origin. Moreover, using all the three control
inputs, Zhang proves in [22] that for every L > 0, the system (6) is exactly controllable in the space Hs(0,L) for any
s � 0, in a neighborhood of a given smooth solution of the KdV equation.

If L ∈ N , one says that L is a critical length since the linear control system (2) is no more controllable. Indeed,
Rosier proves in [18] that there exists a finite-dimensional subspace of L2(0,L), denoted by M = M(L), which is
unreachable from 0 for the linear system. More precisely, for every nonzero state ψ ∈ M , for every u ∈ L2(0, T ) and
for every α ∈ C([0, T ],L2(0,L)) ∩ L2(0, T ,H 1(0,L)) satisfying (2) and α(0, ·) = 0, one has α(T , ·) �= ψ .
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Let us recall the description of M given in [4]. Let L ∈ N . There exist n distinct pairs (kj , lj ) ∈ N
∗ × N

∗ with
kj � lj such that

∀j ∈ {1, . . . , n}, L = 2π

√
k2
j + kj lj + l2

j

3
. (7)

(
L = 2π

√
k2 + kl + l2

3
, k � l, k, l ∈ N

∗
)


⇒ (∃j ∈ {1, . . . , n} s.t. k = kj and l = lj ). (8)

Let us introduce the notation

J> := {
j ∈ {1, . . . , n}; kj > lj

}
, J= := {

j ∈ {1, . . . , n}; kj = lj
}
, n> := ∣∣J>

∣∣. (9)

For every j ∈ {1, . . . , n}, we define the real number

pj := (2kj + lj )(kj − lj )(2lj + kj )

(
2π

3L

)3

. (10)

We have then (see [18]),

ξ3 − ξ + pj = (
ξ − γ

j

1

)(
ξ − γ

j

2

)(
ξ − γ

j

3

)
with ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ
j

1 = −1

3
(2kj + lj )

2π

L
,

γ
j

2 = γ
j

1 + kj

2π

L
,

γ
j

3 = γ
j

2 + lj
2π

L
.

(11)

Lemma 1.3. With the previous notations, we get

1. if j ∈ J>, pj �= 0,
2. if j ∈ J=, pj = 0,
3. if i �= j , pi �= pj .

Proof. Items 1. and 2. are obvious with (10). Let i, j ∈ J such that pi = pj . Then, γ i
k = γ

j
k for k = 1,2,3. With the

definitions of γ
j
k , (11) we obtain ki = kj , li = lj and hence i = j . �

Remark 1.4. We can easily notice that |J=| � 1.

Thus we can reorganize the indexes such that

p1 > p2 > · · · > pn � 0.

With this notation, we define,

• for j ∈ J>, the subspace of L2(0,L)

Mj := {
λ1ϕ

j

1 + λ2ϕ
j

2 ; λ1, λ2 ∈ R
} = 〈

ϕ
j

1 , ϕ
j

2

〉
,

where the real-valued functions ϕ
j

1 , ϕ
j

2 are given by

ϕ
j

1 (x) := Cj

(
cos

(
γ

j

1 x
) − γ

j

1 − γ
j

3

γ
j

2 − γ
j

3

cos
(
γ

j

2 x
) + γ

j

1 − γ
j

2

γ
j

2 − γ
j

3

cos
(
γ

j

3 x
))

,

ϕ
j

2 (x) := Cj

(
sin

(
γ

j

1 x
) − γ

j

1 − γ
j

3

γ
j

2 − γ
j

3

sin
(
γ

j

2 x
) + γ

j

1 − γ
j

2

γ
j

2 − γ
j

3

sin
(
γ

j

3 x
))

, (12)

where Cj is a constant chosen so that ‖ϕj‖L2(0,L) = ‖ϕj‖L2(0,L) = 1;
1 2
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• for j ∈ J=, the subspace of L2(0,L)

Mj := {
λ(1 − cosx); λ ∈ R

} = 〈
1 − cos(x)

〉
.

Then, one can define the following subspaces of L2(0,L)

M :=
n⊕

j=1

Mj and H := M⊥.

Note that

n>⋃
j=1

{
ϕ

j

1 , ϕ
j

2

}
(if L �= 2πk for any k) or

{
1 − cos(x)

} n>⋃
j=1

{
ϕ

j

1 , ϕ
j

2

}
(if L = 2πk for some k)

is an orthogonal basis from M .
The subspace H is the space of reachable states for the linear control system. More precisely, from the work of

Rosier one has the exact controllability in H for the control system (2).

Theorem 1.5. Let L > 0 and T > 0. For every (y0, yT ) ∈ H × H , there exist u ∈ L2(0, T ) and α ∈ C([0, T ],
L2(0,L)) ∩ L2(0, T ,H 1(0,L)) satisfying (2), α(0, ·) = y0 and α(T , ·) = yT .

In [11], Coron and Crépeau study the first critical case:

n = 1 and k1 = l1 = k.

In this case the subspace M is one-dimensional. First, they prove that one can reach all the missed directions lying
in M , i.e. (1 − cos(x)) and (cos(x) − 1), with a third order power series expansion.

Proposition 1.6. (See [11, Proposition 8].) Let L ∈ N be such that dimM(L) = 1. Let T > 0. There exist
(u±, v±,w±) ∈ L2(0, T )3 such that if α±, β±, γ ± are the solutions of (2), (3) and (4) with initial conditions

α±(0, ·) = 0, β±(0, ·) = 0, γ ±(0, ·) = 0,

then

α±(T , ·) = 0, β±(T , ·) = 0, γ ±(T , ·) = ±(
1 − cos(x)

)
.

Then, using Theorem 1.5 and a fixed point theorem, they prove that property P (T ) holds for every T > 0
[11, Theorem 2]. They also prove that for this first critical case, a second order expansion is not sufficient to enter
into the subspace M [11, Corollary 19].

Remark 1.7. The proof of P (T ) given in [11] requires that the subspace M is one-dimensional, but this is not implied
by the fact that L = 2kπ for some k ∈ N

∗. It is necessary to add a condition as the following one(
m2 + mn + n2 = 3k2,m ∈ N

∗, n ∈ N
∗) ⇒ (m = n = k). (13)

This condition, not explicitly given in [11], appears in [10]. In this book it is also proved that there are infinitely many
positive integers k satisfying (13) and therefore there are infinitely many lengths L such that M is one-dimensional.

In [4], the same approach is used to treat the second critical case:

n = 1 and k1 > l1.

In this case, the space M is two-dimensional and a second order expansion allows to enter into the subspace M .
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Proposition 1.8. (See [4, Proposition 3.1].) Let L ∈ N be such that dimM(L) = 2. Let T > 0. There exist
u,v ∈ L2(0, T ) such that if α,β are the solutions of (2) and (3) with initial conditions

α(0, ·) = 0, β(0, ·) = 0,

then

α(T , ·) = 0, β(T , ·) ∈ M \ {0}.

It is also proved that if the time of control is large enough, one can reach all the missed directions. Using this and a
fixed point argument, one obtains property P (T ) provided that the time of control T is large enough [4, Theorem 1.4].

The aim of this paper is to prove P (T ) in the critical cases for which n > 1, i.e. when the dimension of the subspace
M is higher than 2. We use an expansion to the second order if L �= 2πk for any k ∈ N

∗ and an expansion to the third
order if L = 2πk for some k ∈ N

∗. Our main result is the following.

Theorem 1.9. Let L ∈ N . Then, there exists TL � 0 such that P (T ) holds provided that T > TL.

The paper is organized as follows. First, in Section 2, we recall the well-posedness results for both linear and
nonlinear KdV control systems. Next, in Section 3, we prove by using a second order power series expansion, that
one can reach all the missed states in the subspaces Mj for j ∈ J>. Then, in Section 4, we prove that if L = 2πk, one
can reach the missed states ±(1 − cos(x)) with a third order expansion and finally, in Section 5 we get Theorem 1.9
by using a fixed point argument.

Remark 1.10. From our proof of Theorem 1.9, it follows that there exists a constant C > 0 such that for every
y0, yT ∈ L2(0,L) small enough, the solution y and the control κ given by property P (T ) satisfy

‖y‖C([0,T ],L2(0,L)) + ‖y‖L2(0,T ,H 1(0,L)) + ‖κ‖L2(0,T ) � C
(‖y0‖L2(0,L) + ‖yT ‖L2(0,L)

)1/3

if L = 2kπ for some k ∈ N
∗ and

‖y‖C([0,T ],L2(0,L)) + ‖y‖L2(0,T ,H 1(0,L)) + ‖κ‖L2(0,T ) � C
(‖y0‖L2(0,L) + ‖yT ‖L2(0,L)

)1/2

if L �= 2kπ for any k ∈ N
∗. The power 1/3 and 1/2 come from the order of the series expansion needed in each case.

Remark 1.11. One can find other results on the controllability of KdV control systems in [14,19–22] and the refer-
ences therein.

Remark 1.12. The power series expansion method is a classical tool to study finite-dimensional control systems. It
has been used for the first time in infinite dimension in [11]; see also [4] as well as [2] for a Schrödinger equation.
This method and others such as quasi-static deformations (see [1,12,13] and [10, Chapter 7]) and the return method
(see [1,6–8] and [10, Chapter 6]) are very useful to deal with nonlinear systems and to get properties which are not a
consequence of the linearized system behavior.

2. Well-posedness results

The aim of this section is to precise what we mean by “a solution” of the KdV equations appearing in this paper
and to recall the existence and uniqueness results we will use.

Let us introduce the space B := C([0, T ],L2(0,L)) ∩ L2(0, T ,H 1(0,L)) endowed with the norm

‖y‖B := max
t∈[0,T ]

∥∥y(t)
∥∥

L2(0,L)
+

( T∫
0

∥∥y(t)
∥∥2

H 1(0,L)
dt

)1/2

.

Let us begin with the linear case.
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Definition 2.1. Let T > 0, f ∈ L1(0, T ,L2(0,L)), y0 ∈ L2(0,L) and κ ∈ L2(0, T ) be given. A solution of the Cauchy
problem⎧⎪⎨

⎪⎩
yt + yx + yxxx = f,

y(t,0) = y(t,L) = 0,

yx(t,L) = κ(t),

y(0, ·) = y0,

(14)

is a function y ∈ B such that, for every τ ∈ [0, T ] and for every φ ∈ C3([0, τ ] × [0,L]) satisfying

φ(t,0) = φ(t,L) = φx(t,0) = 0, ∀t ∈ [0, τ ],
one has

−
τ∫

0

L∫
0

(φt + φx + φxxx)y dx dt −
τ∫

0

κ(t)φx(t,L)dt +
L∫

0

y(τ, x)φ(τ, x) dx −
L∫

0

y0(x)φ(0, x) dx

=
τ∫

0

L∫
0

f φ dx dt.

With this definition and from the work of Rosier in [18], we have the following result.

Theorem 2.2. Let T > 0, f ∈ L1(0, T ,L2(0,L)), y0 ∈ L2(0,L) and κ ∈ L2(0, T ). Then, there exists one and only
one solution of the Cauchy problem (14).

Let us now give the definition of a solution for the nonlinear equation.

Definition 2.3. Let T > 0, g ∈ L1(0, T ,L2(0,L)), y0 ∈ L2(0,L) and κ ∈ L2(0, T ) be given. A solution of the Cauchy
problem⎧⎪⎨

⎪⎩
yt + yx + yxxx + yyx = g,

y(t,0) = y(t,L) = 0,

yx(t,L) = κ(t),

y(0, ·) = y0,

(15)

is a function y ∈ B satisfying (14) with f = g − yyx .

Remark 2.4. Note that if y ∈ B, then yyx ∈ L1(0, T ,L2(0,L)) and therefore (g − yyx) as well.

Theorem 2.5. (See [11, Appendix].) Let T > 0. Then there exists ε > 0 such that, for every g ∈ L1(0, T ,L2(0,L)),
y0 ∈ L2(0,L) and κ ∈ L2(0, T ) satisfying

‖g‖L1(0,T ,L2(0,L)) + ‖y0‖L2(0,L) + ‖κ‖L2(0,T ) � ε, (16)

the Cauchy problem (15) has one and only one solution. Furthermore, there exists a constant C > 0 such that this
solution satisfies

‖y‖B � C
(‖g‖L1(0,T ,L2(0,L)) + ‖y0‖L2(0,L) + ‖κ‖L2(0,T )

)
. (17)

Remark 2.6. In [3] and [15], one can find some well-posedness results in the case where there are nonhomogeneous
Dirichlet boundary conditions.

Remark 2.7. Recently, in [5] the author proved Theorem 2.5 with ε = ∞, that is, without a smallness condition on
the data.
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3. Motion in the missed subspaces Mj , for j ∈∈∈ J>

Here and in the sequel, we denote by L a critical length such that dimM(L) > 2 and by PA the orthogonal
projection on a subspace A in L2(0,L). We also adopt the notations introduced in Section 1.

The first point is that for any j ∈ J>, we can enter into the two-dimensional subspace Mj . The strategy is the same
as in [11] and [4]. We consider a power series expansion of (y, κ) with the same scaling on the state y and on the
control κ . One has the following result that can be proved in the same way as in [4, Proposition 3.1].

Proposition 3.1. Let T > 0. For every i = 1, . . . , n>, there exists (ui, vi) ∈ L2(0, T )2 such that if αi = αi(t, x) and
βi = βi(t, x) are the solutions of⎧⎪⎨

⎪⎩
αit + αix + αixxx = 0,

αi(t,0) = αi(t,L) = 0,

αix(t,L) = ui(t),

αi(0, ·) = 0,

(18)

and ⎧⎪⎨
⎪⎩

βit + βix + βixxx = −αiαix,

βi(t,0) = βi(t,L) = 0,

βix(t,L) = vi(t),

βi(0, ·) = 0,

(19)

then

αi(T , ·) = 0, PH

(
βi(T , ·)) = 0 and PMi

(
βi(T , ·)) �= 0.

Let us denote, for j = 1, . . . , n>,

φ
j
i := PMj

(
βi(T , ·)).

From Proposition 3.1, φi
i �= 0. Consequently, using scaling on the controls, we can assume that ‖φi

i‖L2(0,L) = 1. Notice

that the previous proposition says nothing about φ
j
i for j �= i.

Now, we shall prove that we can reach all the states lying in the subspace

M> :=
⊕
i∈J>

Mi,

in any time T > T >, where

T > := π

n>∑
i=1

(
n> + 1 − i

) 1

pi

.

In order to do that, we will strongly use the fact (proved in [4]) that if there is no control (i.e. κ = 0) and if the initial
condition lies in Mj for j ∈ J> (i.e. y0 ∈ Mj ), then the solution y of the linear KdV equation only turns in the two-
dimensional subspace Mj with an angular velocity equal to pj (defined in (10)) and conserves its L2-norm. More
precisely, we have the following result.

Lemma 3.2. Let j ∈ J>. Let y0 ∈ Mj . Let λ � 0 and δ ∈ [0,2π) be such that

y0 = λ cos(δ)ϕj

1 + λ sin(δ)ϕ
j

2 . (20)

Then the solution of{
yt + yx + yxxx = 0,

y(t,0) = y(t,L) = yx(t,L) = 0,

y(0, ·) = y0

(21)

is given by

y(t, x) = λ cos(pj t + δ)ϕ
j

1 + λ sin(pj t + δ)ϕ
j

2 . (22)
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For the sake of brevity we introduce, for j ∈ J>, θ ∈ R and y0 ∈ Mj reading as (20), the notation

Rj (y0, θ) := λ cos(θ + δ)ϕ
j

1 + λ sin(θ + δ)ϕ
j

2 , (23)

i.e. Rj (·, θ) represents a rotation of an angle θ in the subspace Mj . Thus, the solution of (21) can be written as

y(t, x) = Rj (y0,pj t).

Proposition 3.3. Let T > T >. Let ψ ∈ M>. There exists (uψ, vψ) ∈ L2(0, T )2 such that if αψ = αψ(t, x) and
βψ = βψ(t, x) are the solutions of (18) and (19), then

αψ(T , ·) = 0, βψ(T , ·) = ψ.

Proof. First at all, let us notice that if L = 2kπ for some k ∈ N
∗, then Mn = 〈1 − cosx〉 and a priori PMn(βψ(T , ·))

may be non-null. However, we know from [11, Corollary 19] that a second order expansion is not sufficient to enter
into the subspace Mn and therefore PMnβψ(T .·) = 0. That is the reason why we do not care about the projection on
Mn of second-order trajectories.

The case n> = 1 has already been studied in [4]. Let us consider the case n> = 2, i.e. where we have 2 subspaces,
M1 and M2 associated to (k1, l1) and (k2, l2) with p1 > p2 > 0 (for instance, L = 2π

√
91 leads to the couples

(k1, l1) = (16,1) and (k2, l2) = (11,8)).
Let T > 2π

p1
+ π

p2
. Let T1 be such that

T1 >
π

p1
and T − T1 >

π

p1
+ π

p2
.

Let Tθ > 0 and Tc > 0 be such that

Tc < Tθ , Tc <
π

p1
,

Tc + Tθ < min

(
T − T1 − π

p1
− π

p2
,

π

p2
− π

p1
, T1 − π

p1

)
.

Thanks to Proposition 3.1, there exist two pairs of controls, (u1, v1) and (u2, v2) in L2(0, Tc) such that the respec-
tive solutions of (18) and (19), (α1, β1) and (α2, β2), satisfy PM1(β1(Tc, ·)) �= 0 and PM2(β2(Tc, ·)) �= 0. With the
notations introduced before,{(

φ1
1 , φ2

1

) = (
PM1

(
β1(T , ·)),PM2

(
β1(T , ·))),(

φ1
2 , φ2

2

) = (
PM1

(
β2(T , ·)),PM2

(
β2(T , ·))).

We now use the rotation phenomena explained before and Proposition 3.1 to reach a basis for the missed directions
lying in M>. For the seek of clarity in our control strategy, we define for a time t1, the following control in L2(0, T )

(Ut1 ,Vt1)(t) :=
{

(0,0) if t ∈ (0, t1),

(u1(t − t1), v1(t − t1)) if t ∈ (t1, t1 + Tc),

(0,0) if t ∈ (t1 + Tc, T ).

This control becomes active at time t = t1, between t = t1 and t = t2, it drives the system to enter into the space
M1 and after t = t2, it becomes inactive, producing a rotation in M1.

Now, we define the controls(
u1

1, v
1
1

) := (Ut1 ,Vt1) with t1 = T − Tc,(
u2

1, v
2
1

) := (Ut1 ,Vt1) with t1 = T − Tc − π

2p1
,

(
u3

1, v
3
1

) := (Ut1 ,Vt1) with t1 = T − Tc − π

p1
,

(
u4

1, v
4
1

) := (Ut1 ,Vt1) with t1 = T − Tc − π − Tθ .

p1



E. Cerpa, E. Crépeau / Ann. I. H. Poincaré – AN 26 (2009) 457–475 465
Let α
j

1 , β
j

1 ∈ B be the solutions of (18) and (19) with controls u
j

1 and v
j

1 for j = 1, . . . ,4 and let us denote

ψ
j

1 := PM1β
j

1 (T , ·) and ψ̃
j

2 := PM2β
j

1 (T , ·).
It is easy to see that

ψ1
1 = φ1

1 , ψ̃1
2 = φ2

1 ,

ψ2
1 = R1

(
φ1

1 ,
π

2

)
, ψ̃2

2 = R2
(

φ2
1 ,

p2π

2p1

)
,

ψ3
1 = R1

(
φ1

1 ,π
) = −φ1

1, ψ̃3
2 = R2

(
φ2

1 ,
p2π

p1

)
,

ψ4
1 = R1

(−φ1
1,p1Tθ

)
, ψ̃4

2 = R2
(

φ2
1 ,p2

(
Tθ + π

p1

))
.

Thus, we have constructed some controls allowing to reach the missed states

ψ1
1 + ψ̃1

2 , ψ2
1 + ψ̃2

2 , ψ3
1 + ψ̃3

2 , and ψ4
1 + ψ̃4

2 .

Now, we define for a time t2, the following control in L2(0, T )

(
Ut2,V t2

)
(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0,0) if t ∈ (0, t2),

(u1(t − t2), v1(t − t2)) if t ∈ (t2, t2 + Tc),

(0,0) if t ∈ (t2 + Tc, t2 + π
p1

),

(u1(t − t2 − π
p1

), v1(t − t2 − π
p1

)) if t ∈ (t2 + π
p1

, t2 + π
p1

+ Tc),

(0,0) if t ∈ (t2 + π
p1

+ Tc, T ),

which is the superposition of two controls of type (Ut1,Vt1)(
Ut2,V t2

)
(t) = (Ut2+ π

p1
,Vt2+ π

p1
) + (Ut2,Vt2).

This fact means that the solution corresponding to the controls (Ut2 ,V t2) is the addition of two trajectories which
enter into M and then turn during different times.

We define the following controls in L2(0, T ),(
u1

2, v
1
2

) = (
Ut2 ,V t2

)
with t2 = T − T1 − π

p1
− Tc,(

u2
2, v

2
2

) = (
Ut2 ,V t2

)
with t2 = T − T1 − π

p1
− Tc − Tθ ,(

u3
2, v

3
2

) = (
Ut2 ,V t2

)
with t2 = T − T1 − π

p1
− π

p2
− Tc,(

u4
2, v

4
2

) = (
Ut2 ,V t2

)
with t2 = T − T1 − π

p1
− π

p2
− Tc − Tθ .

Let α
j

2 , β
j

2 ∈ B be the solutions of (18) and (19) with controls u
j

2 and v
j

2 for j = 1, . . . ,4 and let us denote

ψ
j

2 := PM2β
j

2 (T , ·).
Here, it is very important to note that, by construction and since p1 > p2, one has

PM1β
1
2 (T , ·) = 0 and ψ1

2 = R2(φ2
1 ,p2T1

) + R2(φ2
1 ,p2(T1 + π/p1)

) �= 0.

Thus, we have constructed some controls allowing to reach the following missed states

ψ1
2 , ψ2

2 , ψ3
2 , and ψ4

2 ,

where

ψ2
2 = R2(ψ1

2 ,p2Tθ

)
,

ψ3
2 = R2(ψ1

2 ,π
) = −ψ1

2 ,

ψ4
2 = R2(−ψ2

2 ,p2Tθ

)
.
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Furthermore, we have for k = 1,2

Mk =
4⋃

j=1

M
j
k (24)

where

M1
k := {

d1
k ψ1

k + d2
k ψ2

k ; d1
k > 0, d2

k � 0
}
,

M2
k := {

d1
k ψ2

k + d2
k ψ3

k ; d1
k > 0, d2

k � 0
}
,

M3
k := {

d1
k ψ3

k + d2
k ψ4

k ; d1
k > 0, d2

k � 0
}
,

M4
k := {

d1
k ψ4

k + d2
k ψ1

k ; d1
k > 0, d2

k � 0
}
.

Let ψ ∈ M>. From (24), we know that PM1(ψ) ∈ Mi
1 for some i ∈ {1, . . . ,4}. Hence, there exist d1

1 > 0, d2
1 � 0,

such that

ψ = d1
1ψi

1 + d2
1ψi+1

1 + PM2(ψ).

Let us write ψ as follows

ψ = d1
1ψi

1 + d2
1ψi+1

1 + d1
1 ψ̃ i

2 + d2
1 ψ̃ i+1

2 + (
PM2(ψ) − d1

1 ψ̃ i
2 − d2

1 ψ̃ i+1
2

)
.

Since the states ψ̃ i
2, ψ̃

i+1
2 lie in M2, there exists j ∈ {1, . . . ,4} such that

PM2(ψ) − d1
1 ψ̃ i

2 − d2
1 ψ̃ i+1

2 ∈ M
j

2

and therefore there exist d1
2 > 0, d2

2 � 0 such that

ψ = d1
1

(
ψi

1 + ψ̃ i
2

) + d2
1

(
ψi+1

1 + ψ̃ i+1
2

) + d1
2ψ

j

2 + d2
2ψ

j+1
2 .

Thus, we have decomposed ψ in terms of reachable directions for the second-order expansion. Now, we take the
controls uψ, vψ defined by

(uψ, vψ) = (√
d1

1ui
1 +

√
d2

1ui+1
1 +

√
d1

2u
j

2 +
√

d2
2u

j+1
2 , d1

1vi
1 + d2

1vi+1
1 + d1

2v
j

2 + d2
2v

j+1
2

)
,

and αψ,βψ ∈ B the corresponding solutions of (18) and (19) respectively. Here, it is important to note that, with the

choices of T ,T1, Tc and Tθ , the supports of the trajectories α
j
k for k = 1,2 and j = 1, . . . ,4 are disjoint and that all

these trajectories go from 0 at t = 0 to 0 at t = T , i.e.

α
j
k (0, ·) = α

j
k (T , ·) = 0.

Thus, it is not difficult to verify that

αψ(T , ·) = 0 and βψ(T , ·) = ψ

which ends the proof in the case n> = 2. The previous method can be easily adapted to the case where n> > 2. In order
to construct the controls needed in the general case, our method requires a time of control T greater than T >. �
4. Motion in the missed directions ±(1 − cosx) if L = 2kπ

We assume in this section that L = 2kπ for some k ∈ N
∗. Let us recall that in this case we have

Mn = 〈1 − cosx〉 and n> = n − 1. (25)

Thanks to [11], we have the following result that one can prove in a similar way to [11, Proposition 8].
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Proposition 4.1. Let Tc > 0. There exists (u, v,w) in L2(0, Tc)
3 such that, if α,β, γ are the mild solutions of⎧⎪⎨

⎪⎩
αt + αx + αxxx = 0,

α(t,0) = α(t,L) = 0,

αx(t,L) = u(t),

α(0, ·) = 0,

(26)

⎧⎪⎨
⎪⎩

βt + βx + βxxx = −ααx,

β(t,0) = β(t,L) = 0,

βx(t,L) = v(t),

β(0, ·) = 0,

(27)

⎧⎪⎨
⎪⎩

γt + γx + γxxx = −(αβ)x,

γ (t,0) = γ (t,L) = 0,

γx(t,L) = w(t),

γ (0, ·) = 0,

(28)

then

α(Tc, ·) = 0, β(Tc, ·) = 0 and γ (Tc, ·) = (1 − cosx) +
n>∑
i=1

PMi

(
γ (Tc, ·)

)
.

The idea to vanish the projections of γ (Tc, ·) on Mi , and thus to reach the direction (1 − cos(x)), is the same
as before, that is, to use the rotation phenomena given in Lemma 3.2. In addition, we use the fact that the function
(1 − cosx) satisfies{

yx + yxxx = 0,

y(0) = y(2kπ) = yx(2kπ) = 0.

The case n = 1 has already been considered in [11]. We deal with the case n = 2 (for example, L = 14π leads to
the couples (k1, l1) = (11,2) and (k2, l2) = (7,7)).

Let us define the following control lying in L2(0, T )3, where T > π/p1. (Here, we omit the time translation needed
for the controls u,v and w which are defined in (0, Tc).)

(u+, v+,w+)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0,0,0) if t ∈ (0, T − Tc − π
p1

),

(u, v,w) if t ∈ (T − Tc − π
p1

, T − π
p1

),

(0,0,0) if t ∈ (T − π
p1

, T − Tc),

(u, v,w) if t ∈ (T − Tc, T ).

By defining α+, β+, γ+ ∈ B as the solutions of (26) with control u+, (27) with control v+ and (28) with control
w+ respectively, it is not difficult to see that

α+(T , ·) = 0, β+(T , ·) = 0, γ+(T , ·) = 2(1 − cosx). (29)

Now, if we consider the control (u−, v−,w−) := (−u+, v+,−w+) we get

α−(T , ·) = 0, β−(T , ·) = 0, γ−(T , ·) = −2(1 − cosx), (30)

where obviously α−, β−, γ− ∈ B are the solutions of (26), (27) and (28) with controls u−, v− and w− respectively.
Thus we can reach all directions in M2 in a time T > π

p1
.

We can easily deduce the same result in the case n > 2. We just have to construct a control that vanishes the
components in the other missed subspaces Mj, j ∈ J>. In order to do that, a time of control T , with

T > T n := π

n−1∑
i=1

1

pi

, (31)

is sufficient.
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5. Fixed point argument

If L �= 2kπ , then we can use the same proof as in [4] and get property P (T ) for every T > T >. Thus the only
interesting case we detail here is when L = 2kπ and dimM(L) > 2.

5.1. Preliminaries

Recall that for L ∈ N , we have n pairs (kj , lj ) such that (7) and (8) hold. We have introduced some important
notations

J> := {j ; kj > lj }, n> := ∣∣J>
∣∣, M> :=

n>⊕
j=1

Mj .

In this section, we consider the case where n> = (n − 1) and consequently where Mn = 〈1 − cosx〉. Thus we can
write any z ∈ L2(0,L) as

z = PH (z) + ρzψz + dz(1 − cosx), (32)

where

ρz := ∥∥PM>(z)
∥∥

L2(0,L)
, ρzψz := PM>(z), and dz(1 − cosx) = PMn(z).

Let us also denote, for D > 0 and R > 0,

BD
R := {

ξ ∈ L2(0,D); ‖ξ‖L2(0,D) � R
}
.

From the work of Rosier in [18], we know that for every y0 ∈ L2(0,L) there exists a continuous linear affine map

Γ0 :h ∈ H ⊂ L2(0,L) �−→ Γ0(h) ∈ L2(0, T ),

such that the solution of⎧⎪⎨
⎪⎩

yt + yx + yxxx = 0,

y(t,0) = y(t,L) = 0,

yx(t,L) = Γ0(h),

y(0, ·) = PH (y0),

satisfies y(T , ·) = h. Moreover, there exist two constants D1,D2 > 0 such that

∀y0 ∈ L2(0,L), ∀h ∈ H,
∥∥Γ0(h)

∥∥
L2(0,T )

� D1
(‖h‖L2(0,L) + ‖y0‖L2(0,L)

)
, (33)

∀y0 ∈ L2(0,L), ∀h,g ∈ H,
∥∥Γ0(h) − Γ0(g)

∥∥
L2(0,T )

� D2‖h − g‖L2(0,L). (34)

From Sections 3 and 4, we have the existence of the controls u±, v±,w± ∈ L2(0, T n) and for every ψ ∈ M>, the
controls uψ, vψ ∈ L2(0, T >). As we shall see later, we need that the corresponding trajectories of first order α± and
αψ are disjoint and therefore for every z ∈ L2(0,L) written as (32), and for every T satisfying

T > TL := T n + T >,

we define the following controls lying in L2(0, T )

(ũ, ṽ, w̃)(t) :=
{

(0,0,0) if t ∈ (0, T − TL),

(usign(dz), vsign(dz),wsign(dz))|(t−T +TL) if t ∈ (T − TL,T − T >),

(0,0,0) if t ∈ (T − T >,T )

and

(û, v̂)(t) :=
{

(0,0) if t ∈ (0, T − T >),

(uψz, vψz)|(t−T +T >) if t ∈ (T − T >,T ),

where we use the notation

sign(dz) =
{+ if dz � 0,

− if d < 0.
(35)
z
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Let y0 ∈ L2(0,L) be such that ‖y0‖L2(0,L) < r , where r > 0 has to be chosen later. Using (32), we define the
functions G and F by

G :L2(0,L) −→ L2(0, T ),

z �−→ G(z) := Γ0
(
PH (z)

) + ρ
1/2
z û + ρzv̂ + |dz|1/3ũ + |dz|2/3ṽ + |dz|w̃,

F :BT
ε1

∩ L2(0, T ) −→ L2(0,L),

κ �−→ F(κ) := y(T , ·),
where y = y(t, x) is the solution of⎧⎪⎨

⎪⎩
yt + yx + yxxx + yyx = 0,

y(t,0) = y(t,L) = 0,

yx(t,L) = κ(t),

y(0, ·) = y0,

(36)

and ε1 is small enough so that the function F is well defined.
Let yT ∈ L2(0,L) be such that ‖yT ‖ < r . Let Λy0,yT

denotes the map

Λy0,yT
:BL

ε2
∩ L2(0,L) −→ L2(0,L),

z �−→ Λy0,yT
(z) := z + yT − F ◦ G(z),

where ε2 is small enough so that Λy0,yT
is well defined.

Let us remark that if we find a fixed point z̃ ∈ L2(0,L) of the map Λy0,yT
, then we will have

F ◦ G(z̃) = yT

which means that the control

κ := G(z̃) ∈ L2(0, T )

drives the solution of (36) from y0 at t = 0 to yT at t = T . In the following sections, we prove that such a fixed point
does exist.

5.2. A technical lemma

Let us assert the following technical result which will be needed to study the map Λy0,yT
.

Lemma 5.1. There exist ε3 > 0 and C1 > 0 such that, for every z, y0 ∈ BL
ε3

, the following estimate holds∥∥z − F ◦ G(z)
∥∥

L2(0,L)
� C1

(‖y0‖L2(0,L) + ‖z‖4/3
L2(0,L)

)
.

Proof. Let z, y0 ∈ L2(0,L). Let y = y(t, x) be the solution of⎧⎪⎨
⎪⎩

yt + yx + yxxx + yyx = 0,

y(t,0) = y(t,L) = 0,

yx(t,L) = G(z),

y(0, ·) = y0.

(37)

From (33) and the fact that ρz � ‖z‖L2(0,L), one deduces that if ‖z‖L2(0,L) is smaller than 1 (and therefore

‖z‖L2(0,L) � ‖z‖1/2
L2(0,L)

), then there exists a constant C2 such that∥∥G(z)
∥∥

L2(0,T )
� C2

(‖y0‖L2(0,L) + ‖z‖1/3
L2(0,L)

)
. (38)

Thus, one can find ε4, C3 > 0 such that for every z, y0 ∈ BL
ε4

, the unique solution of (37) satisfies

‖y‖B � C3
(‖y0‖L2(0,L) + ‖z‖1/3

2

)
. (39)
L (0,L)
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Let ỹ, α̂, β̂ , α̃, β̃ , γ̃ and ŷ be the solutions of

⎧⎪⎨
⎪⎩

ỹt + ỹx + ỹxxx = 0,

ỹ(t,0) = ỹ(t,L) = 0,

ỹx(t,L) = Γ0
(
PH (z)

)
,

ỹ(0, ·) = PH (y0),

(40)

⎧⎪⎨
⎪⎩

α̂t + α̂x + α̂xxx = 0,

α̂(t,0) = α̂(t,L) = 0,

α̂x(t,L) = û(t),

α̂(0, ·) = 0,

(41)

⎧⎪⎪⎨
⎪⎪⎩

β̂t + β̂x + β̂xxx = −α̂α̂x,

β̂(t,0) = β̂(t,L) = 0,

β̂x(t,L) = v̂(t),

β̂(0, ·) = 0,

(42)

⎧⎪⎨
⎪⎩

α̃t + α̃x + α̃xxx = 0,

α̃(t,0) = α̃(t,L) = 0,

α̃x(t,L) = ũ(t),

α̃(0, ·) = 0,

(43)

⎧⎪⎪⎨
⎪⎪⎩

β̃t + β̃x + β̃xxx = −α̃α̃x,

β̃(t,0) = β̃(t,L) = 0,

β̃x(t,L) = ṽ(t),

β̃(0, ·) = 0,

(44)

⎧⎪⎪⎨
⎪⎪⎩

γ̃t + γ̃x + γ̃xxx = −(α̃β̃)x,

γ̃ (t,0) = γ̃ (t,L) = 0,

γ̃x(t,L) = w̃(t),

γ̃ (0, ·) = 0,

(45)

⎧⎪⎨
⎪⎩

ŷt + ŷx + ŷxxx = 0,

ŷ(t,0) = ŷ(t,L) = 0,

ŷx(t,L) = 0,

ŷ(0, ·) = PM(y0).

(46)

Let us define

φ := y − ỹ − ρ
1/2
z α̂ − ρzβ̂ − |dz|1/3α̃ − |dz|2/3β̃ − |dz|γ̃ − ŷ.

Then φ = φ(t, x) satisfies⎧⎪⎨
⎪⎩

φt + φx + φxxx + φφx = −(φa)x − b,

φ(t,0) = φ(t,L) = 0,

φx(t,L) = 0,

φ(0, ·) = 0,

(47)

where a := y − φ,

b := ỹỹx + ŷŷx + ρ2
z β̂β̂x + ρ

3/2
z (α̂β̂)x + |dz|4/3β̃β̃x + |dz|5/3(β̃γ̃ )x + |dz|4/3(α̃γ̃ )x

+ |dz|2γ̃ γ̃x + (
ỹ
(
ρ

1/2
z α̂ + ρzβ̂ + |dz|1/3α̃ + |dz|2/3β̃ + |dz|γ̃ + ŷ

))
x

+ ((
ρ

1/2
z α̂ + ρzβ̂

)(|dz|1/3α̃ + |dz|2/3β̃ + |dz|γ̃ + ŷ
))

x
+ (

ŷ
(|dz|1/3α̃ + |dz|2/3β̃ + |dz|γ̃

))
x
.

Here, in order to use Eq. (47) we need some estimates on its right-hand side.
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Lemma 5.2. There exists C4 > 0 such that for every z, y0 ∈ BL
ε4

,

‖φ‖B � C4
(‖y0‖L2(0,L) + ‖z‖1/3

L2(0,L)

)
, (48)

‖a‖B � C4
(‖y0‖L2(0,L) + ‖z‖1/3

L2(0,L)

)
, (49)

‖b‖L1(0,T ,L2(0,L)) � C4
(‖y0‖L2(0,L) + ‖z‖4/3

L2(0,L)

)
. (50)

Proof of Lemma 5.2. Let us prove (48). One has

‖φ‖B � ‖y‖B + ‖ỹ‖B + ρ
1/2
z ‖α̂‖B + ρz‖β̂‖B + |dz|1/3‖α̃‖B + |dz|2/3‖β̃‖B + |dz|‖γ̃ ‖B + ‖ŷ‖B

� C
(∥∥G(z)

∥∥
L2(0,T )

+ ‖y0‖L2(0,L)

) + C
(∥∥Γ0

(
PH (z)

)∥∥
L2(0,T )

+ ‖y0‖L2(0,L)

)
+ Cρ

1/2
z ‖û‖L2(0,T ) + Cρz

(‖v̂‖L2(0,T ) + ‖α̂α̂x‖L1(0,T ,L2(0,L))

) + C|dz|1/3‖ũ‖L2(0,T )

+ C|dz|2/3(‖ṽ‖L2(0,T ) + ‖α̃α̃x‖L1(0,T ,L2(0,L))

)
+ C|dz|

(‖w̃‖L2(0,T ) + ∥∥(α̃β̃)x
∥∥

L1(0,T ,L2(0,L))

) + C
∥∥PM(y0)

∥∥
L2(0,L)

.

One needs at this point the following trivial estimate

∃C5 > 0, ∀f,g ∈ B,
∥∥(fg)x

∥∥
L1(0,T ,L2(0,L))

� C5‖f ‖B‖g‖B. (51)

By noticing that if z = PH (z) + ρzψz + dz(1 − cos(x)), then

‖z‖2
L2(0,L)

= ∥∥PH (z)
∥∥2

L2(0,L)
+ ρ2

z + d2
z

∥∥1 − cos(x)
∥∥2

L2(0,L)
,

and using (38) and (51), one gets (48). Estimate (49) follows from (48) and the definition of the function a. To
prove (50), one uses (51) being very careful with the powers which appear. For instance, looking at the function b,
one finds the term (ρ

1/2
z α̂|dz|1/3α̃) which apparently is not bounded by C4‖z‖4/3

L2(0,L)
for z ∈ BL

1 . This is the reason

why one takes the trajectories α̃ and α̂ disjoint. �
Thus, from (47) one obtains the existence of C6 > 0 such that

‖φ‖2
B � C6

(‖φ‖2
B‖a‖2

B + ‖y0‖2
L2(0,L)

+ ‖z‖8/3
L2(0,L)

)
,

i.e. one has

‖φ‖2
B
(
1 − C6‖a‖2

B
)
� C6

(‖y0‖2
L2(0,L)

+ ‖z‖8/3
L2(0,L)

)
,

which, together with (49), implies the existence of ε5 and C7 such that for every z, y0 ∈ BL
ε5

‖φ‖B � C7
(‖y0‖L2(0,L) + ‖z‖4/3

L2(0,L)

)
. (52)

Finally, from (52) one obtains∥∥z − F ◦ G(z)
∥∥

L2(0,L)
�

∥∥z − F ◦ G(z) + ŷ(T , ·)∥∥
L2(0,L)

+ ∥∥−ŷ(T , ·)∥∥
L2(0,L)

= ∥∥φ(T , ·)∥∥
L2(0,L)

+ ∥∥ŷ(0, ·)∥∥
L2(0,L)

� ‖φ‖B + ‖y0‖L2(0,L)

� C7
(‖y0‖L2(0,L) + ‖z‖4/3

L2(0,L)

) + ‖y0‖L2(0,L)

� (C7 + 1)
(‖y0‖L2(0,L) + ‖z‖4/3

L2(0,L)

)
,

which ends the proof of Lemma 5.1 with C1 := C7 + 1 and ε3 := ε5. �
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5.3. Fixed point in H

For w = (w1
1,w

2
1, . . . ,w

1
n−1,w

2
n−1,wn) ∈ R

2n−1 fixed, let us denote

Ψw := wn(1 − cosx) +
n−1∑
j=1

(
w1

jϕ
1
j + w2

j ϕ
2
j

)
, (53)

where the functions ϕi
j for i = 1,2, j = 1, . . . , n − 1 are given in (12). Let us study the map

Π := PH ◦ Λy0,yT
(· + Ψw)

on the subspace H

Π :H −→ H,

h �−→ Π(h) = h + PH (yT ) − PH

(
F ◦ G(h + Ψw)

)
.

In order to prove the existence of a fixed point of the map Π , we will apply the Banach fixed point theorem to the
restriction of Π to the closed ball BL

R ∩ H with R > 0 small enough. Using Lemma 5.1 we see that∥∥Π(h)
∥∥

L2(0,L)
� ‖yT ‖L2(0,L) + ∥∥h + Ψw − F ◦ G(h + Ψw)

∥∥
L2(0,L)

� ‖yT ‖L2(0,L) + C1
(‖y0‖L2(0,L) + ‖h + Ψw‖4/3

L2(0,L)

)
� (C1 + 1)

(‖y0‖L2(0,L) + ‖yT ‖L2(0,L) + |w|4/3) + C1‖h‖4/3
L2(0,L)

� (C1 + 1)
(
2r + |w|4/3) + C1‖h‖4/3

L2(0,L)
.

Hence, if we choose R, r and w such that

R4/3 � R

2C1
and

(
2r + |w|4/3) � R

2(C1 + 1)
,

then it follows that∥∥Π(h)
∥∥

L2(0,L)
� R and so Π

(
BL

R ∩ H
) ⊂ (

BL
R ∩ H

)
.

It remains to prove that the map Π is a contraction. Let g,h ∈ BL
R ∩ H . Let y = y(t, x), q = q(t, x), ỹ = ỹ(t, x)

and q̃ = q̃(t, x) be the solutions of the following problems⎧⎪⎨
⎪⎩

yt + yx + yxxx + yyx = 0,

y(t,0) = y(t,L) = 0,

yx(t,L) = G(g + Ψw),

y(0, ·) = y0,⎧⎪⎨
⎪⎩

qt + qx + qxxx + qqx = 0,

q(t,0) = q(t,L) = 0,

qx(t,L) = G(h + Ψw),

q(0, ·) = y0,⎧⎪⎨
⎪⎩

ỹt + ỹx + ỹxxx = 0,

ỹ(t,0) = ỹ(t,L) = 0,

ỹx(t,L) = Γ0(g),

ỹ(0, ·) = PH (y0),⎧⎪⎨
⎪⎩

q̃t + q̃x + q̃xxx = 0,

q̃(t,0) = q̃(t,L) = 0,

q̃x(t,L) = Γ0(h),
q̃(0, ·) = PH (y0).
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Let us define φ := y − ỹ, ψ := q − q̃ and γ := φ − ψ . One sees that γ satisfies⎧⎪⎨
⎪⎩

γt + γx + γxxx + γ γx = −(γ a)x − b,

γ (t,0) = γ (t,L) = 0,

γx(t,L) = 0,

γ (0, ·) = 0,

(54)

where

a := ỹ + ψ and b := (
q(ỹ − q̃)

)
x

+ (ỹ − q̃)(ỹ − q̃)x .

It is easy to see that there exists a constant C8 such that

‖b‖L1(0,T ,L2(0,L)) � C8
(‖q‖B + ‖ỹ‖B + ‖q̃‖B

)‖ỹ − q̃‖B, (55)∥∥(aγ )x
∥∥

L1(0,T ,L2(0,L))
� C8

(‖q‖B + ‖ỹ‖B + ‖q̃‖B
)‖γ ‖B. (56)

Thus, we get the existence of C9 > 0 such that

‖γ ‖2
B � C9

(‖q‖B + ‖ỹ‖B + ‖q̃‖B
)2(‖ỹ − q̃‖2

B + ‖γ ‖2
B
)
. (57)

In addition, since w := ỹ − q̃ satisfies the following linear equation⎧⎪⎨
⎪⎩

wt + wx + wxxx = 0,

w(t,0) = w(t,L) = 0,

wx(t,L) = Γ0(g) − Γ0(h),

w(0, ·) = 0,

there exists C10 > 0 such that

‖ỹ − q̃‖B � C10
∥∥Γ0(g) − Γ0(h)

∥∥
L2(0,T )

and so, from (34), one gets

‖ỹ − q̃‖B � C10D2‖g − h‖L2(0,L). (58)

Moreover, it is easy to see that there exists a constant C11 > 0 such that

‖q‖B + ‖q̃‖B + ‖ỹ‖B � C11
(‖y0‖L2(0,L) + ‖h‖L2(0,L) + ‖g‖L2(0,L) + |w|1/3). (59)

Thus, using (57), (58) and (59) we see that if R, |w|, r are small enough, it follows that

‖γ ‖B � 1

2
‖g − h‖L2(0,L).

Therefore, we have∥∥Π(g) − Π(h)
∥∥

L2(0,L)
�

∥∥g − F ◦ G(g + Ψw) − h + F ◦ G(h + Ψw)
∥∥

L2(0,L)

= ∥∥γ (T )
∥∥

L2(0,L)
� ‖γ ‖B

� 1

2
‖g − h‖L2(0,L),

which implies the existence of a unique fixed point h(y0, yT ,w) ∈ BL
R ∩ H of the map Π |BL

R∩H .

5.4. Fixed point in M

We now apply the Brouwer fixed point theorem to the restriction of the map

τ :M −→ M,

Ψw �−→ PM

(
Ψw + yT − F ◦ G

(
Ψw + h(y0, yT ,w)

))
,

to the closed ball BL ∩ M with R̂ small enough.

R̂
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In Section 5.1, the controls û, v̂, ũ, ṽ and w̃ were chosen in such a way so that the function G is continuous. Thus, it
is easy to see that the map (y0, yT ,w) �→ h(y0, yT ,w) is also continuous in a neighborhood of 0 ∈ L2(0,L)2 ×R

2n−1.
Using this continuity, Lemma 5.1, and choosing r small enough, we get the existence of a radius R̂ > 0 such that
τ(BL

R̂
∩ M) ⊂ BL

R̂
∩ M . This inclusion and the continuity of the map τ allow us to apply the Brouwer fixed point

theorem. Therefore, there exists w̃ ∈ R
2n−1 with |w̃| � R̂ such that h̃ := h(y0, yT , w̃) satisfies

PM

(
yT − F ◦ G(h̃ + Ψw̃)

) = 0. (60)

Using the fact that

Π(h̃) = PH

(
h̃ + yT − F ◦ G(h̃ + Ψw̃)

) = h̃,

we obtain

PH

(
yT − F ◦ G(h̃ + Ψw̃)

) = 0,

which together with (60), implies that

yT = F ◦ G(h̃ + Ψw̃),

which ends the proof of Theorem 1.9.

6. Conclusion

In this article, we have proved that in the last remaining critical cases, i.e. when dimM > 2, the nonlinear KdV
equation is controllable in a time large enough. First, we have performed a power series expansion of the solution and
of the control. Next, we have constructed special controls allowing to reach a basis of missed directions and thus all
the missed states. Then if dimM is even, the fixed point theorems used in [4] are directly applicable. If dimM is odd,
we prove the controllability using fixed point mixing proofs of [11] and [4].

The following open problem arises naturally from the results of this work.

Open Problem 1. Let L ∈ N such that the dimension of the subspace M is higher than 1. Does P (T ) holds for every
T > 0?

This is an interesting question since even if the speed of propagation of the KdV equation is infinite, it may
exist a minimal time of control. For example, in [2] Beauchard and Coron proved, for a time large enough, the
local exact controllability along the ground state trajectory of a Schrödinger equation and Coron proved in [9] and
[10, Theorem 9.8] that this local controllability does not hold in small time, even if the Schrödinger equation has an
infinite speed of propagation. Our guess, based in second order computations in some particular critical cases where
the space M is two-dimensional, is that there exists a minimal time of control, this means there exists a time T0 such
that for any time T < T0, P (T ) does not hold. Thus, the answer to Open Problem 1 should be negative.

We have seen that the nonlinearity gives us the controllability in the critical cases even if the linear system is not
controllable. We may wonder if the nonlinearity gives us the stability.

Open Problem 2. Let L ∈ N . Let y0 ∈ L2(0,L) and y the solution of⎧⎪⎨
⎪⎩

yt + yx + yxxx + yyx = 0,

y(t,0) = y(t,L) = 0,

yx(t,L) = 0,

y(0, ·) = y0.

(61)

Does the solution y decay to zero as t goes to infinity?

In order to answer this question, a really nonlinear method is needed because with a first-order approximation one
obtains the linear system which has some solution conserving its L2-norm. On the other hand, it is not clear that our
method applies. It strongly needs the controls to be able to use higher-order approximations.
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