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Boundary crisis bifurcation in two parameters

Hinke M. Osinga∗

February 21, 2006

Abstract

The boundary crisis bifurcation is well known as a mechanism for des-
troying (or creating) a strange attractor by variation of one parameter: at
the moment of the boundary crisis bifurcation the strange attractor touches
its own basin of attraction. Here we follow this codimension-one bifurcation
in two parameters. One might expect that this leads to a smooth curve in
the two-parameter plane. Mathematically, a boundary crisis is effectively a
homoclinic or heteroclinic tangency, the locus of which is a well-defined smooth
curve in a two-parameter system. However, instead of a boundary crisis, the
transition through this tangency curve may lead to a basin boundary meta-
morphosis or an interior crisis bifurcation, in which the attractor persists.
This phenomenon is again well known: at the point where the type of trans-
ition changes, the boundary crisis switches to another branch of homoclinic or
heteroclinic tangencies, associated with manifolds of a periodic point with a
different period than before. The curve of boundary crisis bifurcations is not
differentiable at such points.

In this paper we show that the curve of boundary crisis bifurcations is, in
fact, not even well defined as a piecewise-smooth curve. We illustrate that
there are infinitely many gaps in much the same way as the one-parameter
bifurcation diagram of the attractor contains infinitely many windows where
the attractor is periodic and not strange or chaotic. Throughout, we use the
Hénon map to illustrate our findings.

1 Introduction

The Hénon map is the paradigm example of an invertible map that exhibits the
classic period-doubling route to chaos. First introduced by Hénon [8] in 1976 it is
a simplified model of the Poincaré map associated with the Lorenz equations [9],
with some magnification of the Jacobian in order to show the structure. The Hénon
map is simple in the sense that it is a quadratic invertible planar map with constant
Jacobian. Hénon defined the map as follows:

(

u

v

)

7→

(

1 + v − a u2

b u

)

.

However, we prefer the format used in [1] that is obtained via the coordinate trans-
formation

(

x

y

)

=

(

a u
a

b
v

)

,

and leads to the Hénon map in the form:
(

x

y

)

7→

(

a + b y − x2

x

)

. (1)
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Figure 1: Fixed points and stable and unstable manifolds of the Hénon map (1) with
a = 1.4 and b = 0.3. The closure of the unstable manifold Wu(p0) forms a chaotic
attractor whose basin of attraction is bounded by the stable manifold W s(p1).

We emphasize here that this coordinate transformation leaves the parameters un-
changed. Hence, the two-parameter study of the boundary crisis bifurcation is the
same for both maps.

Figure 1 gives an impression of the phase portrait for the classical choice of
parameters, a = 1.4 and b = 0.3. For these parameter values the map has two
fixed points p0 and p1 that are both saddles. There is one attractor, which is the
chaotic attractor formed by the closure of the unstable manifold Wu(p0) of p0.
Not all initial conditions converge to the attractor; its basin is bounded by the
stable manifold W s(p1) of the other fixed point p1 and all points outside this basin
of attraction diverge off to infinity. Note that this picture can be obtained using
Hénon’s original coordinate system via a linear change of coordinates where the
square [−2, 2]× [−2, 2] is mapped approximately to [−1.43, 1.43]× [−0.43, 0.43].

The three-dimensional bifurcation diagram in Figure 2 shows how the attractor
varies with a. The pair of fixed points p0 and p1 are created in a saddle-node
bifurcation at a = − 1

4
(1 − b)2 = −0.1225. For a just larger than this value, the

fixed point p0 is stable and p1 is a saddle. At a = 3

4
(1 − b)2 = 0.3675 a period-

doubling bifurcation occurs that makes p0 a saddle as well. This is the start of a
series of period-doubling bifurcations that eventually leads to the chaotic attractor
shown in Figure 1. If we increase a slightly from 1.4 the attractor disappears in
a boundary crisis bifurcation. As discussed in [12], the moment of the bifurcation
is determined by the heteroclinic tangency of the closure of the stable manifold
W s(p1) with the closure of the unstable manifold Wu(p0). Simó reports in [12] that
the tangency takes place at a ≈ 1.4269212 and discusses the bifurcations for b = 0.3
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Figure 2: The period-doubling sequence to chaos of the attractor for the Hénon
map (1) with b = 0.3 and varying a. The branches of the fixed points p0 and p1 are
shown also if they are unstable (dashed curves). At a ≈ 1.4269212 a heteroclinic
tangency between the closure of Wu(p0) and the stable manifolds W s(p1) destroys
the chaotic attractor.

in detail. Figure 2 illustrates the moment of the tangency by superimposing the
manifolds onto the attractor.

We are interested in how the boundary crisis bifurcation is organised when the
second parameter b is varied as well. Boundary crisis is a phenomenological defini-
tion that describes a topological change in the global phase portrait of a dynamical
system. The actual bifurcation is a tangency between stable and unstable manifolds.
However, whether such a homoclinic or heteroclinic bifurcation leads to a bound-
ary crisis depends on other, typically global, considerations. Hence, in the above
example of a boundary crisis bifurcation for b = 0.3, one can trace a smooth curve
in the (a, b)-parameter plane that is the locus of the heteroclinic tangency between
(the closures of) Wu(p0) and W s(p1). Along this tangency curve the global mani-
festation of the bifurcation changes. The literature on two-parameter variation of
a boundary crisis bifurcation reports that this change comes about when another
curve of heteroclinic or homoclinic tangencies for a periodic orbit with a differ-
ent period, transversely intersects the locus of the heteroclinic tangency between
Wu(p0) and W s(p1). Such an intersection point is called a double-crisis vertex and
the locus of boundary crisis switches to the other curve. Hence, the two-parameter
variation of the boundary crisis bifurcation leads to a continuous curve that is only
piecewise smooth; see [3, 13] for more details.

In this paper we argue that the two-parameter variation of the boundary crisis
bifurcation does not even lead to a continuous curve. In fact, we believe that there
are infinitely many gaps in the “curve” in much the same ways as a one-parameter
bifurcation diagram of a chaotic attractor is interspersed with infinitely many in-
tervals where the dynamics is periodic. Namely, along the locus of the heteroclinic
tangency between Wu(p0) and W s(p1) there are intersections with saddle-node
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bifurcation curves followed by a series of period-doubling bifurcation curves that
form a strip in the (a, b)-parameter plane where the attractor is not chaotic and a
boundary crisis bifurcation cannot take place. The intersection point of a saddle-
node bifurcation curve with the locus of the heteroclinic tangency between Wu(p0)
and W s(p1) is not a switching point, but an end point of the locus of boundary
crisis. It is an open question, but a distinct possibility, that the set of boundary
crisis bifurcation points on the heteroclinic tangency curve is a Cantor set, that is,
it does not contain any intervals.

This paper is organised as follows. In the next section we explain in more
detail the different global manifestations of a heteroclinic or homoclinic tangency
in the neighbourhood of a double-crisis vertex. Section 3 forms the core part of this
paper, where we explain that the boundary crisis bifurcation in two parameters is
not continuous. There are gaps along the curve where the attractor is clearly not
chaotic and these gaps permeate well into the region where divergent behaviour is
assumed. Section 4 discusses the consequences of this observation and relates our
findings to studies of so-called strange nonchaotic attractors in quasiperiodically
forced systems.

2 Two-parameter variations

The name boundary crisis bifurcation was introduced in [5]; both the boundary
crisis bifurcation and the interior crisis bifurcation are discussed here. The two
bifurcations are defined as a collision between a chaotic attractor and a coexisting

unstable fixed point or periodic orbit; in a boundary crisis this causes the disap-
pearance of the attractor, because the collision is with a point on the boundary
of its basin of attraction, and in an interior crisis this causes a sudden increase
(or decrease) in size of the attractor, since the colliding point lies inside the basin
of attraction. The two types of crises are closely related, because they are both
manifestations of a tangency between two manifolds.

A tangency between two manifolds is a structurally stable phenomenon when
varying two parameters. Hence, one would expect that the boundary crisis bifurc-
ation in the Hénon map persists if the second parameter b is varied. Such a study
was done in [3, 13]. Both papers focus on the fact that the curve of boundary crises
contains non-differentiable points, called double-crisis vertices, that are character-
ised by a simultaneous sudden change in the structure of both the attractor and its
basin boundary. Figure 3 shows the double-crisis vertices that are given in [3] along
a curve of boundary crisis bifurcations that we obtained by brute-force simulation.
The moment of boundary crisis bifurcation was determined using bisection on a

with tolerance of 10−6 for 21 values of b ∈ [−1, 1]. The disappearance of the at-
tractor was decided based on 5× 106 iterates of 50 000 uniformly distributed points
on the line {0}× [−3, 3]. This works well for −0.8 ≤ b ≤ 0.8. For values of b outside
this interval, we used a 100×100 grid of points in the rectangle [−1.5, 1.5]× [−2, 2].

The dynamics near a double-crisis vertex is explained in detail in [13] for the
vertex V−1. (Note that there is an error in [13]: the b-values given for the phase
portraits shown should all be multiplied with −1; compare also the discussion of
V−1 in [3].) The essence here is to view V−1 as the intersection point of two crossing
curves. Namely, the curve segment connecting V−2 with V−1 can be viewed as a
tangency bifurcation curve involving (closures of) stable and unstable manifolds of
two period-three saddles. This curve continues beyond V−1 where it becomes the
locus of an interior crisis instead of a boundary crisis. Similarly, the curve segment
between V0 and V−1 is a tangency bifurcation curve involving the (closures of the)
manifolds of two saddle fixed point. This curve also continues beyond V−1 where it
becomes the locus of a so-called basin boundary metamorphosis [2, 6, 7]. In a basin
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Figure 3: A brute-force simulation produces a curve of boundary crisis bifurcations
in the (a, b)-plane that contains non-differentiable points, called double-crisis ver-
tices. For a-values to the left of this curve an attractor exists. The labelled points
are the double-crisis vertices reported in [3], and the newly found double-crisis point
V ∗.

boundary metamorphosis, the attractor remains virtually the same, but its basin
changes dramatically.

To illustrate these behaviours near a double-crisis vertex, we focus on a new
double-crisis vertex V ∗ ≈ (1.90653, 0.04714) located just above V0 in Figure 3. This
vertex was not observed in previous studies.

In a small neighbourhood around V ∗ we distinguish four regions with topologic-
ally different phase portraits. The top right panel of Figure 4 shows these regions
in the (a, b)-parameter plane. The region to the right corresponds to divergent dy-
namics. In the other three regions a strange attractor exists provided (a, b) is close
enough to V ∗. As one moves away from the bouble-crisis vertex while remaining in
the same region, a (backward) period-doubling bifurcation may occur so that the at-
tractor is no longer chaotic. In region I the strange attractor consists of three pieces.
The phase portrait for (a, b) = (1.90653, 0.05714) is shown in the top left panel of
Figure 4. Here the parameters are so far away from V ∗ that the attractor is a period-
three point; the attractor is not easy to see in this picture, but its coordinates are ap-
proximately: (−0.01820,−1.42443) 7→ (1.82481,−0.01820) 7→ (−1.42443, 1.82481).
All points that do not lie in the basin of attraction are coloured gray to reveal the
fractal structure of the basin. Region II is illustrated with (a, b) = (1.89653, 0.04714)
in the bottom left panel of Figure 4. As one crosses from region I into region II
a basin boundary metamorphosis takes place, which is clearly illustrated by the
dramatic increase in size of the basin of attraction, and the three-piece attractor
(here a period-twelve point) is relatively far away from the basin boundary. The
boundary between regions I and II is the curve of heteroclinic tangencies between
the manifolds of the fixed points. In region I the fixed point p0 is not “accessible” [7]
and cannot be the orbit that takes part in the boundary crisis. Indeed the solid
curve that bounds region I is the locus of a heteroclinic tangency between manifolds
of period-three orbits. The transition from region II to region III is also a tangency
between the manifolds of these period-three orbits, but here the bifurcation causes
an interior crisis instead. A representative phase portrait for region III is shown

5



−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1.88 1.89 1.9 1.91 1.92 1.93 1.94
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

x x

y

y
I

II

III

V ∗

×

×

×

Figure 4: Dynamics of the Hénon map (1) for parameter values (marked with ×)
near the double-crisis vertex V ∗ ≈ (a∗, b∗) = (1.90653, 0.04714). The parameter
plane is shown in the top right picture. The phase portraits are for (a∗, b∗ + 0.01)
in region I (top left), (a∗ − 0.01, b∗) in region II (bottom left) and (a∗, b∗ − 0.01) in
region III (bottom right).

in the bottom right panel of Figure 4 where (a, b) = (1.90653, 0.03714). The three
distinct pieces of the attractor merged to one strange attractor which will disappear
in a boundary crisis if one crosses into the divergent region.

From the point of view of a tangency between two manifolds, the double-crisis
vertex V ∗is the intersection of two smooth curves. One is defined by a tangency
between the stable and unstable manifolds of two fixed points, and the other curve
is characterised by a tangency between the manifolds of two period-three saddles.

3 Gaps in the curve of boundary crisis

The scenario near the double-crisis vertex V ∗ ≈ (1.90653, 0.04714), as described in
the previous section is typical in the sense that all double-crisis vertices reported
in [3] are intersections of two tangency curves involving stable and unstable man-
ifolds of periodic orbits with two different periods. Unlike the other double-crisis
vertices, V ∗ has a special property: consider the curve segment from V0 to V ∗.
This segment is the locus of a boundary crisis bifurcation caused by a tangency
between the manifolds of the two fixed points. It continues beyond V ∗ as a locus of
basin boundary metamorphosis, but only until E∗ ≈ (1.89, 0.055). After this point,
the tangency curve again acts as the locus of boundary crisis bifurcations. More
importantly, E∗ is not a double-crisis vertex!

A detailed study of the rectangle (a, b) ∈ [1.86, 1.97]× [0.045, 0.065] reveals that
the locus of boundary crises from V ∗ continues up into the divergence region of
the (a, b)-parameter space. Figure 5 shows this part of the parameter space. The
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Figure 5: A detail of the (a, b)-parameter plane showing the regions of divergent
(shaded) and convergent dynamics (white) for the Hénon map (1). The attractor
persists in a “corridor” that penetrates far into the divergent region. The end point
E∗ and the double-crisis vertex V ∗ mark the start of the corridor.

regions that correspond to divergent dynamics are shaded. The figure clearly shows
that there is a “corridor” of parameter values for which the attractor persists. Inside
the corridor, just to the left of the curve of boundary crises, the attractor is chaotic
and consists of three pieces. As one moves further away from the bounding curve a
series of (backward) period-doubling bifurcations takes place. The left boundary of
the corridor is a locus of saddle-node bifurcations of a period-three orbit. Since the
(non-chaotic) attractor disappears in a saddle-node bifurcation at this left boundary,
the intersection point E∗ ≈ (1.89, 0.055) with the heteroclinic tangency curve of the
fixed points is not a double-crisis vertex. The locus of boundary crises ends at E∗

and there is a distinct gap before it continues again.
We used Content [4] to follow saddle-node and period-doubling bifurcation

curves in two parameters. We first continued the period-doubling bifurcations of
the fixed points and subsequently the period-2k points for k = 1, 2, 3. These curves
are shown in the top left panel of Figure 6. As expected from [3, 13], the curves lie
entirely to the left of the locus of boundary crisis bifurcations. The top right panel in
Figure 6 overlays the saddle-node and the first two period-doubling bifurcations for
the period-three point. These curves intersect the locus of basin boundary bifurc-
ations transversely and penetrate into the region with divergent dynamics exactly
along the corridor emanating from V ∗. Similarly, we continued the saddle-node
and first period-doubling bifurcation curves for the period-five (bottom left) and
period-seven points (bottom right). These curves intersect the locus of boundary
crisis twice. This indicates that there are many more end points like E∗ and corres-
ponding double-crisis vertices V ∗ that lead to corridors where the attractor persists
well into the region with divergent dynamics.

4 The locus of boundary crises

We studied the boundary crisis bifurcation with two varying parameters. While pre-
vious reports in the literature seem to indicate that a continuous curve of boundary
crisis bifurcations exists with a finite number of non-differentiable points (double-
crisis vertices), we found that there are gaps that open up to a corridor of attracting
dynamics penetrating well into the region of divergent dynamics. One side of this
corridor is indeed a curve of boundary crisis bifurcations, and characterised by the
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Figure 6: The locus of boundary crisis bifurcations for the Hénon map (1) is inter-
spersed with gaps containing periodic dynamics that form corridors which penetrate
far into the region with divergent dynamics. The top left panel shows the locus of
boundary crisis bifurcations together with the period-doubling bifurcation curves for
the period-one, period-two, period-four, and period-eight points. The other panels
show in addition the saddle-node bifurcation and period-doubling bifurcation curves
for the period-three point (top right), the period-five point (bottom left), and the
period-seven point (bottom right), respectively.

tangency between stable and unstable manifolds of two periodic points with a fixed
period. The other side of the corridor is a saddle-node bifurcation that creates the
crisis orbit involved in this boundary crisis bifurcation.

As a result of our findings the locus of boundary crisis bifurcations looks very
different from pictures published, for example, in [3, 13]. The segment that corres-
ponds to a heteroclinic tangency between the (closures of) the stable and unstable
manifolds of two fixed points is transversely intersected by at least five, but quite
possibly infinitely many curves of saddle-node bifurcations. Each of these curves
marks the onset of a period-doubling sequence to chaos starting from a periodic
orbit with a particular period. The stable manifold of the periodic saddle that is
created in the saddle-node bifurcation eventually becomes tangent to the unstable
manifold of a saddle with the same period. The locus of this heteroclinic bifurc-
ation is a smooth curve that corresponds to a boundary crisis. This curve also
transversely intersects the heteroclinic bifurcation curve of the fixed points and the
intersection point is a double-crisis vertex that has not previously been reported in
the literature.

The intersection points of the saddle-node curves with the heteroclinic bifurca-
tion curve of the fixed points are not double-crisis vertices. Here the locus of bound-
ary crisis bifurcations ends and there is a small gap before the locus of boundary
crises continues. It may well be that there are infinitely many such gaps along the
curve of heteroclinic bifurcations of the stable and unstable manifolds of the fixed

8



points. The one-parameter bifurcation diagram of the Hénon map with b = 0.3
shows a period-doubling sequence to chaos, but the chaotic regime is interspersed
with periodic windows where a new period-doubling scenario is initiated. When
following this one-parameter variation in b, we find that these periodic windows
persist right up to and even beyond the locus of boundary crisis that is defined by
a heteroclinic tangency between the manifolds of the fixed points. It is known that
the set of chaotic dynamics in the quadratic map is a Cantor set with positive Le-
besgue measure [10]. Hence, the set of boundary crisis points along this heteroclinic
bifurcation curve may well be a Cantor set.

In [11] a strange phenomenon was reported while studying the boundary crisis in
two parameters for a three-dimensional quasi-periodically forced Hénon map. Here
the simplest attractor is an invariant curve with quasi-periodic dynamics. As the
curve undergoes a period-doubling sequence to chaos a boundary crisis bifurcation
can be observed. In two parameters this bifurcation forms a curve, but the curve
has a strange “bubble” where no chaotic dynamics could be traced. In [11] this
phenomenon was thought to be due to the quasi-periodic forcing, but it matches
very well with the results reported in this paper where no forcing is present. In
fact, it may well be that the quasi-periodic forcing causes the corridor observed in
the non-forced case to become a bubble, that is, closed at the “top” that penetrates
into the divergent region. However, this conjecture needs further investigation.
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