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Abstract

The combined effect of interaction of electrons with walls, neutral molecules and an electrostatic

field is considered through analytic solution of Boltzmann's equation. In the first instance, we discuss

a half-range decomposition in velocity space, corresponding to electrons moving to and from the walls,

which is valid for all types of electron-molecule interactions. The half-range equations are solved

in the steady state for zero field and the constant mean free path model, and it is shown that the

familiar full-range 'two-term' approximation equations are adequate in this case, as far as estimating

bulk properties of the electrons is concerned. For the nonzero field, again in the steady state, the

full-range equations are solved for the constant collision frequency model.

1. Introduction

The influence of boundaries on the diffusion of electrons and ions in a neutral

gas is generally difficult to account for accurately, so that while theories relating

to boundary free circumstances have flourished in recent times (Lin et ale 1979;

Kumar et ale 1980), much more work remains to be done on the incorporation of

wall and electrode effects, which are obviously factors to be considered in analysing

experiments (Huxley and Crompton 1974). The immediate problem is not so much

to account for the various types of possible wall-particle interactions but to solve

the appropriate kinetic equation with even the most idealized of boundary conditions

(e.g. perfect absorption). In this respect, the kinetic theory. of charged particle

swarms lags behind the more extensively developed transport theory for neutral

gases and neutrons (Davison 1958; Case and Zweifel 1967; Williams 1971; Cercignani

1975; Zweifel 1978). One reason for this is immediately clear: In the relevant

experiments, the ions and electrons are subjected to electric and/or magnetic fields,

which are not .merely perturbing forces, but which often drive the charged particles

far from thermal equilibrium with the neutral gas molecules. No such driving force

need be considered in neutron transport theory. The combined effect of interaction

of charged particles with walls, fields and neutral molecules provides some very

challenging analytical and computational problems indeed, and we address ourselves

in this paper to a discussion of some possible means of tackling these problems,

comparing with the traditional approachthrough the 'two-term' (or P1)approximation

of the distribution function (Huxley and Crompton 1974; Lin et ale 1979; Kumar

et ale 1980). The scope of the paper is limited to the extent that it is felt that the theory

would be best served at this stage by concentrating on analytic solutions of the

equations and qualitative discussion, not only because many of the equations derived
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here are new, but also because such numerical work as has already been done (Lowke

et al. 1977) needs to be complemented in this way. Further restrictions to simple

collision models (constant free path, constant collision frequency) have been found

necessary to make the equations tractable.

Essentially, the problem is to solve the Boltzmann equation,

Pfi(f) == (Ot +c.\1 +a. oc)f = -J(f) , (1)

for the electron velocity distribution function f(c, Y, t), given appropriate boundary

conditions. Here a = - elilm is cthe acceleration suffered by an electron of charge

- e and mass m in the electric field E, and J(f) denotes the electron - neutral molecule

collision term, which is linear in f. (Electron-electron interactions, which would

give rise to nonlinear collision terms, are negligible in the present circumstances,

where the electron number density n is extremely low in comparison with the neutral

molecule number density N.) If S denotes the boundary surface and na unit vector

normal to S and directed into the gas, we may write the boundary condition as

(Williams 1971; Cercignani 1975)

f(e,r, t) = f K(e,e')f(e',r, t) dc' +fO(e, t) (e'.n < 0, rES, e.n > 0), (2)

where K( c, c'), the 'interaction transfer function', accounts for electron-wall inter

action processes (e.g. absorption, reflection, secondary emission) and fa describes

any additional externally-induced flux (e.g. photo- or thermionic emission). The

wall acts in general as both a sink and a source of electrons in the half spaces c •Ii < °
and> 0 respectively, leading to a possible discontinuity in velocity space at c. Ii = o.
The efficacy of considering solutions of Boltzmann's equation separately in the

respective half spaces has long been recognized in other boundary-value problems

and the theory has been correspondingly extensively developed (Davison 1958;

Case and Zweifel 1967; Williams 1971; Cercignani 1975; Zweifel 1978). We cannot

take advantage of all of this previous work, since the field term in equation (1)

complicates matters and the form of the collision operator is different. One important

result, obtainable as a straightforward extension of theorems in standard works

(see e.g. Case and Zweifel 1967, Section 2.3) is that only the distribution of velocities

incident on the medium, i.e. f(c) for c. Ii > 0, need be specified in order to determine

f in the medium uniquely. The complete angular distribution at the boundary is not

required. On the other hand, the elegant method of singular eigenfunction expansions

of Case and Zweifel, so useful for solving certain model problems in neutron and

neutral gas transport theory, seems to be impractical here. Instead, it appears

inevitable that one must resort to truncated polynomial representations of f and

thus obtain only approximate solutions of equation (1).

Normally, f is approximated by the first two terms of an expansion in spherical

harmonics and J(f) is also approximated using the smallness of the electron - neutral

molecule mass ratio ml M (Huxley and Crompton 1974; Lowke et al. 1977; Lin et al.

1979; Kumar et al. 1980). If, for simplicity, it is assumed that E defines an axis of

symmetry (the z axis of a system of coordinates), then the expansion is simply in

terms of Legendre polynomials,

L

f(c) ~ L Fz(c)Pz(Jl),
1=0

(3)
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where

J1 = e.e, -1~J1~I.
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Equation (3) is usually referred to either as the PL approximation or the L+ 1

tern}" approximation. For L = 1, it is also sometimes (quite misleadingly) referred

to as the 'diffusion approximation'. Equation (3) is a 'full-range expansion', since

the same functional form is used to represent the distribution functionover all angles.

This type of expansion has proved successful for dealing with free-space electron

transport processes; there, L = 1 generally gives a sufficiently good approximation

to f, as long as inelastic electron-neutral collisions are relatively infrequent (Lin et al.

1979). In general, however, it is not possible to satisfy the' boundary conditions

(2) with the truncated expansion (3), and further approximations have to be made.

One can form certain angular averages of equation (2), leading to relationships

amongst the expansion coefficients F1 (the Marshak (1947) boundary conditions)

or simply require that (2) be satisfied for certain discrete values of the angular

variable. The latter approach again provides relationships amongst the F 1 (the Mark

(1957) boundary condition). This is discussed fully in the literature (Case and Zweifel

1967; Williams 1971) and we only note in passing that in a recent paper on electron

diffusion to walls, Lowke et al. (1977) employed the two-term approximation plus a

Mark boundary condition in their analysis, about which we shall have more to say

in Section 3. Other cruder approximations have also been used, based upon macro

scopic considerations (Huxley and Crompton 1974), i.e. conditions involving integrals

of fCc) over c, as well as the angular variables, but really apart from the work of

Lowke et al. the question of electron-wall interactions in swarm experiments and other

similar situations never seems to have been tackled with the same seriousness as,

say, in neutron transport phenomena.

The equations are developed here for what might be called 'the generalized Milne

problem', in which a steady stream of electrons, driven by an electrostatic field,

is incident normally on an infinite plane electrode. A discussion of this somewhat

idealized model can be expected to throw some light on the effects of boundaries in

the Townsend-Huxley experiment (Huxley and Crompton 1974), where the current

collected by the anode is measured with a viewto determining the transverse diffusion

coefficient. For such a situation, it would seem imperative to represent the boundary

condition at the anode accurately and the half-range .equations developed in Section

2 are superior to the usual full-range theory in this respect. However, the equations

are difficult to solve and we have been able to do this analytically only at zero field.

For a nonzero field, there is still a requirement for an analytic full-range theory

and this is presented in Section '3 for a constant collision frequency model. The

results are essentially what one would expect on the basis of the numerical work of

Lowke et al. (1977).

2. Half-range Expansions and Decomposition of Boltzmann's Equation

When boundaries influence the distribution function, half-range expansions,

which seem to have been first suggested by Yvon (Davison 1958, p.171), may be

necessary to properly account for the boundary-induced discontinuity. Assuming

Eis normal to the surface, so that it still defines an axis of symmetry, we have the

'double PL' approximation:
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1{c) = L 11+(C)P1(2/l-1), 0 < /l < 1,
1=0

= L 11-(C) Pz(2/l +1), -1 < u «: O.
1=0

R. E. Robson

(4a)

(4b)

With the usual orthogonality relationship for Legendre polynomials, and noting that

f
l - b1'1 fO

PzC2/l-1)Pz,(2/l-1) d/l = -1·1 = PzC2/l+ 1)Pz,(2/l+ 1) du ,
o 2 + -1

it follows that

f
+ l

Fl(c) = (I +!) -1 f(c) Pl(p,) dJl,

f/(c) = (2/+1) fo
l

f(c)PI(2Jl-1)dJl,

fl-(C) = (2/+1) f ~ / ( C ) P I ( 2 J l + 1 ) d J l '

With the definitions

at = (/+!) fo
l

P,{2Jl-1)Plfl) du ,

pt = (/+!) f ~ l P..(2Jl+l)PlJl) dJl = (- )IHat,

(5)

(6)

(7a)

(7b)

(8a)

(8b)

explicit formulae and properties of which are given in the Appendix, it can be shown

from equations (4) and (6) that

F1 = a?{10++(-)'l0-}+al{11++(_)'+1/1-} + ... , 1 = 0,1,2,.... (9)

Using values of at given in the Appendix, it can be shown from equation (9) that

Fo = t(10+ +10-)' F 1 = 11+ +11- + i(/o+ -10- - 11+ - 11-) ,

F2Z = a~zC11+ -/1-) + ..., F2Z+ 1 = a~i+ 1(10+ -10 -11+ - li-) + ... (1 ~ 1). (9')

We shall be exclusively concerned with the double PI approximation here and

shall therefore neglect It, it, ... , as indicated in equation (9). (Notice that we have

gone beyond the standard PI or two-term approximation even at this level.) This

first stage of our calculation involves decomposition of the Boltzmann equation (1)

into its scalar and vector parts in the respective half ranges, and the most important

consideration here is the determination of the corresponding collision terms. Rather

than beginning.from first principles, it is far simpler to make use of the known forms

for the full-range theory, .. and to express the desired half-range quantities in terms

of these.

If we define

Jt= ± f: l

J(f)P..(2Jl+1)dJl, (10)
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introduce the full-range expansion (3) in the right-hand side and make use of equations

(8), then

Ji = L(±Y+A(1+t)-1atJ zCF l) ,
1

(11)

where the J, are operator matrix elements of the collision operator in the full-range

spherical harmonic representation. By retaining leading terms in the electron-neutral

molecule mass ratio m]M ~ 1, these latter quantities can be written for elastic

collisions as (Huxley and Crompton 1974; Kumar et al. 1980)

Jo(Fo) = -(mjM)c-2oc{c3v1(Fo + [kTjmc]ocFo)} ,

Jl(Fl) = vlFl , I ~ 1,

(12a)

(12b)

where

vlc) = Nc Zn f: {l-Plcosx)}o(c,x)sinxdx, 1 = 1,2,«<, (13)

are collision frequencies and T is the neutral gas temperature. For isotropic scattering,

the differential cross section 0"(c, X) is independent of scattering angle X and then

Vl = V1 for all/·~ 1; hence

J l = J1 = V1 , I ~ 1 . (14)

This assumption, while not critical to the development of this theory, does simplify

matters considerably. It is to be emphasized that detailed expressions for the J, are

not important at this stage. Thus one could, for example, add a term accounting

for inelastic collisions to Jo (see e.g. Kumar et al. 1980, equation 175) without

affecting the form of the following equations in any way.

Substitution of equation (9) into (11) gives

where

J1 = A~Afo- -A~Af1- +AOAfo+ +A1Af1+ ,

(- )AJi = AOAfo- -A1;.f1- +AbAfo+ +A~Af: ,

(l5a)

(15b)

ArA = L (1 +t)-la~ at J
"I

A;A = L (1+t)-l( - Ya~ at J,
I '

(16)

In the general case all the ArA and A;A are nonzero, and the sums (16) have to be

evaluated using explicit expressions for ll' However, with the assumption of isotropic

scattering, as indicated in equation (14), and with the following identities resulting

from completeness of the Legendre polynomials,

L (1 + t) - 1 a~ at = (2A + 1)- 1<5Ar ,
1

it can be shown that

AOA = t(lo +11)<5;'0 ,

A~). = !(Jo- J1)<5;.0 ,

L (1 +t) - 1( - Ya~ at = 0,
I

AlA = t l l <5 A1,

A~A = O.

(17)

(18a)

(18b)
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Substitution of equations (18) into (15) then gives

J~ = tJo(!o+ +!0-)±tJ1(!0+ -!O) , Jt = tJ1!1±·

R.E. Robson

(19)

The left-hand side of the Boltzmann equation (1), for the infinite plane 'geometry

shown in Fig. 1 below, is

~(!) = {at+Cl1az+al1ac+ac-1(I-112)all}!' (20)

where it has been assumed that there is cylindrical symmetry about the z axis, and

the only spatial variation is in the z direction. Corresponding to equation (10),

we define

f
±1

!0t = ± 0 !0(f) P...(211 :+ 1) dl1,

as well as the operator

L1 = caz+aac'

It is then straightforward to show that

. @ ~ = (at ± t L1 )! t +(iL1 +ta/c)!1±'

~ t = t{(u t ±tL1 +a/c)!1± +tL1! o±},

and when these are combined with equations (19), we have

(21)

(22)

(23a)

(23b)

(at ± t L1 )f o± +(iA +ta/c)f1± = -v.u: +!0-)+tJ1(fo+ -.fo-) , (24a)

(at ±tL1 +a/c)!1± +fAfo± = -J1ft. (24b)

When explicit expressions for the collision operators, for example equations (12),

are substituted in the right-hand side, these constitute four partial differential equations

in the four unknowns I ~ and It .
Some observations about the above decomposition of the Boltzmann equation

into scalar and vector parts seem in order at this stage:

(1) Our derivation constitutes what appears to be the simplest and most direct

route to the desired equations starting from the general form (1) ·of Boltzmann's

equation. On the other hand, a formal transformation theory, similar to that

developed in Section 12 of Kumar et al. (1980), in which the (known) full-range

representation of Boltzmann's equation is transformed via the matrices (8) into its

representation in terms of the half-range basis sets P l(211 +1), would also give the

same result, perhaps more elegantly.

(2) The above derivation, while specially for the double P1 approximation,

can be generalized in an obvious way to higher order approximations. However,

it is difficult enough to go beyond the (full-range) P 1 approximation, and seems even

more so for the double P 1 approximation.

(3) When (and only when)

f1- = 11+ , 10- +11- = 10+ - 11+ , (25)
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the half-range expansions are identical with each other and with the full-range P1

approximation, i.e. if we require

1=10++ll+(2/l-1) =10-+11-(2/1+1) = Fo+F1/l,

then

F0 = 10+ - 11+ = 10- +11- , E'l = 211+ = 211- . (26)

These results also follow directly from equations (9'), if we insist that F I = 0 (I ~ 2).

We would expect these conditions to be true far from the boundaries when there

are no discontinuities, the usual boundary-free full-range theory applying under

these circumstances.

(4) The above observations suggest that it may be useful to define the linear

combinations

4>0 = t(lo+ +10- -11+ +11-)'

W1 = 11+ +11-'

b4>o = 10+ - 10- - 11+ - 11- ,

b4>l =li-I1· (27)

Elementary manipulations of equations (24) give

8t 4>0 +t8tCb(1) +tA(bcPo) +t(A +2a/c)w1 = -Jo(cPo) -tJO(bcP1),

8tCbWo) +8tcP1 +AcPo +i(A +2a/c)bW1 = -J1(bWo) -J1(W1),

8tw1 +(A -a/c)bW1 +Awo = -J1(W1),

8tCbcP1) +(A -a/c)w1 +tA(bcPo) = -J1(bcP1). (28)

Far from the boundary, equations (25) are expected to apply, so that with (26) we

may write

bWI ~ 0, WI ~ F I , 1 = 0,1, (29)

as the influence of the boundary becomes weaker. The first of equations (28) then

reduces to

8tFO +t(A +2a/c)F1 = -Jo(Fo) ,

while the second and third each give

8tF1 +AFo = -J1(F1) ·

(30)

(31)

These are the familiar 'two-term' or P1 approximation equations obtained by

multiplying Boltzmann's equation by P0(/1) and P1(/1) respectively, setting L = 1

in equation (3) and integrating over /l from -1 to + 1. If equation (1) is also

multiplied by P2(/1) and integrated over all /1, we have the result (the complete chain

of equations is written out in .equation (2.5) of Ginzburg and Gurevich 1960) in

the same approximation (i.e. setting F2 , F3 , ••• equal to zero),

(A-ajc)F1 =0. (32)
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(33)

This is also precisely the content of the last of equations (28) in the limit indicated

in (29). Equation (32) is not a true side condition. It merely indicates that (A - a/c)F1

is of the same order of magnitude as the material already neglected in the I = 2

equation (i.e. terms in F2 , F3 , •.• ) and should itself be neglected if and when it appears

in results based on the two-term approximation. In any truncation scheme, at least

one seemingly redundant relation must result from equations of higher order than

are needed to effect the approximate solution.

(5) Purely macroscopic considerations, based on particle conservation, impose

a constraint on the solution of our equations. Electron number density and particle

flux are given by

J
oo f+1 Joo

n = 2n de e2 dfl f( C, fl) = 2n de e2(f o++fo-) ,
o -1 0

JOO f+1
I', = n(ez>= 2n de e3 dfl u jtc, fl)

o -1

= rc fo
oo

de e3{jci -fo- +!(f1+ +f1-)}, (34)

respectively. When expressed in terms of the quantities (27), these are

n = 4rc Jooo de e2(4i
o+tM>1)' (33')

r, = n fo
oo

de e
3(e54i

o+t4i1). (34')

The equation of continuity is

°tn+Ozrz=o (35)

for the geometry of Fig. 1, where we assume for simplicity that there are no bulk

sources or sinks of electrons, such as ionization or attachment phenomena, in the gas

medium. On the other hand, when the first of equations (28) is multiplied by 4nc 2

and integrated over all speeds c, the equation

0tn «e,r, = 2rca fo

oo
de ee54io

results. Thus, there will be an artificial source term introduced unless the right-hand

side is zero, i.e. unless a = 0, or a '# 0 such that

JoOO de e(fo+ - fo- - ft - f1-) =0. (36)

3. Generalized Milne Problem

As shown in Fig. I, we have an infinite half space z > 0 filled by a gaseous medium.

There exists a source of electrons at infinity which balances the loss to the infinite

plane perfectly absorbing wall at z = 0, so that a steady state exists. Problems of

this type are usually named after Milne (Davison 1958; Case and Zweifel 1967;

Williams 1971; Cercignani 1975), who considered radiation transfer in a star. The
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main differences here are the electrostatic field and the form of the electron-neutral

collision term l(f). The wall is perfectly absorbing, so that no electrons enter the

medium at z = 0; thus we have the following boundary condition for f(c,/l,z):

f(c, u, 0) = 0, 0 ~ /l ~ 1. (37)

(We set K = 0 and fO = 0 in equation 2.) This in turn implies that the expansion

coefficients ft (c, z) of equation (4a) satisfy

ft(c,O) = 0, I = 0,1, .... (38)

As we have remarked before, this condition, plus the specification of the incident

electron flux at the other 'surface' at infinity, determines uniquely the solution of

Boltzmann's equation.

1/+=0

~

c

E L: +-- r z...
~
j, p.== cos8

~

~~
Fig. 1. Geometry for the 'generalized Milne problem', in which a steady stream

of electrons is driven by an electrostatic field E from a source at infinity to a

plane infinite anode at z = o.

Zero Field

Setting a = 0 and assuming a steady state, * equations (24) become

±tcozfo± +icozfi±

±tcozfi± +tcozfo±

-tJo(fo+ +fo-)+tv(fo+ -fo-),

-Vfi± ,

(39a)

(39b)

where we have written v for Vi. We define the mean free path as A = clv and write

r; = A exp( - mc 2/2kT)z +¢t ,

10 = Aexp( -mc2/2kT)(Z+A) +¢o ,

ft = -tAAexp(-mc2/2kT)+¢f,

(40a)

(40b)

(40c)

* Notice that in the steady state, at n = 0 and the equation of continuity (35) then implies particle

flux is a constant, independent of position.
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where A is a constant. The cPf (I = 0, 1) are functions which control the behaviour

as Z ~ 0, and the first terms dominate the far distance behaviour (see equations 25):

lim (It -It) = lim (/0 +/1) = Aexp( -mc
2/2kT)z,

Z-+ 00 Z-+ 00

limj'l = limit = -tAAexp(-mc
2/2kT).

Z-+ 00 z-+ 00

The terms linear in Z in the asymptotic solution are required to provide a density

gradient to drive particles from infinity to the wall. The constant A is determined

from a knowledge of either the asymptotic density (through equation 33) or from

the (constant) particle flux (34).

For A a constant, independent of c, the above equations are relatively straight

forward to solve. After some lengthy algebra, we find (making use of the smallness

of the mass ratio m]M to make some simplifying approximations)

00

cPt = t L exp( -u)L<;)(u){(1 +Jt)Anexp( -2J3 Z/A) +Bnexp( -J(!n)z/Ae) } , (41a)
n=O

00

cPo = t L exp( -u)L<;\u){(l-)t)Anexp( -2J3 Z/A) +Bnexp( -v'(!n)z/A£)} , (41b)
n=O

cPt = ! Jo exp( -U)L\:\U){G~~~)AneXP( -2J3 Z/A)

+h/Gn)~Bnexp( -JGn)Z/At ) } ,

/i e

cPt =! f eXP(-U)L\:\U){(~:-1)AneXP(-2J3Z/A)
n=O v j +1

+tJGn)~BneXP( -JGn)Z/At ) } ,

(41c)

(41d)

where L~l) is a Laguerre polynomial, U == tmc
2/kT,

Ae = (M/2m)tA is the mean free

path for energy exchange, and An and B; are constants to be found from application

of the boundary conditions. If we assume the boundary to be perfectly absorbing,

equations (38) apply, which together with (41a), (41c), (40a) and (40c) lead to

B; = -(l+Jt)An, An = ° (n ~ 1), A o = -A{(J3-1)/(J3+1)}l'.

The complete solution is then

fo+(c, z) = Aexp( - mc2 /2k T )[z +tA(1- J i ){1 - exp( -2J3 Z/A)}] ,

fo-(c, z) = Aexp( - mc
2/2kT)

[Z+A+!A(1-/n(1 - ~~: ~ exp( -2J3 Z/A))] ,

ie« z) = -tAl'exp( - mc2 /2k T )[1- exp( -2J3 Z/A)] ,

"""" 2. [ (J3 -1) 2 !. ]

fl-(C,Z) = -tAAexp(-mc /2kT) 1+ J3+1 e x p ( - 2 ~ 3 z / A ) , (42)
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which satisfies all the above-mentioned criteria, including constancy of particle flux.

Equations (42) indicate that the asymptotic forms are attained a few mean free paths

away from the wall. On the other hand, when the wall is not a perfect absorber,

there will in general be' another 'transition region' of thickness A
8
~ A before the

asymptotic form is reached, as shown by the last terms in equations (41). However,

these contributions are the same in each half space (i.e. identical for 'of-'. and '- ') ;

any discontinuity in the distribution function washes out in the inner layer of thickness

~ A .

The full-range P 1 approximation, which has been extensively used to analyse

experiments (see e.g. Robson 1976) should therefore be valid for the zero field in

all but the 'boundary layer' of thickness ~ A. The usual boundary condition Fo = 0,

F1 =I 0 (implying It = 0 = 10' It =I 0) does not represent the true physical

situation and in fact violates the fundamental assumption of the P1 approximation

that F1 is in some sense small compared with Fo. That the method has succeeded

at all probably is a reflection of the insensitivity of the bulk of the electrons to all

but the coarsest details of electron-wall interactions. Thus, in experiments like

that of CavalIeri (CavalIeri 1969; Huxley and Crompton 1974; Robson 1976)

where bulk properties of the electrons in a vessel are measured, the full-range theory

would appear to be quite adequate.

Nonzero Field

We were able to obtain an analytic solution for the zero-field problem by assuming

A was a constant, independent of c. When A = A(c) further approximations are

necessary, but in any case, the parameter controlling the thickness of the boundary

layer might be expected to be ~ A(e), where e is representative of the average electron

speed. Applying even a moderate electrostatic field will substantially increase c,
and therefore the thickness. of the boundary layer (if A(c) increases with c), to a

point where it is not negligible in comparison with the dimensions of the container,

and this suggests a discussion in terms of half-range expansions. (This effect is

quite differentfrom the one resulting from the larger boundary layer of thickness ~ A
8

penetrating the bulk of the gas (Robson 1976).) Of course, when one is interested

in effects right at the boundary surface (as in the Townsend-Huxley experiment),

as well as in the bulk of the gas, the half-range theory seems highly desirable. In

any case, there is sufficient motivation to seek solutions of the half-range equations

for a nonzero field.

Unfortunately, equations (24) do notappear to be amenable to analytic solution,

even for the simplest of model cross sections. Whether further decomposition of

the fl± in terms of Sonine polynomialsfsee e.g. Lin et ale (1979), equation (14),

where the basis temperature expansion parameters would be different in the respective

half spaces) is required or whether the numerical algorithm of Hall and Lowke

(1975), used for solving the full-range equations (30) and (31), can be suitably modified,

or whether some other method is needed, is not clear at this stage. Even analytic

solution of the full-range equations is difficult; that some such analysis is required

to complement the essentially pure numerical work of Lowke et ale (1977) will become

clear from the discussion below. We have therefore chosen to concentrate in this

paper on the full-range equations (30) and (31), in the belief that a better understanding

of their solution may facilitate solution of the far. more complicated half-range

equations, which we leave to later work.
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Assuming a steady state (Ot = 0) and a cold gas (T = 0), we have for equations

(30) and (31)

t(a/c)Ft +tLiFt = (m/M)c- 2 oc(c3vF
o),

liFo = -vFt.

(43)

(44)

Lowke et ale (1977) solved these numerically for several model collision frequencies

of the form v oc e', where y is a constant. Their boundary condition is that the

distribution function

F(c,Z,j1) = Fo(c,z)+Ft(c,z)j1

is to vanish at z = 0 for backward scattering only (0 = 0 and u = 1), leading to

the requirement

Fo(c,O)+Ft(c,O) = o. (45)

(There is an error in the sign of their corresponding relation, but this does not affect

their results in any way.) This is effectively a Mark (1957) condition, as mentioned

before. They go on further to argue that equations (44) and (45) together imply

the effective condition

Fo(c,O) = o. (46)

Another constraint imposed upon their solution is that liFo = 0 at c = 0 for any z

and this has a significant effect on the solution, especially near the boundary. However,

there is no justification for this additional requirement in the constant collision

frequency model dealt with below.

As mentioned before, some approximation like equation (45) is necessary with a

truncated full-range expansion, but the boundary condition (46) is somewhat more

severe and indeed quite contradictory to the spirit of the P t approximation. One

curious result is that since number density n is an integral of Fo (see equation 47)

it too vanishes at the boundary. On the other hand, I', = n(cz>is constant, implying

that the average velocity (cz>of electrons becomes infinite at the boundary. This is

suggestive of a singularity in the distribution function.

Braglia and Lowke (1979) have compared the above method against a Monte Carlo

calculation for the model v oc c2
, with good agreement. This might suggest that

the boundary conditions employed by Lowke et ale (1977) are substantially correct or

that, for this particular model, the solution is insensitive to the boundary conditions

imposed. There remain, however, some questions of physical principle to be resolved,

most of which can only be answered by going to the half-range theory.

The quantities of physical interest here are the number density and mean energy

of the electrons:

n(z) = 4n LX> Fo(c, z) c2 dc,

6 == <!mc
2>= fo

OO

!mc
2

Fo(c, ! ) c
2

dc / LOO Fo(c, z) c
2

dc,

whereas the particle flux,

4n foo
I', == n<cz>="3 0 dc c

3
F1(c,z),

(47)

(48)

(49)
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is a prescribed constant. The distribution function F ~ far from the boundary* is

obtained by solving" equations (43) and (44) with the space derivatives set at zero:

Fa(e) = Aexp( - ~:2 f: v
2
(e) e de),

Fr(e) = - ~ dd Fr; .
v e

(50)

(51)

Equation (50) gives the familiar Davydov distribution. The constant A is found by

normalization to either the known density at 00 or to the particle flux (49).

We have tried a variety of methods of solving equations (43) and (44) but even

for what might be considered as the simplest case, v = constant (which Lowke

et ale (1977) did not examine), approximation is necessary. Laplace transformation

in z seems to require a knowledge of both Fo and F1 at z = 0 (or at least, if one

function is given, the other must be determined in. a self-consistent fashion from the

transformed equations, a very formidable task). Separation of variables can be

achieved in terms of (c, te2
- az) instead of the pair (c, z) but this leads to an eigenvalue

equation with continuous eigenvalues and otherwise offers no advantage. The most

promising analytical approach seemed to be to Laplace transform the equations in

the speed variable c, and this we now discuss.

The transform of a function F( e) is defined by

[F](s) = LX) exp( -!se2)F(e) de, (52)

and this is simply 2 s{(2x)- t F((2x}t)}. The following relations are readily established:

[enAF] = (as+oz)[en+1F] -na[cn- 1F] ,

[cn- 2 oc(c3vF)] = s[cn+2vF] - (n - 2) [cnvF] .

(53a)

(53b)

It has been assumed that both c'F and cn +1vF vanish as c ~ o.
The advantage of working with these transforms is that the physically interesting

moments of the distribution function can be found quite readily from the value

of the transform at s = 0, e.g. from equations (47)-(49),

n = 4n[c
2F

o]s=o, 8 = tm([c4Fo]/[c~Fo])s=o, I', = j-n[c 3F1]s=o.

Noting the identity

[cn+2F] = -2os[cnF] ,

(54a, b, c)

(55)

which can be obtained directly by differentiation of an equation like (52), we can

also write (54b) as

8 = -m(osln[e
2Fo])s=o. (54d)

* Equations (50) and (51) will also describe-the asymptotic behaviour in the half-range theory for,
by equations (26),

ft=lF~, n-it r rz vr; =F~, for z -e co.
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The transforms of en times equation (43) and en' times (44) are respectively

ta(2-n)[en-1F
1 ] +t(as+ 8z)[e

n+1F
1 ] ~ (m/M)(s[en+ 2vF

o] + (2- n)[envFo]) , (56)

-n'a[en'-lF
o]+(as+8z)[e

n'+lF
o] = -[en'vF

1
] . (57)

We shall examine the case where v is constant, and then we need consider the

above equations for n = 2 and n' = 3 only:

t(as+8z)[e
3F

1 ] = (sm/M)v[e4F
o] ,

-3a[e2Fo]+(as+8z)[e4po] = -v[e3F
1 ] ·

(58)

(59)

These, together with the relation [e4Fo] = -28s [e2Fo], form a closed set.*

Elementary solutions with spatial dependencies exp(akz) are .sought, where k is a

non-negative constant. (Recall that a = - elilm, so that in order to get the correct

asymptotic behaviour as z ~ 00, we must have k ~ 0.) The complete solution is a

sum over all possible such contributions and is found to be

where

[c2F o](s, z) = L Ak4>k(s}exp(akz) ,
k

( 3fs s+k )
cjJis) = exp . - 2: 0 (S+k)2+ sa2 ds

= (1 +s/,+)-3p(+)/2(l +S/,-)-3P(-)/2 ,

,± == ta2{1 +2k/a2 ±(1 +4k/a2)"!- } ,

p(±) == {(1 +4k/a2yt ± 1}j2(l +4k/a2}t ,

a
2 == 3mv

2/Nla2
•

(60)

(61)

(61')

(62)

The coefflcientszt, are to be found from imposition of the boundary condition at

z = 0, i.e. from

L Ak4>k(S) = [c
2
F o](s, 0).

k

Other quantities of interest are

3 3a 2" A k A. ( ( k[c F 1 ](s, z) = -sa L.J ( k)2 s-r« s)exp a z),
V k s+ +sa

4 ~ (s+k)A k
[c Fo](s, z) = 3 L.J ( k)2 2 4>k(S) exp(akz).

k s+ +sa

(63)

(64)

(65)

* Closed sets of equations may be similarly derived for other model collision frequencies, and their

solution represented in the form (60); the corresponding ¢>k(S) is, however, far more difficult to

obtain.
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It is clear that the k = 0 term in these expressions must somehow be separated

from the others. For example, splitting off the k = 0 term in equation (64), giving

3 3a a2 3 2 A A.
[c F

1
](s, z) = -~-2Ao(1 +S/r:l)-312 + asa " k'fJk(s)exp(akz)

v s+a v 'k (S+k)2+ sa2 '

taking the limit as s ~ 0 and then substituting in equation (54c) leads to the correct

form for the (constant) particle flux,

where

rz = 4nAoa/v == -no W,

W = la/vi

(66)

(67)

is the drift velocity, no is the number density far from the boundary, and we identify

Ao = no/4n

on the basis of the discussion below.

In equation (60), the same separation

[c2PO](S'Z) = Ao(l +s/(2)-3/2 + L' Ak4Jk(s) exp(akz)
k

indicates that

lim [c2Fo](s,z) = Ao(l +s/(2)-3/2,

z-+oo

and hence by equation (54a)

no == lim n = 4nAo ,
z-+oo

(68)

(69)

giving (68). The first term in (69) is simply the transform of c2 times the (normalized)

Davydov distribution (50) with v a constant:

F(f(c) = no(a
2/2n)3/2 exp( -ta2c2

) . (70)

Although the k = 0 term has to be treated specially, no 'quantization' in the spectrum

is evident, and the summations above must be replaced by integrals. Equation (69)

is then

[C2po](s,z) = :~(1 +s/a2)-312 + foA(k) (Ms)exp(akz) dk, (71)

where the lower limit has been taken as zero with the stipulation that the spectral

density A(k) satisfies

lim A(k) = O.
k-+O

(72)

For mathematical simplicity, we use the Lowke et ale (1977) boundary condition

(46), in spite of some misgivings in relation to its physical soundness, as mentioned

before. Then, from equation (71) we get

fo
oo

A(k) (Ms) dk = - ~~(1 +s/a
2)-312. (73)
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This can be thought of as a transformation of the coefficients A(k), through the

function cPk(S) into the expression on the right-hand side. If one knew how to invert

this transformation, A(k) could be found and the problem completely solved. It is

certainly not a standard' transformation, and the best method we could think of for

inverting equation (73) was to approximate cPk(S) by its small-s form,

cPk(S) = (1 +s/k) - 3/2 +(3a2/4k3)s
2 +O(s 3) .

The solution of equation (73) with cPk(S) correct to first order in s is

A(k) = -Aob(k-a
2

) ,

(74)

(75)

and it is a straightforward matter to show that this when substituted into (71) yields

the classical result (see e.g. equation 83 below). To second order in s, the solution

of (73) is approximately

A(k) = - Ao{b(k-a2
) -ta2k b"(k- ( 2

) } • (76)

Upon substituting in (71) and using equations (54a, b) and (68), we find for the

density and mean energy

where

n(z) = no[ l - {I +t((2-C)} exp( -C)],

3m 1 -(I-tC2)exp(-C)

e(z) = - ,
2a2 I, - {I +t((2-C)} exp( ~ C)

( == Ia Ia
2z.

(77a)

(77b)

(78)

As z ~ 00, we have n ~ no and e ~ 3m/2rt? == eo. At the anode, we have n ~ 0

and e ~ i;m/a2 = teo. That the energy increases towards the anode is in accord

with the findings of Lowke and- collaborators and others (Lucas 1966; Sakai et ale

1972).

Finally, we compare these results with those obtained from the classical theory.

The momentum balance equation (set S = 0 in equation 59) yields for the particle flux

F, = -nW-8z(Dn),

where W is the drift velocity (equation 67) and

D == 2e/3mv

(79)

(80)

is identified as the diffusion coefficient. The latter has the same z dependence as s

and therefore increases near the boundary. The drift velocity W is constant.

Classically, e is assumed to be constant, or at least, to change very slowly over

whatever length scale characterizes density variations and hence equation (79) is

assumed to approximate to

where

F, = -nW -D0 8z n ,

Do == 2eo/3mv = (a2v)-t

(81)

(82)
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is the classical diffusion coefficient. (For the model vconstant, one need not distinguish

between longitudinal and transverse coefficients (Huxley and Crompton 1974).)

The solution of equation (81) subject to the boundary condition n = 0 at z = 0 is

n(z) = no{l-exp( -()}. (83)

This is quite a different form from equation (77a), even for large z far from the

boundary, suggesting that the classical form is never adequate for this' particular

problem. The reason is that the mean energy has a length scale characterizing its

spatial variation comparable with that of the density. (This is also clear from

inspection of the results of Lowke et al. 1977; Braglia and Lowke 1979.) In all the

usual derivations of transport coefficients (Huxley and Crompton 1974; Lin et al.

1979; Kumar et al. 1980), the assumption (either explicit or implicit) is that variations

in e are negligible in comparison with variations in n, leading to equations like (81),

linearized in the gradient ofn.

4., Concluding Remarks

We have developed a half-range decomposition of Boltzmann's equation (a

double two-term approximation), valid for all types of scattering processes. The

equations were solved analytically for the constant mean free path model and zero

electric field, for the geometry of Fig. 1. There, only in the boundary layer of

thickness a few free paths do the half-range equations give solutions differing from

the usual two-term full-range expansion in Legendre polynomials, implying that in

situations where the bulk properties of electrons are determined (as in the CavalIeri

experiment) no modifications to existing theories need to be made. For nonzero

fields and nonconstant free paths, the indications are, however, that boundary effects

may not be so well represented through the usual theory. The half-range equations

do not seem amenable to analytic ·solution for nonzero fields, and a numerical

procedure will be required for further work with them. Even the far simpler full-range

equations are difficult to solve analytically, and we had to make approximations,

even for the constant collision frequency model.

This study, like the previous one by Lowke et al. (1977), was performed with a

simple geometry. For geometries more appropriate to experiment, the task of solving

Boltzmann's equation seems formidable, and here the Monte Carlo simulation

technique, already used by Braglia and Lowke (1979), would seem to offer the best

prospect for a more thorough understanding of experiment. Still, solutions of Boltz

mann's equations are important in their own right and the half-range equations

developed in Section 2 should provide a more satisfying means of dealing with

boundary effects.
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Appendix

Coefficients rxt of Equation (8a)

If I < A, the Pz(J.1) can be expressed as a linear combination of P;.,(2J.1-1), A' < A,

and by the orthogonality property (5) of these half-range polynomials, it follows that

rxt := 0, 1< A. (AI)

Explicit values of the first few' coefficients are

rxg = t, r x ~ = :t, rx~ = -l,

and further,

r x ~ , = 0, r x ~ , + 1 + rx1, + 1 = 0, 1 = 1,2, ....

The general expression for these coefficients is

at = (1 +t) ±(_ )t(l- k) (k +1-1) !! k!
k(2)

(A2)

(A3)

(where the notation indicates that the summation index increases in steps of 2), and

this can be proved by considering the integral

Ji f+1
P;.(2Jl-1)PlJl)dJl = t P;.(z)plHz +1)) dz.

o -1

Using the standard representation,

I

P,(X) = L: (_)-H I -: k)(k + l - 1) ! ! k

k(2) , (1- k) !!k! x ,

(A4)

(A5)
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for the Legendre polynomials as well as the inverse relation

k k'
X

k
= L (21+1)/1- 11, 1'\'·'/1 n ... Pl(X),

1(2)
(A6)

we obtain

PlHz+1») = ±(_)-!(I-k) (k+l-1)!! k (k)
k(2) (l-k)!!k!2kt~O r

~ ~,

X L (2A+1) ( +A+ 1) ,'f ( _ A)" P,b)·
A(2) ~ •• ~ ••

(A7)

Because of the orthogonality relation for the PI the sum over Avanishes after insertion

of equation (A7) into the integral (A4). Hence, we are left with

J
1 . '. ~ i(l- k) (k +1-1) !! ~

P;.(2/1- 1)Pl(P,) d/1 = L. (-). (1- k)" 2k Sk(A.) ,
o k(2) ••

(A8)

with

k

Sk(A) = L {(k-~)!(A+~+1)!!(!-A)!!} -1.
~ = A ( 2 )

(A9)

(Note that (A9) vanishes unless A ~ r, implying that (A8) vanishes unless A ~ I.)

A more detailed discussion of Sk(A) then yields (A3). For A = k we have

1
S;.(A) = (2A+1)!!' (AlO)

Then we obtain from (A9) the following recurrence relation:

Sk_1(A) = (k-A)Sk(A) -Sk_l(A+ 1). (All)

Finally, it can be verified easily that the solution of the system (All) and (AID) is

(Al2)
k!2k

Sk(A) = (k- A)!(k+ A+ 1)! ·

Upon insertion into (A8) and using the definition (8a) of ext, we obtain (A3).
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