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ABSTRACT

The problem of digital signal and image resampling with discrete sinc-interpolation is

addressed. Discrete sinc-interpolation is theoretically the best one among the digital

convolution based signal resampling methods since it does not distort the signal as defined

by its samples and is completely reversible. However, sinc-interpolation is frequently not

considered in applications since it suffers from boundary effects, tends to produce signal

oscillations at the image edges and has relatively high computational complexity when

irregular signal resampling is required. In the paper, a solution that allows to eliminate

these limitations of the discrete sinc-interpolation is suggested. Two flexible and

computationally efficient algorithms for boundary effects free and adaptive discrete sinc-

interpolation are presented: frame-wise (global) sinc-interpolation in DCT domain and

local adaptive sinc-interpolation in DCT domain of a sliding window. The latter offers
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options not available with other interpolation methods: interpolation with simultaneous

signal restoration/enhancement and adaptive interpolation with “super resolution”.

Copyright OSA

OCIS codes 100.0100, 100.200, 110.6980

1. INTRODUCTION

Signal and image resampling is required in many signal and image processing applications.

It is a key issue in audio signal spectral analysis and fractional delay, signal and image

differentiating and integrating, image geometrical transformations and rescaling, target location

and tracking with sub-pixel accuracy, Radon Transform and tomographic reconstruction, 3-D

image volume rendering and volumetric imaging. Signal/image resampling assumes one or

another method of interpolation between available signal/image samples. By virtue of the

sampling theorem, sinc-interpolation is the best interpolation of continuous signals. Given

samples { }ka  of a continuous signal ( )xa  sinc-interpolated approximation ( )xa
~~  to this signal is

defined as

( ) ( )[ ]xxkxaxa k ∆∆−= ∑
∞

∞−

/sinc
~~ π , (1)

where ( ) xxx /sinsinc =  and x∆ is the signal discretization interval. Provided unlimited number

of signal samples obtained as

( ) ( )[ ]∫
∞

∞−

∆−
∆

= dxxkxxa
x

ak πsinc1  ,  (2)
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sinc-interpolation restores the continuous signal with the least mean squared error. For band-

limited signals with spectrum bandwidth x∆2/1 , sinc-interpolation provides exact restoration of

signals from their samples. In other words, signal sampling according to    Eq. 2 is in this case

completely reversible. However exact sinc-interpolation can not be implemented in reality since

it requires unlimited number of signal samples and interpolation function with infinite support.

In digital signal processing with a finite number of available signal samples a discrete analog

of the continuous sinc-interpolation is discrete sinc-interpolation

( ) ( )kxxNNaxa
N

k
k −∆= ∑

−

=

/;; sincd
~~ 1

0
, (3)

where

( ) ( )
( )NxN

xxNN
/sin

sin;;sincd
π
π

=  (4)

is a discrete sinc-function. It approximates the continuous sinc-function ( ) xx /sinxsinc =  for

Nxx <<∆/ .  As it will be shown in Sect. 2, given finite number of signal samples, discrete

sinc-interpolation is the only convolution based fully reversible discrete signal resampling

method. This feature defines the attractiveness of the discrete sinc-interpolation for signal/image

resampling.

Conventionally, discrete sinc-interpolation is implemented by means of signal spectrum zero-

padding algorithm1-3. A more efficient and flexible discrete sinc-interpolation algorithm was

described in4. However despite the attractiveness of discrete sinc-interpolation it is frequently not

regarded appropriate in applications. First, discrete sinc-interpolation tends to produce heavy

artifacts in form of oscillations (ripples) at signal borders. This property may be especially
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restrictive in image processing since image dimensions are usually relatively small numbers

(256-1024), and noticeable ripples from image left, right, upper and bottom borders may occupy

substantial part of the image. Second, signal oscillations caused by sinc-interpolation may also

be observed in the vicinity of signal/image sharp edges. These oscillations are absolutely normal

as soon as reversible discrete sinc-interpolation is required. However they are frequently

considered undesirable artifacts that worsen visual image quality. In addition, the above available

discrete sinc-interpolation methods are not well suited to irregular (not equidistant) resampling.

Due to these reasons, discrete sinc-interpolation is quite rarely practiced in digital signal and

image processing.

In the paper, we introduce two new discrete sinc-interpolation algorithms that eliminate

above-mentioned drawbacks of the discrete sinc-interpolation and offer additional useful

capabilities not available with other methods. In Sect. 3, a computationally efficient and flexible

algorithm of the discrete sinc-interpolation is described that is free of oscillation phenomena at

signal borders. In distinction to the known discrete sinc-interpolation algorithms, the algorithm

computes and modifies Discrete Cosine Transform (DCT) rather than Discrete Fourier

Transform (DFT) signal spectra. It is referred to as global DCT domain discrete sinc-

interpolation algorithm. In Sect. 4, a sliding window signal resampling algorithm is introduced

that also works in the domain of DCT. Being a good approximation to the ideal global discrete

sinc-interpolation, the algorithm is, in addition, capable of simultaneous signal denoising and of

local adaptation of the convolution kernel. The latter feature allows, in particular, to eliminate,

whenever it is required by application, oscillations at signal/image sharp edges and at the same

time to avoid smoothing the edges. In this way, an increased signal resolution with respect to that

defined by signal’s initial sampling rate can be obtained.



5

2. DISCRETE SINC-INTERPOLATION: ERROR FREE  INTERPOLATION OF

SAMPLED DATA

Let a discrete signal of N samples { }ka  (Fig. 1, a) be interpolated to a signal with (L-1)

interpolated intermediate samples per each initial one. For convolution based interpolation, the

interpolation process is a digital convolution,

( ) ( )∑∑
−

=

−

=

+−=
1

0

1

0
21int2

1 2

1

~~ N

k

L

k
kk kLkkhkaa δ , 1,...,1,0 −= LNk  (5)

with interpolation kernel ( ){ }khint , of signal ( ){ }21

~ kaa kk δ= , 21 kLkk += ; ;1,...,01 −= Nk

1,...,02 −= Lk ; ( ) xx 0=δ , obtained from the initial signal { }ka  by placing (L-1) zeros between

its samples as it is illustrated in Fig. 1, b). Compute Discrete Fourier Transform (DFT) of signal

{ }ka~ :

( ) ( )
=




 +
=






= ∑∑∑

−

=

−

=

−

=

1

0

1

0

21
2

1

0 1 2

1
2exp12exp~1~ N

k

L

k
k
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k
kr r
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kLkika

LNLN
kria

LN
πδπα

( ) Nr

N

k
k L

r
N
kia

LN mod

1

0

1 12exp1

1

1
απ =






∑

−

=

, (6)

where { }rα  is DFT of signal { }ka . Eq. (6) shows that sampling discrete signal by placing zeros

between its samples results in periodical replication of its DFT spectrum with the number of

replicas equal to the number of zeros plus one as it is illustrated in Figs. 1, c) and d),

respectively. If interpolation (Eq.5) is computed as a cyclic (periodical) convolution, it will

correspond, in DFT domain, to multiplying spectrum { }rα~  with DFT of the interpolation kernel:
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{ } ( ) ( ){ }khDFT
L

aDFT Nrrk intmod
1~~~~ ⋅








== αα . (7)

One can see from this equation that the only way to secure reversibility of the interpolation and

to avoid, in the interpolation, distorting initial signal spectrum and introducing into the

interpolated signal aliasing spectral components is signal ideal low pass filtering, when

( ){ }khDFT int  is a rectangle function of N samples. Such a filtering is graphically illustrated in

Fig. 1 e). Since the interpolation kernel should be a real valued function, complex conjugacy

symmetry property ∗
−= rLNr αα

~~~~  of its DFT spectrum should be observed in zeroing aliasing

spectral components. One can meet this requirement only for odd N, in which case ( ){ }khDFT int

will be:

( ){ } ( )
1
2/11int −−

+−
−=

NLN
NrrectkhDFT , (8)

where 1,...,1,0 −= LNr ; 


 <<

=
otherwise

x
xrect

,0
10,1

)( . Interpolated signal is then

( ) ( ) ( )( )∑
−

=

=














−−
+−

−=
1

0
1

mod n-kN;N;sincd1
1
2/11

~~
1

N

n
n

Nr
k La

LLNLN
NrrectIDFTa

α
, (9)

where IDFT(.) is inverse Discrete Fourier Transform and

( ) ( )
( )NxN

NKxxNK
/sin
/sin;;sincd

π
π

= (10)
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is the discrete sinc-function. Since no signal spectrum components are distorted in the

convolution, discrete sinc-interpolation of signals with odd number of samples described by Eq.

9 is completely reversible.

For even N, interpolation described by Eq. (9) can’t be implemented since term with

index ( ) 2/1+N  required by Eq. (9) does not exist. Two immediate options in this case are

( ) ( )[ ]∑
−

=

=














−
−

−=
1

0
1

mod

1

1
n-kN;1;-Nsincd12/1

~~ N

n
n

Nr
k La

LLNLN
NrrectIDFTa

α
;       (11)

( ) ( ){ }∑
−

=

+=














−−
−−

−=
1

0
1

mod

1

1
n-kN;1;Nsincd1

2
12/1

~~ N

n
n

Nr
k La

LLNLN
NrrectIDFTa

α
.    (12)

Both interpolation functions ( )kN;1;-Nsincd  and ( )kN;1;Nsincd +  converge to zero

relatively slowly and therefore tend to produce severe boundary effects. A practical compromise

in the case of even N is to halve the (N/2)-th spectral coefficient which corresponds to the

following interpolation formula:

( )[ ]∑
−

=

±=
1

0
1

1

1
n-kN;1;sincd1~~ N

n
nk La

L
a , (13)

where

( ) ( ) ( )[ ] 2/N;1;-sincdN;1;sincdN;1;sincd kNkNk ++=± . (14)

It follows from Eqs. 11-13 that, for even N, one can’t avoid distorting the signal. Its highest

frequency coefficient with index N/2 is either zeroed (Eq. 11) or repeated twice (Eq. 12) or

halved (Eq. 13) in the interpolation process.
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Direct convolution of signal samples with discrete sinc-interpolation function according to

right hand parts of Eqs. 9, 11, 12 and Eq. 13 requires ( )NO  operations per output signal sample

or ( )LNO 2  operations for the entire sinc-interpolated output signal of NL  samples. The

computational complexity of the discrete sinc-interpolation can be substantially reduced if signal

convolution is computed in the domain of DFT with the use of Fast Fourier Transform

algorithms. Two methods of such an implementation are available.  The first method, spectrum

zero padding one1-3, literally reproduces manipulations with signal DFT spectrum described by

middle parts of Eqs. 9, 11, and 12. The algorithm computes signal’s DFT spectrum, pads it with

N(L-1) zeros and then computes inverse DFT of the obtained NL spectrum coefficients. Thanks

to the use of Fast Fourier Transform for computing DFT, the computational complexity of the

algorithm is ( )NLlogNLNlogNO +  operations for the entire output signal of NL  samples or

( )[ ]NLLO log11 +  operations per output signal sample. The second algorithm described in4

allows, for a signal N samples, to generate its discrete sinc interpolated copy of N samples

shifted with respect to initial samples by an arbitrary interval. Such a shifted signal ( ){ }p
ka  is

obtained as

{ } ( ){ }pIDFTa rr
p
k ϕα= , (15)

where ( ){ }prϕ  is DFT of the discrete sinc-function:

( ) ( )∑
−

=






−=

1

0
2exp;;sincd1 N

k
r N

kripkNK
N

p πϕ (16)  

and p is a shift parameter (measured in units of the signal discretization interval). One can show

that
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( ) ( )






−+−=

−−=
=

∗
− 1,...,12/)1(;

12/)1(,...,1,0;/2exp1

NNr

NrNpri
Np

rN

r

ϕ

π
ϕ  (17)

for odd N (K=N) and

( )

( )

( )















−+=

=

−=

=

∗
− 1,...,12/;

2/;/2cos1

12/,...,1,0;/2exp1

NNr

NrNpr
N

NrNpri
N

p

rN

r

ϕ

π

π

ϕ    (18)

for even N ( 1±=K ).

As it follows from Eq. 15 the algorithm has computational complexity of ( )NlogO 2

operations per output signal sample when one shifted signal copy is required or

( )( )NlogLO 11 +  per sample operations for obtaining L differently shifted copies. The algorithm

is well suited for signal arbitrary translation that is required in many signal/image processing

applications, such as, for instance, signal fractional delay and image rotation5.

3. GLOBAL DISCRETE SINC-INTERPOLATION IN DCT DOMAIN

Discrete sinc-interpolation described in Sect. 2 suffers from boundary effects caused, in

particular, by its implementation as a cyclic convolution. The simplest and one of the most

efficient ways to minimize boundary effects in digital filtering is signal extension by its “mirror

reflection” from its boundaries. Such an extension completely eliminates signal discontinuities at

the boundaries. For such signals, one still can retain advantages of computing convolution with

the use of FFT if Shifted DFT ( vuSDFT , )6,7
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( ) ( )∑
−

=












 +

=
1

0

, 2exp2exp1 N

k
k

vu
r N

kvir
N

ukia
N

ππα   (19)

with shift parameters 2/1=u  (half discretization interval in signal domain) and 0=v  (no shift

in Fourier domain) is used instead of DFT. For signals extended to its double length by mirror

reflection, 0,2/1SDFT  is reduced to the Discrete Cosine Transform6,7. Filtering such signals in

SDFT domain of is also a cyclic convolution with a period of 2N, where N is the number of

samples of the initial signal. Therefore, interpolation function for the extended signal should be

obtained from that for the initial signal by padding it with zeros to the double length of 2N

samples as it is illustrated in Fig. 2. Zero padding prevents convolution results from the influence

of boundary effects of the cyclic convolution. Specifically, for generating a discrete sinc-

interpolated copy of the initial signal of N samples shifted by interval p, interpolation function

( ) ( ){ }kh p
int  should be

( ) ( )




−+=
−=−

=
12,...1,;0
1,...1,0);;;sincd(

int NNNk
NkpkNK

kh p ,   (20)

where NK =  for odd N, 1±=K  for even N.

With the use of 0,2./1SDFT , the algorithm for generating p-shifted signal ( ){ }p
ka  described

by Eq. 15 is modified to

{ } ( ){ }pISDFTa r
DCT
r

p
k ηα ⋅= 0,2/1 , (21)

where 0,2/1ISDFT  is inverse 0,2./1SDFT  , { }DCT
rα  are DCT transform coefficients of signal { }ka

and ( ){ }prη  are DFT coefficients of the interpolation function ( ) ( ){ }kh p
int :



11

( ) ( ) ( ) ( ) ( )∑
−

=






=+=

12

0
int 2

2exp
2
1 N

k

pim
r

re
rr N

krikh
N

pipp πηηη .  (22)

As DCT spectral coefficients { }DCT
rα  exhibit odd symmetry:

{ }









−++=−
=

−==
=

−− 12,..,2,1,
,0

;1,...,1,0,

12 NNNr
Nr
NraDCT

DCT
rN

k
DCT
r

DCT
r

α

α
α ,  (23)

inverse SDFT 0,2/1ISDFT  for generating the interpolated signal according to Eq. 21 is reduced

to inverse DCT and DST (Discrete Sine Transform):

( ) ( ) ( )
=






 +
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2/12exp

2
1 N

r
r

DCT
r

p
k N

rkip
N

a πηα

( ) ( )






















 +

+





 +
−+ ∑

−

=

∗
1

1
00

2/1exp2/1exp
2
1 N

r
rr

DCT
r

DCT r
N

kir
N

ki
N

πηπηαηα =

( ) ( )














 +

−





 +

+ ∑ ∑
−

=

−

=

1

1

1

1
00

2/1sin22/1cos2
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DCT
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k
N

πηαπηαηα , (24)

where ∗
rη  is complex conjugate to rη . For each p, coefficients ( )pr2η  with even indices can be

found directly from the definition of { }rη  (Eqs. 20, 22 and 17, 18):

( ) 





=

N
pri

N
pr πη 2exp1

2 .   (25)

Therefore one needs to additionally compute only terms ( ){ }pr 12 +η  with odd indices:
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 ( ) ( ) ( )∑
−

=
+ 






 +

−=
1

0
12 2

122exp;;sincd
2
1 N

k
r N

rkipkNK
N

p πη   (26)

where, as in Eqs. 20, NK =  for odd N, 1±=K  for even N.

Flow diagram of this algorithm for generating p-shifted sinc-interpolated copy of signal is

shown in Fig. 3. Fig. 4 illustrates the described discrete sinc interpolation in DCT domain

applied for image zooming and compares it with that implemented in DFT domain. One can see

that the algorithm does solve the problem of boudary effects charachteristic for discrete sinc-

interpolation in DFT domain. It is, however, computationally efficient  only if regular

(equiduistant) resamplimg signal is required. In this case it allows to compute p-shifted sinc-

interpolated copy of the signal of N samples with the complexity of ( )NNO log  operations or

( )NO log  operations per signal sample. This complexity is, by the order of magnitude, the same

as that of the above DFT domain sinc-interpolation algorithm. However fast algorithms for DCT,

IDCT and IDST exist8-15 that require even less computations than FFT and IFFT involved in the

DFT domain algorithm.

4. SINC INTERPOLATION IN DCT DOMAIN IN SLIDING WINDOW

When, as it frequently happens in signal and image resampling tasks, required signal

sample shifts are different for different samples, the above global discrete sinc-interpolation

algorithm in DCT domain has no efficient computational implementation. However, in these

cases it can be implemented in sliding window. In processing signal in sliding window, only

those shifted and interpolated signal samples that correspond to the window central sample have

to be computed in each window position from signal samples within the window. Interpolation

function in this case is a windowed discrete sinc-function whose extent is equal to the window

size rather to the signal size required for the perfect discrete sinc-interpolation. Fig. 5 illustrates
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frequency responses of the corresponding low pass filters for different window size. As one can

see from the figure they deviate from a rectangle function, a frequency response of the ideal low

pass filter (Eq. 8).

Such an implementation of the discrete sinc-interpolation can be regarded as a variety of

direct convolution interpolation methods. In terms of the interpolation accuracy it has no special

advantages before other direct convolution interpolation methods such as spline oriented

ones16,17. However it offers features that are not available with other methods. These are: (i)

signal resampling with arbitrary shifts and simultaneous signal restoration and enhancement and

(ii) local adaptive interpolation with “super resolution”.

For signal resampling with simultaneous restoration/enhancement, sliding window

discrete sinc-interpolation should be combined with local adaptive filtering. Local adaptive

filters that work in sliding window in transform domain such as that of DFT or DCT have shown

their high potentials in signal and image restoration and enhancement18,19. The filters, in each

position k  of the window of W samples (usually an odd number), compute transform

coefficients { }{ }nr bT=β of the signal { }nb  in the window ( Wrn ,...,2,1, = ) and nonlinearly

modify them to obtain coefficients ( ){ }rr βα̂ . These coefficients are used to generate an estimate

kâ  of the window central pixel by inverse transform { }1−
kT  computed for the window central

pixel as

( ){ }rrkk Ta βα̂ˆ 1−= , (27)

For instance, for filtering additive noise, “soft thresholding” (Empirical Wiener filter)
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( ) r

r

r
rr

Thr
β

β

β
βα 












 −
= 2

2

,0maxˆ  (28)

or “hard thresholding”





 >=

otherwise
Thrrr

r
,0

,ˆ
2

ββα  (29)

are used with where Thr  is a certain threshold level associated with the noise variance. Such a

filtering can be implemented in the domain of any transform though DCT has proved to be one

of the most efficient. Therefore one can, in a straightforward way, combine sliding window DCT

domain discrete sinc-interpolation signal resampling (Eq. 21) and filtering for signal restoration

and enhancement (Eq. 27):

{ } ( ) ( ){ }pISDFTa r
DCT
r

DCT
r

p
k ηβα ⋅= ˆ0,2/1  . (30)

 Fig. 6 shows flow diagram of such a combined algorithm for signal restoration/enhancement and

fractional p-shift. It is assumed in the diagram that signal p-shift is implemented according to the

flow diagram of Fig. 3. Fig. 7 illustrates application of the combined filtering/interpolation for

image irregular-to regular resampling combined with denoising. In this example, left image is

distorted by known displacements of pixels with respect to regular equidistant positions and by

additive noise. In right image, these displacements were compensated and noise was

substantially reduced with the above-described sliding window algorithm.

One can further extend the applicability of this method to make interpolation kernel

transform coefficients ( ){ }prη  in Eq. (30) to be adaptive to signal local features that exhibit

themselves in signal local DCT spectra:
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{ } ( ) { }( ){ }DCT
rr

DCT
r

DCT
r

p
k pISDFTa βηβα ,ˆ0,2/1 ⋅= . (31)

The adaptivity may be desired in such applications as, for instance, resampling images that

contain gray tone images in a mixture with graphical data. While discrete sinc-interpolation is

completely perfect for gray tone images, it may produce undesirable oscillating artifacts in

graphics.

The principle of local adaptive interpolation is schematically presented on Fig. 8. It

assumes that modification of signal local DCT spectra for signal resampling and restoration in

the above-described algorithm is supplemented with the spectrum analysis for generating a

control signal. This signal is used to select, in each sliding window position, discrete sinc-

interpolation or another interpolation method such as, for instance, nearest neighbor one. Fig. 9

compares non adaptive and adaptive sliding window sinc-interpolation on an example of a shift,

by an interval equal 16.54 of discretization intervals, of a test signal composed of a sinusoidal

wave and rectangle impulses. As one can see from the figure, non adaptive sinc-interpolated

resampling of such a signal results in oscillations at the edges of rectangle impulses. Adaptive

resampling implemented in this example switches between sinc-interpolation and nearest

neighbor interpolation whenever energy of high frequency components of signal local spectrum

is higher than a certain threshold level. As a result, rectangle impulses are re-sampled with

“super-resolution”. Fig. 10 illustrates, for comparison, zooming a test signal by means of nearest

neighbor, linear and bi-cubic spline interpolations and the above-described adaptive sliding

window DCT sinc-interpolation. One can see from this figure that interpolation artifacts seen in

other interpolation methods are absent when the adaptive sliding widow interpolation was used.

Non adaptive and adaptive sliding window sinc-interpolation are also illustrated and compared in

Fig. 11 for rotation of an image that contains gray tone and graphic components.
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Computational complexity of sliding window DCT sinc-interpolation evaluated in terms

of the number of multiplication and summation operations per signal sample is proportional to

the window size thanks to the availability of recursive algorithms for computing DCT in sliding

window20-25. It is comparable with that of other convolution based interpolation methods. Note

that, for reconstruction of only window central sample, inverse DCT and DST of the modified

window spectrum required by the interpolation algorithm is reduced to simple summations of the

modified spectral coefficients:

( ) ( ) ( )[ ]
( )









−−+= ∑

−

=
−−

2/1

1
1212220 1

2
1 N

r

re
r

DCT
r

re
r

DCT
r

rDCT
k pp

N
b ηαηαα ,   (32)

5. CONCLUSION

Two new methods of signal discrete sinc-interpolation are described. The first method

implements, by means of signal processing in the domain of Discrete Cosine Transform, discrete

sinc-interpolation that is practically free of boundary effects. The second method implements

discrete sinc-interpolation in sliding window and allows arbitrary irregular signal resampling

with simultaneous signal and image restoration and local adaptive interpolation with super

resolution.
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Figure captions

Fig. 1 Graphical illustration of the discrete sampling theorem: a) initial signal; b) initial signal

with zeros placed between its samples; c) spectrum of signal (a); d) spectrum of signal (b):

periodical replication of the initial signal spectrum; e) removing spectrum replicas that may

cause aliasing by low pass filter; f) signal sinc-interpolated between samples of signal (b).

Fig. 2 Principle of signal convolution in DCT domain with signal extension by its mirror

reflection

Fig. 3. Flow diagram of discrete sinc-interpolation in DCT domain for generating a p-shifted

copy of a signal

Fig. 4. Zooming a fragment of an image (left) by sinc-interpolation in DFT domain (right upper

image) and in DCT domain (right bottom image). Oscillations due to boundary effects that are

clearly seen in DFT-interpolated image completely disappear in DCT-interpolated image.

Fig. 5. Windowed discrete sinc-functions with window size 11 and 15 samples (left) and their

DFT spectra for ×3  signal zooming(right).

Fig. 6 Flow diagram of simultaneous signal sliding window sinc-interpolation and

restoration/enhancement in DCT domain

Fig. 7. Image rectification and denoising by resampling with sinc-interpolation in sliding window

in DCT domain.

Fig. 8. Principle of local adaptive interpolation

Fig. 9. Signal (upper plot) shift by non-adaptive (middle plot) and adaptive (bottom plot) sliding

window DCT sinc-interpolation. One can notice disappearance of oscillations at the edges of

rectangle impulses when interpolation is adaptive.
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Fig. 10.  Comparison of nearest neighbor, linear, bicubic spline and adaptive sliding window sinc

interpolation methods for zooming a digital signal (From left to right, from top to bottom:

Continuous signal; initial sampled signal; nearest neighbor ×8 -interpolated signal; linearly ×8 -

interpolated signal; cubic spline ×8 -interpolated signal; sliding window ×8  sinc-interpolated

signal).

Fig. 11. Image  (upper) rotation with sliding window non-adaptive (left) and  adaptive DCT sinc-

interpolation (right). Note disappearance of oscillations at sharp edges thanks to switching

between sinc-interpolation and nearest neighbor interpolation at the boundaries of black and

white squares
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Fig. 1. Graphical illustration of the discrete sampling theorem: a) initial signal; b) initial signal
with zeros placed between its samples; c) spectrum of signal (a); d) spectrum of signal (b):
periodical replication of the initial signal spectrum; e) removing spectrum replicas that may
cause aliasing by low pass filter; f) signal sinc-interpolated between samples of signal (b).
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Fig. 2 Principle of signal convolution in DCT domain with signal extension by its mirror

reflection

Initial signal
Interpolation

kernel

Mirror
reflected

signal

N
2N



24

Fig. 3. Flow diagram of discrete sinc-interpolation in DCT domain for generating a p-shifted
copy of a signal
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Fig. 4 Zooming a fragment of an image (left) by sinc-interpolation in DFT domain (right upper
image) and in DCT domain (right bottom image). Oscillations due to boundary effects that are
clearly seen in DFT-interpolated image completely disappear in DCT-interpolated image.
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Fig. 5 Windowed discrete sinc-functions with window size 11 and 15 samples (left) and their
DFT spectra for ×3  signal zooming(right).
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Fig. 6 Flow diagram of simultaneous signal sliding window sinc-interpolation and
restoration/enhancement in DCT domain
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Noisy image sampled in a irregular raster Denoised and resampled (rectified) image

Fig. 7. Image rectification and denoising by resampling with sinc-interpolation in sliding window
in DCT domain.
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Fig. 8. Principle of local adaptive interpolation
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Fig. 9 Signal (upper plot) shift by non-adaptive (middle plot) and adaptive (bottom plot) sliding
window DCT sinc-interpolation. One can notice disappearance of oscillations at the edges of
rectangle impulses when interpolation is adaptive.
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Fig. 10  Comparison of nearest neighbor, linear, bicubic spline and adaptive sliding window sinc
interpolation methods for zooming a digital signal (From left to right, from top to bottom:
Continuous signal; initial sampled signal; nearest neighbor ×8 -interpolated signal ; linearly ×8 -
interpolated signal; cubic spline ×8 -interpolated signal; sliding window ×8  sinc-interpolated
signal ).
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Fig. 11. Image  (upper) rotation with sliding window non-adaptive (left) and  adaptive DCT sinc-
interpolation (right). Note disappearance of oscillations at sharp edges thanks to switching
between sinc-interpolation and nearest neighbor interpolation at the boundaries of black and
white squares


