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Boundary Delineation of Agricultural Fields in

Multitemporal Satellite Imagery
Heather C. North , Member, IEEE, David Pairman , Member, IEEE, and Stella E. Belliss

Abstract—Agricultural land-use statistics are more informative
per-field than per-pixel. Land-use classification requires up-to-date
field boundary maps potentially covering large areas containing
thousands of farms. This kind of map is usually difficult to ob-
tain. We have developed a new, automated method for deriving
closed polygons around fields from time-series satellite imagery. We
have been using this method operationally in New Zealand to map
whole districts using imagery from several satellite sensors, with
little need to vary parameters. Our method looks for boundaries—
either step edges or linear features—surrounding regions of low
variability throughout the time series. Local standard deviations
from all image dates are combined, and the result is convolved
with a series of extended directional edge filters. We propose that
edge linearity over a long distance is a more important criterion
than spectral difference for separating fields, so edge responses are
thresholded primarily by length rather than strength. The result-
ing raster edge map (combined from all directions) is converted to
vector (GIS) format and the final polygon topology is built. The
method successfully segments parcels containing different crops
and pasture, as well as those separated by boundaries such as roads
and hedgerows. Here we describe the technique and demonstrate
it for an agricultural study site (4000 km2) using SPOT satellite
imagery. We show that our result compares favorably with that
from existing segmentation methods in terms of both quantitative
quality metrics and suitability for land-use classification.

Index Terms—Agriculture, feature extraction, image edge anal-
ysis, image segmentation, image sequence analysis, remote sensing.

I. INTRODUCTION

R
EMOTE sensing imagery can provide detailed, up-to-date,

and spatially explicit information on agricultural land use

that would otherwise be difficult to gather. Field surveys and

farmer questionnaires are time consuming and have their limi-

tations for updating large areas. If remotely sensed imagery is

interpreted manually, this is also labor intensive, so many re-

searchers have worked on automated techniques for classifying

crops and land uses, often using time series of images; e.g., Hall

and Badhwar [1], Lucas et al. [2], Wardlow et al. [3], and Esch

et al. [4]. Our own work in agricultural land-use mapping is
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described in Lilburne and North [5], North et al. [6], [7], and

in a technical report [8]. Such classification is increasingly car-

ried out on a per-field rather than a per-pixel basis [2], [4], [8].

Agricultural statistics are more useful in this form for policy

and monitoring, and classification techniques are more power-

ful and accurate when whole fields are classified as a unit [9],

since, as an object, a field can be robustly characterized by its

mean reflectance, and higher level features such as size, shape,

and texture can also be considered.

Field boundary information is often available for individual

farms, but it is difficult to collate and maintain this in a uniform

way across a region containing thousands of farms. Also, phys-

ical fence-lines are not the only feature of interest: sometimes

several different crops are grown inside a single field. Since the

final aim is to separately classify these parcels of crop, subar-

eas must also be segmented. Rydberg and Borgefors [10] define

field boundaries as being at locations “where a change in crop

type takes place or where two similar crops are separated by a

natural disruption in the landscape, like a ditch or a road.” To

this we add any significant differences in crop management.

To be practical, any boundary mapping method must be able

to work across large areas, such as whole districts or full satel-

lite scenes. It must also be easy to quickly regenerate the field

boundary map from new image sequences so that the result can

be kept up to date. Changes in farm type often give rise to new

field layouts, and subareas of crop within fields vary from year

to year.

Existing approaches for segmenting imagery include:

1) edge detection methods [11], [12]—these accurately lo-

cate significant boundaries but do not guarantee closed

polygons;

2) region-based methods, involving progressively merging

adjacent areas that have similar spectral properties (bot-

tom up, region growing) [13], [14]; or splitting areas that

have different spectral properties (top down) [15]; or clus-

tering spectrally similar pixels around a set of k-means

[16]—all produce closed polygons, but the boundaries

are not always located at the natural/visible edges of the

highest gradient or linearity;

3) integrated methods that seek to combine the advantages

of both edge and spectral approaches [10], [17] and, more

recently, [18] and [19].

These techniques can be further combined with other metrics

on potential object segments, such as shape and size. Commer-

cial toolkits such as eCognition [20] are available for developing

segmentation and object classification algorithms [21], [22]. The
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precise algorithm used depends on the image type, its content,

and which features are of interest.

The development of our method (our early work is described

in [23]) has been guided by our observation of several key char-

acteristics of the agricultural landscape, as seen in the imagery.

1) Many crops and pastures are very similar in spectral ap-

pearance when they are at full leaf cover, so segmentation

by spectral difference alone is not always sufficient. For

the same reason, edges between fields can sometimes be

extremely weak (particularly those between neighboring

pasture fields), meaning they are not always picked up by

a simple edge detector operating on edge strength.

2) Agricultural fields often have straight boundaries, or, if

curved, then the curve is usually gentle. We therefore

consider linearity over a long distance (multiple pixels)

to be a strong indicator that an edge response is due to a

fence-line or change in crop type or management, even if

the edge is very weak.

3) A field, or area of crop, suitable for classification as a unit

is, by definition, internally homogeneous. We aim to find

boundaries around these internally consistent areas. We

use standard deviation (STD) within a moving window in

each image band or channel. A number of authors have

used elevated STD, variance, or coefficient of variation to

indicate the presence of boundaries, including both linear

features and step edges (stepping either up or down); e.g.,

[24]–[26].

4) Crop rotation, pasture management, and crop phenology

through a season can cause large variation in the appear-

ance of fields through time (more so for arable cropping

fields than for pasture fields). We exploit this by using

time series of images: even if neighboring fields are in-

distinguishable in one image, there is a good chance they

will look different in another, and therefore an edge will

be visible between them. Per-band local STD is combined

at each pixel through all bands of all images in the time

series.

Most existing methods for edge detection and segmentation

of objects in satellite imagery are based on the magnitude of

spectral difference from one object to another. As noted, we

believe this is not necessarily the most useful criterion for sepa-

rating agricultural fields. For example, we do not wish to merge

two field segments on the basis of spectral similarity if they are

separated by a linear feature such as a hedgerow.

An important case of weak edges are those between neigh-

boring pasture fields. While some authors focus on delineation

of arable or harvested crops [19], [27], it is important in the New

Zealand context to also delineate pasture fields. Most regions

include a mix of arable and pastoral farming. Pasture grazing is

often managed intensively, especially in dairy farming. Neigh-

boring pasture fields are often separated only by a wire fence,

with no visible linear feature in the image. The indicator of

boundary presence in this case is a difference in pasture length

(e.g., pre- or post-grazing) that may appear in some images of

the time series.

Therefore, we have developed a method that places its main

emphasis on the length and linearity of boundary segments.

Rydberg and Borgefors [10] and Yan and Roy [27] also aim to

retain linear edges, even where these are weak. However, as de-

scribed in the following sections, our method takes this concept

further by using extended directional linear filters for edge de-

tection, and by thresholding primarily using length, rather than

strength, of edge responses. Our method converts this initial

raster line work to closed GIS polygons, a step suggested by

Rydberg and Borgefors [10] as a logical extension of their own

work.

The use and combination of directional filters and the thresh-

olding of their responses using length rather than strength is the

key contribution of this work. Other features of our method are

as follows.

1) The perimeters of individual image extents and data gaps

(e.g., from clouds) do not create artifacts—our method can

combine data from a time series of incomplete images, so

gap-filling methods such as those described in [28] or [19]

are not required.

2) It is fully automated, with few parameters, which are not

generally changed between datasets—we typically use

medium resolution imagery from the SPOT, Sentinel-2,

and occasionally Landsat satellites (sometimes in combi-

nation) without changing parameters.

3) It is operationally practical for large areas because im-

agery is processed as overlapping tiles.

In the following sections we list the steps in our new method,

consisting first of processing in raster space, followed by conver-

sion to a final GIS polygon layer—a representation of fields as

objects. We describe the execution of the method on a test dataset

of time-series satellite imagery, and present a subarea of the

resulting field boundary map. We then compare the map quan-

titatively and descriptively with results from another method

(the Erdas Imagine image segmentation tool [29]) operated on

the same image dataset. We also show comparison results with

a second existing method [30], and the operation of our own

method with the same parameters on three other datasets, using

a variety of image types, to demonstrate its robustness.

II. METHOD

A. Field Boundary Detection Method—Raster Analysis

Our method operates on a time series of satellite images to

increase the possibility that any given boundary will be vis-

ible in at least one of the images. The methodology below

is illustrated with figures that show a 6 km × 7 km subset

[see Fig. 1(a)] of the full test dataset described and used in

Section III. For now it is sufficient to note that the red, near-

infrared (NIR), and short-wave infrared (SWIR) bands from

seven dates of SPOT satellite imagery were used to generate

these figures. We often use this combination of bands because

they all show useful differences between fields and are relatively

uncorrelated. However, it is quite possible to use, for example,

just the NIR band, or an index such as the Normalized Differ-

ence Vegetation Index (NDVI), or band ratios (particularly for

hill country), or principal components images.

The detailed steps for generating the STD image and detecting

long, linear features are given below.
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Fig. 1. (a) NIR bands of three image dates, displayed as red–green–blue (images CNES 2010 and 2011), to show the general layout of fields. (b) Resulting image
of combined STDs for seven images using three bands each.

1) Before calculating the per-band STD, a weight can be ap-

plied to each of the bands to adjust their influence with

respect to one another. For the normal cases where im-

age bands are calibrated to reflectance or used as ratios

of reflectance, they are already balanced, and we use a

weighting of 1.0 for all bands. However, if the imagery is

calibrated to a different unit, e.g., radiance, or there is a

reason to emphasize one band over another, then weight-

ing parameters other than 1.0 can be used. In such cases,

we define a set of weightings suitable for a class of im-

age (i.e., combination of sensor, calibration method, and

bands used) rather than for individual images. We con-

sider one of the bands as a reference (weighting of 1.0),

and calculate the ratio of the average dynamic range (over

a large number of images) of this band to each other one.

If each image has n bands, bk where k = 1, . . . , n, and

the weights are wk then each band is weighted as wk . bk .

2) For each image (and each weighted band), the STD is

calculated at every point using the pixels in a local area

around that point. We use a round window of diame-

ter 5 pixels to define this local area (i.e., 21 pixels).

Invalid pixels (e.g., outside the satellite’s path, cloud-

contaminated, or other gaps) do not contribute to the STD.

This step results in a stack of per-band STD images.

3) The STDs from all images and all bands are combined

using an average at each point to obtain a single-layer

image summarizing spatial variability from all images

and all bands. Again, only STDs from valid imagery are

combined at this point. An example of a combined STD

image S is shown in Fig. 1(b).

4) Linear features in the combined STD image are found

by convolution with 16 pairs of directional operators,

where each pair consists of a left and a right half, fi,left

and fi,right for i = 1, . . . , 16 directions. Consecutive

operators are 11.25° apart, so the 16 together occupy

Fig. 2. Five of the 16 directional convolution operator pairs, covering the first
45° of the full 180°. (a) 0°. (b) 11.25°. (c) 22.5°. (d) 33.75°. (e) 45°.

180°. Fig. 2 shows the first five of the operator pairs:

the remaining 11 can be derived from these by rotation

and reflection. All have a length equivalent to 13 pixels.

Processing with these produces a 16-layer image B with

each layer i representing a different direction.

5) Local maxima lines in the combined STD image are found

using a logical (AND) combination of the directional op-

erator pairs. Operator responses are

Li,left = fi,left ⊗ S (1a)

Li,right = fi,right ⊗ S. (1b)

A boundary response meets the following criteria. At each

pixel of Bi

Bi (x, y) =

⎧

⎨

⎩

1,
Li,left (x, y) > 0, Li,right (x, y) > 0,

(Li,left (x, y) + Li,right (x, y)) > T

0, otherwise
where (x, y) is a spatial pixel location.

(2)
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Fig. 3. Responses from three of the 16 directional operators processed by (2), and prior to sieveing by length, showing (a) 0°, (b) 45°, and (c) 100° (101.25)°;
and (d) the final raster line work after connectivity analysis and removal of short fragments in each directional response, and then combining all 16 into a single
layer.

Only an extremely low threshold T is used on the operator

responses to screen out very low-level noise. It is set at a

level aimed to retain any edge response that could possibly

be significant, as discussed further below. An example of

the binary result from the responses to three of the 16 di-

rectional operator pairs processed by (2) is shown in Fig. 3.

6) In each of the 16 layers, a connected components analysis

of the pixels is done using an eight-neighborhood to label

connected line fragments.

7) Ideally, fragments with a length less than approximately

300 m are removed. We use a simple count of pixels

belonging to the fragment. Thus, for 10 m SPOT imagery,

we remove (sieve) fragments of less than 30 pixels. The

300 m threshold was chosen as appropriate to the usual

field sizes and layouts in New Zealand.

8) All 16 angles are combined into a single layer (binary)

using a logical OR [see Fig. 3(d)]. The line work is highly

connected once all the angles are combined.

Even though our raster analysis algorithm is essentially an

edge detection method, it uses a characteristic more often as-

sociated with region-based methods: that of spectral unifor-

mity, via the local STD. We emphasize and extend long lin-

ear features by using long, narrow operators. This helps us

to achieve the highly connected line work result. For agri-

cultural fields, we have observed that it is primarily the edge

length in a given direction that indicates an edge response is

significant, rather than its strength. Therefore, we choose not

to use the hysteresis thresholding approach of Canny [11] be-

cause it is not necessary for an edge fragment to contain pix-

els of high strength (e.g., above the upper threshold of [11])
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Fig. 4. Final vector line work for the same area shown in Figs. 1 and 3, laid
over three-date NIR image.

for it to be considered evidence of a fence-line or change in

crop.

We use only an extremely low-strength threshold, set at 10%

of the 95th percentile of edge strengths, to screen out the very

lowest background noise within fields. This is because we wish

to retain any long linear edge, no matter how weak. Yan and

Roy [27] also use “aggressively low thresholds to ensure weak

edges are not missed . . . ” They determined these by manual

inspection of the edge intensity values of weak field boundaries.

Our length thresholding method, applied to each edge direction

separately, is a key feature in achieving the high connectivity,

result seen in Fig. 3(d).

The operator pairs do not respond to gradients in STD (i.e.,

positive response on one side and negative on the other) because

we calculate each side separately and require both to be positive.

This detects the maxima lines and so keeps the operator response

narrower than the full width of the STD response. Also, there

are some cases where there is more variability in one part of a

field than in another, without an actual boundary between them,

and the operator does not respond to this change in variability.

B. Field Boundary Detection Method—GIS Analysis

Raster line work from the steps above [see Fig. 3(d)] pro-

vides mostly complete boundaries between fields, but some

gaps remain. Before generating a GIS layer with closed polygon

topology defining fields, we need to bridge these gaps, where

appropriate, and discard other spurious “dangles” (lines that do

not connect at both ends). Therefore, the next stage is to run a

series of operations (including several heuristics) using the open

source GRASS GIS [31] to clean the raster result [see Fig. 3(d)]

and convert it into the final vector polygon coverage shown in

Fig. 4.

1) Raster lines are thinned to a single pixel using a standard

GRASS function (r.thin), an implementation of [32].

2) Urban areas, roads, river beds, lakes, forests, mountain-

ous, and other nonagricultural areas are masked out in

raster space using a separately prepared “agricultural

mask.” For this mask we use nationally available GIS lay-

ers defining conservation estate, road networks, and broad

land covers, supplemented by manual checking around

marginal areas such as river banks. Government cadastral

data are also used by Yan and Roy [27] for separating out

agricultural land, while in [18] they detect areas with con-

sistently high NDVI, and Graesser and Ramankutty [19]

use semisupervised classification.

3) Thinned lines are converted into a GIS vector layer.

4) Lines are smoothed to remove staircasing using the

GRASS “snakes” line generalization method described

in [31], with default parameters.

5) The agricultural mask vector boundaries are added. Note

that this includes roads (buffered by 30 m).

6) The line work is then cleaned (GRASS v.clean) to remove

duplicates and short dangles (under 1.5 pixels) to reduce

the processing load of step 7.

7) Longer dangles are extended in their current direction by

a distance up to the lesser of 50% of their original length

or 200 m, to allow intersection with the first encountered

line or other extended dangle. We have found these heuris-

tics ensure sufficient support from existing line work to

extend across most gaps that should be bridged, without

introducing spurious boundaries by extending short line

segments generated by noise. An algorithm was written

in Python to achieve this (providing similar functionality

to the “Extend Line” tool available in ArcMap [33]).

8) All remaining dangles are removed and a polygon topol-

ogy is built.

9) Finally, polygons outside the agricultural area, or smaller

than 1000 m2, are flagged as invalid. Small areas are likely

to represent patches of trees, buildings or other features

we do not want to classify. The final vector result is shown

in Fig. 4.

When using the field polygons for land-use classification, we

use an internally buffered version of the polygons (buffered by

20 m) to extract the per-field spectral statistics. This approach

excludes spectrally mixed pixels from around the field edges.

C. Quality Metrics for Segmentation Results

It is not straightforward to judge the “quality” of a segmen-

tation result in a quantitative way. However, there are metrics

in the literature for formally assessing a segmentation result

(or the line work around the segments) against a set of ref-

erence segments, such as a set of hand-delineated fields (e.g.,

[34]–[36]). Examples include similarity metrics to quantify the

average distance between the reference and trial boundaries, or

the difference in area between the reference and trial segments.

Locational accuracy is certainly useful for assessing one

aspect of correctness, but up to a point it is not the most

important aspect for our application of per-field land-use

mapping. The more disruptive error type for our purpose is

under-segmentation. This is where several “different” fields
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are merged into one segment. If our method fails to find the

boundary between adjacent fields containing different crops,

this can cause an error in the subsequent land-use classification.

The spectral and temporal characteristics of the two different

land uses will be averaged within the single boundary, so that

the result will not be representative of either. The opposite

error—over-segmentation—tends to be less serious for our

application. If a “real” field is split into several segments, each

segment is classified separately, and if all segments fall into the

same land-use class then no major error has occurred.

Therefore, we assess the quality of our field boundaries in a

two-step process. First, we manually match our field polygons

against a set of hand-delineated reference fields in order to assess

the cases: under-segmentation, over-segmentation, correct (one-

to-one match), and different field layout (many-to-many match).

The second step is to assess the locational accuracy of those field

boundaries that do have a match with the reference data. The

two-step nature of this approach is similar to that by Esch et al.

[22], where segments are assessed both for the correctness of

the segmentation (merging or subdivision of the segments) and

then, for the correctly represented image objects, on the basis

of deviation in area, perimeter, and shape index.

For our locational accuracy metric, both the field and refer-

ence boundaries were converted into raster format, and the loca-

tional accuracy of each field boundary pixel was assessed as the

distance from it to the nearest reference boundary d(Fj , Rj ).
The average of these distances is calculated for all N matched

boundary pixels, i.e.,

1

N

N
∑

j=1

d (Fj , Rj ). (3)

This is similar to the metric reviewed in [36], except that we

only consider matched boundaries and therefore only need to

consider the distance in one direction.

As shown in Fig. 5, we created a set of 273 reference fields (as

well as polygons representing other features such as farm yards,

buildings, and gardens) by manual delineation in high-resolution

QuickBird imagery (KiwImage New Zealand national coverage

captured by Digital Globe using the QuickBird satellite, with

multispectral imagery at 2.4 m resolution, pan-sharpened to

0.6 m pixels). The imaging date for the northern half of the

area was April 7, 2010, and for the southern half it was January

26, 2010 for the panchromatic and February 11, 2010 for the

multispectral. These dates fell within the early part of the SPOT

satellite time series used in this work.

D. Existing Segmentation Methods for Comparison

For the main comparison of segmentation performance, we

used the image segmentation tool in the remote-sensing software

package Erdas Imagine 2015. This is an implementation of the

multiple-pass region-growing algorithm proposed by Woodcock

and Harward [37] but with the addition of an edge detection step,

making it an integrated method like [10]. This is an appropriate

comparison since 1) it is a standard function available through-

out the remote sensing community, and 2) it yields closed seg-

ments as ours does, rather than broken raster line work.

Fig. 5. Hand-delineated reference fields, overlaid on the high-resolution satel-
lite imagery from which they were derived (0.6 m pixel size).

We tested Imagine’s image segmentation on a subarea from

the same dataset used to demonstrate our algorithm. We used the

“compute settings” option offered by the tool, which resulted in

the following parameters:

1) use Euclidean distance on all 21 layers;

2) apply edge detection with no presmoothing, and a thresh-

old of 6 and a minimal length of 3 pixels;

3) use a minimal value difference of 6 and a variance factor

of 3.5 for the segmentation.

We then applied a raster-to-vector conversion (also in Imag-

ine) to the segmentation result.

We also ran the same dataset (seven images with three bands

each) through the Spring segmentation algorithm [30]. In com-

mon with Hu et al. [38], we selected its two parameters by

experimenting with a range of values and visually choosing the

best result with a similar level of segmentation detail to the

other two methods. The parameters used were similarity = 30

and area = 60. Again the raster result was converted into the

vector format.

III. RESULTS AND DISCUSSION

A. Study Site and Land-Use Mapping Application

The full area of our main test site, illustrated in Fig. 6, is

the Mid-Canterbury plains, South Island, New Zealand, an area

of pastoral dairy farming (usually irrigated), sheep and beef

farming (usually dryland), and arable cropping. Land use is

dynamic, with significant farm conversion over the past 10 to

20 years—mostly to dairy farms. This conversion often involves

wholesale removal of existing fences and hedges, installation of

large pivot irrigators, and new field layouts. Cropping farms have

dynamic crop rotations, with a wide variety of seed, grain, and
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Fig. 6. Study site on Mid-Canterbury plains, South Island, New Zealand, showing one of the land-use classification results that use our field boundary maps as
input. Rivers, urban centers, and other nonagricultural areas have been masked out (white). The location of this study site is indicated by a black-filled rectangle
on the map of New Zealand. The black-outlined rectangle on the land-use map shows the area of detailed field boundary results presented in Figs. 7 and 11.

vegetable crops grown (some fields will have several different

crops per year).

The high degree of land-use and seasonal change has led us

to carry out two land-use classifications per year, one centered

around a date in summer and a second around a date in winter.

Each classification uses a time series of satellite data, typically

starting 12 months before and continuing 9 months after the

classification date. During this period a time series of some

15 to 19 images may be available. The land-use classifications

of the area in Fig. 6 (dated 2010−12) included images from

Landsat-5 and -7, and SPOT-4 and -5 [8], and we now also use

imagery from Sentinel-2A and -2B for current classifications.

Fig. 6 shows one of the summer land-use classification results

that uses our field boundary map as input.

To keep up with changes in field layouts, we usually gen-

erate a new field boundary map for each classification date,

using images from the same period as those used in the

classification.

B. Experimental Image Datasets

To demonstrate our method, we operated it on image datasets

typical of those we use for land-use mapping. Our field bound-

ary detection method can be applied to any optical imagery.

However, of the imagery generally used for the land-use map-

ping stage, we prefer to select only the higher spatial-resolution

TABLE I
MAIN MID-CANTERBURY DATASET: IMAGES USED FOR FIELD

BOUNDARY DETECTION

SPOT or Sentinel-2 images (typically seven to nine images in

the 21-month period) for field boundary mapping.

The study site in Fig. 6 is just over 4000 km2 (essentially the

area of a full SPOT satellite scene). Each SPOT image was or-

thorectified to the New Zealand Transverse Mercator map grid at

a 10 m pixel size using Imagine Autosync [29]. For the purposes

of the land-use classification, all images were radiometrically

calibrated for sensor settings and sun angle, though this is not

crucial for the field boundary mapping. Cloud masking was car-

ried out as required. The main field boundary results presented

in this paper were generated from the set of seven images listed

in Table I. For the relatively flat study area in Fig. 6, imagery

bands can be used directly. For rolling or hill country we have
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TABLE II
DATASETS FOR COMPARISON

achieved better results by first generating band ratio images as

input to the methodology, helping suppress boundaries caused

by terrain effects.

To demonstrate the robustness of our method we also include

three other datasets as listed in Table II, covering several satel-

lite sensors and varying agricultural landscapes. All these were

calibrated to reflectance, compared to our main dataset which

used radiance calibration. In all cases, the red, NIR, and SWIR

bands were used, sometimes as ratios.

C. Implementation Details—Raster Analysis

Python code was written to perform the steps listed above.

This made use of several libraries, including NUMPY, SCIPY,

and RIOS [39]. RIOS facilitates automated tiling of an image

extent and management of input/output. Although not done for

this study, the overlapping tiles can be processed in parallel on

different nodes in a cluster computing environment. Processing

the seven full SPOT images described in Section III (study site

area approximately 4000 km2) through to raster line work took

approximately 25 min on a single computer node. The area was

processed in 200× 200 pixel tiles. In step 4), tiles have 12 pixels

of overlap to accommodate the 13 × 13 pixel spatial filter. In

step 7), tiles have sufficient overlap to accommodate the 300 m

minimum fragment size (30 pixels in this case). The per-tile

processing means there is no limitation on the spatial extent of

the imagery.

The raster analysis steps above are fully automated, and

we usually do not vary parameters for a given processing run

other than defining the input imagery. If the type of imagery

is changed (e.g., sensor, calibration, band ratios), then different

band weightings may be required. Other parameters that can

be changed are: 1) the threshold on the responses from the di-

rectional operators—although we have found our low threshold

(10% of the 95th percentile of edge strengths) to be generally

appropriate; and 2) the length threshold on connected line frag-

ments to suit local field layout and size—but we find 300 m

suitable throughout New Zealand.

D. Implementation Details—GIS Analysis

The GIS steps outlined above are performed on our high-

performance computing facility. Processing the approximately

4000 km2 study area took approximately 2 h to run on a single

node with 10 GB of memory.

As with the raster processing, all steps of GIS processing

are fully automated, and we usually do not set any parame-

ters other than specifying the input raster line work image and

the “agricultural mask” defining the farmland area to be pro-

cessed. However, parameters that could be varied if required

are: 1) allowable extension lengths for GIS dangles; and 2)

area of polygons that are considered too small to be a valid

field—this will depend on local field sizes and layout, but we

find 1000 m2 suitable for our operational use throughout New

Zealand.

E. Generation of Field Boundary Results

We used our method to automatically segment the full study

site shown in Fig. 6 using the seven-date SPOT image dataset

listed in Table I. The red, NIR, and SWIR bands of each im-

age were used. The vector result had over 91 000 polygons

representing fields. This count excludes a slightly larger num-

ber of small polygons that would not be considered as a part

of a field, such as isolated buildings, trees, or other small

features.

We also applied the Image Segmentation tool in Erdas Imag-

ine to a subarea of the same imagery (1800 × 1300 pixels)

around the reference fields. We noted that the imagery had to

be in integer type, not float, for the function to operate success-

fully. We have successfully trialed the Imagine tool on image

sizes up to 8000 × 8000 pixels (typically yielding 50–60 seg-

ments per square kilometer). We presume that the number of

segments would finally be limited by the unsigned 32-bit type

of the output, though maximum file size or computing resources

may impose an earlier limit.

Subareas of both segmentation results are shown in Fig. 7.

They are laid over an image composed of three of the image

dates, with the NIR band of the three displayed as red–green–

blue. The figure gives a good idea of field layout, although

further boundaries may be present in dates that are not shown.

As a result some field boundaries appear in locations where

there is no obvious color difference. Likewise, color differences

visible in this three-date combination may not be apparent in

some or all of the other dates so may lose significance in the final

result, due to the averaging of the STD images. We regard this as

a useful feature, as it suppresses boundaries that are transitory

(e.g., resulting from a temporary electric fence placed across a

field of livestock).

F. Visual Comparison

The immediate visual impression from Fig. 7 is that the field

boundaries from our method are much straighter and cleaner

than those from the comparison method, though both results

appear to successfully segment areas of different color in the

composite of imagery. As described in Section II, part of our

process is to “burn-in” a buffered version of the road network,

so the roads show particularly clearly in our result. This process

could, of course, be applied to the result of the Imagine seg-

mentation to achieve a similar effect. Imagine produces a raster

result which we converted into vector for display purposes, so

it contains pixel staircasing.
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Fig. 7. Segmentation results for the area around the reference dataset (the area of which is shown by the black rectangle). Line work is shown over an image
composed of the NIR band of SPOT images acquired on August 21, 2011, October 2, 2010, and February 18, 2010, with the three dates shown as red–green–blue.
(a) Result from our field boundary method. (b) Result from Erdas Imagine’s Image Segmentation function.
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Fig. 8. Segmentation result from Spring operated on dataset of Table I. Though
not visible here, Spring also creates a diagonal line at the edge of one of the
images (data gap) as the Imagine algorithm does [see Fig. 7(b)].

The coverage of one of the SPOT images is incomplete along

the right-hand side of the subarea. A change in color can be

seen in Fig. 7(a) along a diagonal line where the coverage of the

February 18, 2010 image finishes, while the other two images

have complete coverage. Our method is not disrupted by such

data gaps. In comparison, the Imagine function treats these areas

as zeros, giving them a different spectral appearance, and there-

fore putting them into different segments from the areas where

there is full coverage on all dates. The diagonal line down the

right-hand side of Fig. 7(b) is an artifact of this data gap. This

is important, because it is common to have gaps in the data

for various reasons, particularly where cloud, haze, and cloud

shadow have been masked out.

We also present comparison results as follows.

1) Segmentation from Spring [30] operated on the dataset

listed in Table I. The raster result was vectorized for dis-

play in Fig. 8. This method produces narrow segments

adjacent to boundaries where there is a spectral gradient.

Consequently there are many double lines, symptomatic

of methods not using edge detection.

2) Application of our method to the other three datasets is

listed in Table II. The same parameters were used for

all, i.e., T = 10% of 95th percentile of edge strength,

minimum fragment length = 300 m, dangle extension up

to the lesser of 50% of original length or 200 m. These

parameters appear suitable for all three datasets as shown

in Fig. 9.

3) Varying our threshold T from 10% to both 5% and 15%

of the 95th percentile of edge strength, using the dataset

in Table I. These variations are large in comparison to our

default threshold, but the effect on the final segmentation

is not dramatic (see Fig. 10). More subtle features are

delineated with the lower threshold (no spurious noise is

introduced) and less with the higher threshold.

Fig. 9. Application of our method to three other datasets listed in Table II.
(a) Temuka, Canterbury. (b) Southland. (c) Hawke’s Bay. The same parameters
were used for all. Line work is laid over three-date NIR images.
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Fig. 10. Our method applied with varying threshold T: (a) 5%, (b) 10%,
(c) 15% of the 95th percentile of edge strength.

G. Quality Metrics

Simple visual inspection of a segmentation result can provide

an indication of the quality of the result. However, the eye can be

fooled—the crisp line work looks authoritative, and the human

brain finds itself interpreting the image through the frame of

the imposed line work rather than judging the line work on its

degree of matching to the image.

We compared our main segmentation result and the Imag-

ine result with the reference boundaries to determine matching

“units” (minimal matched boundaries). As shown in Fig. 11,

cases were:

1) one-to-one: where a unit consisted of one segment match-

ing one reference field;

2) over-segmentation: where a unit consisted of several seg-

ments matching one reference field;

3) under-segmentation: where a unit consisted of one seg-

ment matching several reference fields; and

4) many-to-many: where a unit consisted of several segments

matched with several reference fields (different layout).

In each case the unit boundary was considered to be the outer

boundary of the group of segments or reference fields of which

it was composed.

The unit boundaries were used to assess the locational accu-

racy, as described in Section II. In both cases, the buffered road

network was masked out so that the two results would be com-

parable. The results are presented in Table III, showing that the

average locational accuracy of our field boundaries is slightly

better than that of the Imagine result. However, both are very

good, with 90% and 88%, respectively, of pixels within 10 m of

the true location (10 m is the pixel size of the SPOT satellite im-

agery). When using the field boundaries for land-use mapping,

we internally buffer each polygon by 20 m for calculating the

average spectral signature of the polygon. This is to minimize

the effect of mixed pixels around the edges. Both segmentation

results have 98% of boundary pixels within 20 m of the true

location.

As shown in Table III, the mean locational error is around half

the 10 m pixel size of the source imagery. When constructing the

units for this assessment, we included not only the main, large

polygons but also any small polygons that fell with more than

half their area within the corresponding reference polygon. This

ensured that the locational accuracy assessment was as good as

it could be.

However, for the assessment of segmentation shown in Ta-

ble IV, we counted only the significant polygons, defined to be

those larger than 2000 m2 in size and occupying more than 5%

of the unit’s area.

Our field boundary matching method has the higher percent-

age of one-to-one matches (59% as opposed to 39%). The Imag-

ine segmentation has a higher percentage of over-segmented

units. This can be seen in Fig. 7, where many fields have line

work within them, apparently corresponding to subtle gradients

in spectral appearance. These variations could be caused by dif-

ferences in the health or biomass of crop or pasture, due to, for

example, variations in shading, irrigation, soil type, or grazing
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Fig. 11. Segmentation results (blue line work) overlaid on reference fields (outlined in red and filled in beige), showing matching between the datasets: (a) our
field boundary method and (b) Imagine segmentation. Four units with different matching status are highlighted.
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TABLE III
LOCATIONAL ACCURACY METRICS, COMPARED WITH REFERENCE FIELDS

TABLE IV
SEGMENTATION STATISTICS OF SEGMENTATION RESULTS COMPARED WITH

REFERENCE FIELDS

intensity. It is not ideal to separate these subtly different parts

of fields, as they could then be classified into different land

uses. In comparison, our method emphasizes long linear bound-

aries where STD is relatively high (with lower STD on either

side) rather than drawing an arbitrary line between areas of dif-

ferent spectral appearance. The instances of over-segmentation

in our field boundary result show larger, straighter partitions,

which are more likely to be due to some real difference in treat-

ment of parts of the field—albeit a difference that is not con-

stantly present and was not visible in the single-date reference

imagery.

Under-segmented fields are potentially most critical to our

use of the field boundary layer for land-use mapping. Under-

segmentation could allow statistics from fields with different

crops or management to be combined, resulting in a misclassi-

fication. In other cases, adjacent fields with identical crops or

management (often neighboring pasture fields) may be under-

segmented with respect to the reference boundaries, but this

would not affect the final land-use classification.

In addition to the results presented in Table IV, we also note

that the Imagine result has one unit where a segment is composed

of a field inside the reference area and one outside, while our

result has two units like this. Also, of the under-segmented and

many-to-many units in Table IV, there are two in the Imagine

result that include nonfield polygons (e.g., farm yards, gardens),

while there are 12 in our result.

Our method is less able to detect boundaries between fields

and the typically high-STD areas of farm yards and dwellings

amongst them, and this is an area for further work. The Imagine

result has many small or narrow polygons that sit across field

boundaries—the mixed pixels can form segments in their own

right. The preferable result would be for the polygon boundary

to lie along the field boundary.

H. Practical Considerations

Our boundary mapping method is viable over large areas:

in another project we have processed the whole Canterbury

region (outlined in blue in Fig. 6), consisting of 26 000 km2

of agricultural land within a 360 km × 350 km rectangle. The

raster analysis processes the imagery in tiles and could easily

be extended to process them in parallel in a high-performance

computing cluster environment.

The method is automated, with no complicated parameters to

set. We make a careful choice of imagery, preferring a pixel size

of around 10 m for suitable representation of field sizes in New

Zealand. A good spread of imagery through different seasons

is also preferred, to increase the likelihood that boundaries be-

tween neighboring fields will be visible on at least some dates.

When operating the method in hilly country we use band ratios

rather than the original bands, otherwise topographic effects on

illumination can create artificial boundaries in the result.

Input imagery often has gaps where cloud or cloud shadow

has been masked out, and scenes are variable in extent. Our

method ignores no-data areas that are masked or outside image

coverage without any disruption to the line work. In comparison,

the segmentations of Imagine and Spring treat zeros as data, so

no-data areas (in one or more image) will be assigned to a

different segment.

We use our method operationally and have run it across

several regions of New Zealand, in some cases repeating the

analysis using different date ranges and/or satellite sensors.

IV. CONCLUSION

We have developed a segmentation method that is tailored

to identify fields in an agricultural landscape. The method has

enabled regional-scale analysis of farming patterns by produc-

ing field polygons. This allows for the classification of fields

as whole objects, which is more accurate than classifying in-

dividual pixels. The area that can be segmented is essentially

unlimited, because the imagery is tiled for processing.

The locational accuracy of boundary line work is approxi-

mately half the pixel size of imagery used to produce it. Com-

parison with hand-drawn reference boundaries has shown a high

degree of segmentation correctness, meaning that the segments

seldom merge two different land uses. Both these observations

mean that the resulting field boundaries are suitable for input

into a land-use classification process.

Comparison against two existing segmentation methods

shows straighter, cleaner linework, and a result that is not dis-

rupted by data gaps. We also demonstrated our method on three

other New Zealand datasets spanning different regions, topogra-

phies, satellite sensors, and radiometric calibrations. In all cases

we used the same parameters, showing that our method is ro-

bust in the context of the medium resolution satellite imagery

we typically use for field scale mapping.
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