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Abstract—In this paper we investigate boundary effects and other
consequences of spatial dispersion by analyzing in detail the response
of a metamaterial half-space to a monochromatic plane wave normally
incident from free-space. The metamaterial is composed of an
orthorhombic lattice of identical particles, each of which exhibits
both an electric and magnetic response. Rather than relying on
the conventional boundary conditions and the Clausius-Mossotti
equations, we use instead the point-dipole interaction model and an
expansion of polarization in eigenmodes to determine the structure’s
dispersion relation and electromagnetic response. Using the nearest-
neighbor approximation, we show how truncating the crystal lattice
excites an “ordinary” mode and two “extraordinary” modes that are
necessary to satisfy the boundary conditions at the interface. For most
cases, the extraordinary modes are evanescent, and thus form a thin
transition layer at the surface. However, under certain conditions,
typically near particle resonances, either one or both of these modes
can be propagating.

1. INTRODUCTION AND BACKGROUND

The variety and capability of devices for microwave and optical
applications are determined to a great extent by the materials from
which the devices are made. Ordinary materials, however, exhibit only
a subset of the material parameters theoretically possible. One possible
way to circumvent this limitation is by extending our definition of
materials to include artificial structures or metamaterials, which can by
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design extend the range of material parameters available. Mimicking
the structure of naturally occurring crystals, many metamaterials are
composed of an ordered lattice of discrete scatterers or “particles”
fashioned out of linear media. Preferably, the feature sizes of the
particles and the period of the lattice itself should be on a scale
much smaller than the field variation inside the medium so that the
composite as a whole can be regarded as an effective medium. In
this manner, an effective permittivity and effective permeability can
be assigned to the structure whose values would be related to the
response and interactions between the individual particles. Ideally,
such a description would hold true right up to the boundary of a
metamaterial and free-space.

However, at the current state of fabrication, most metamaterials
involve inhomogeneities, which, while electrically small, are still
sizable compared to a wavelength at the frequency of operation.
This means that, as opposed to ordinary media, most metamaterials
operate at frequencies above the classical “long-wavelength limit” in
which the basic Clausius-Mossotti equations and related assumptions
hold valid. On the other hand, metamaterials typically operate at
frequencies below the “photonic band gap regime”, in which the lattice
dimensions are equal to or larger than a half wavelength. Hence, the
operation of most practical metamaterials falls in a sort of transitional
frequency band, which has been dubbed the “metamaterials regime”
[1]. Consequently, the electromagnetic properties of the composite
cannot completely be described using a local description. Most notably,
particles near a boundary experience a different local-field environment
than those in the bulk. This phenomenon of spatial dispersion means
that the simple characterization of a boundary in terms of a sharp
interface governed by the ordinary boundary conditions is not correct.

In this paper we investigate the surface effects and other
consequences of spatial dispersion by analyzing in detail the response
of a metamaterial half-space to a monochromatic plane wave normally
incident from free-space. Rather than relying on the conventional
boundary conditions and the Clausius-Mossotti equations, we use
instead the point-dipole interaction model and an expansion of
polarization in eigenmodes. This basic analytical technique finds its
origins in an influential paper in the field of crystal optics by Mahan
and Obermair in which the reflectivity of a semi-infinite dielectric
crystal was calculated for the case of normal incidence [2]. They showed
how disrupting the periodicity of a crystal lattice through truncation
excites a sum of evanescent and/or propagating polariton modes which
are necessary to satisfy the boundary conditions at the interface,
analogously to how a discontinuity in a waveguide excites higher-order
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modes. Each of these modes contributes to the scattered field, which
produces a slight deviation from the traditional Fresnel laws. Later,
Philpott extended this work to the case of oblique incidence for both
semi-infinite crystals [3, 4] and crystals of finite thickness [5].

It is well known that the reactive near-fields (i.e., quasi-static
fields) produced by a two-dimensional planar array of oscillating point
dipoles decreases rapidly to zero with increasing perpendicular distance
from the plane. In the works cited in the previous paragraph, the
authors used this fact to simplify their analyses by artificially cutting
off the near-field interaction to zero after a certain number of nearest
neighbors. For an infinite lattice of electric dipoles in the case of normal
incidence, it turns out that cutting off near-field interactions after N
nearest neighbors results in N+1 independent eigenmodes [2]. In order
to deal with this supposedly troubling result, Mead employed the “exp
model” in which the interaction between crystal planes is assumed
to fall off exponentially with distance. In this way he found the
lattice of dipoles supports exactly two eigenmodes - the same number
of eigenmodes as the nearest neighbor approximation (N = 1) [6].
The following year, Mead formulated a formally closed solution to the
problem, which entails evaluating a complicated contour integral [7]. In
both of these works, Mead claimed that artificially cutting off nearest
neighbor interactions to zero does not always lead to correct results,
and therefore does not constitute an appropriate method of analysis.
However, this claim is only valid if the spacing between adjacent planes
approaches or exceeds that of a free space wavelength, because in such
a case the near-field interactions do not fall off fast enough [8]. For a
cubic lattice of dipoles, in which the lattice constants are much smaller
than a wavelength, it has been suggested that the nearest-neighbor
approximation (N = 1) is suitable and accurate [9].

In recent years the discrete dipole model, originally developed for
actual dielectrics and crystal optics, has been adapted to the analysis
of artificial structures and metamaterials. In 2000, Tretyakov and
Viitanen [10] essentially re-derived Mahan and Obermair’s original
results in modern notation by finding the dispersion relation for a
lattice of non-magnetic scatterers in the case of normal incidence.
The results of this work are only applicable to cases in which the
lattice period is sufficiently smaller than a wavelength. This is because
the authors used an approximate intraplanar interaction constant
describing near-field coupling that, while simple, is only valid at low
frequencies (denoted as β(0) in [10]). In fact, on careful inspection,
the earlier work by Mahan and Obermair is also limited by a similar
constraint since they tacitly assumed quasi-static values for near-field
coupling (see Table 1 in [2] — the tabulated values are the near-
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field interaction constants in the static limit). The main difficulty
lies in evaluating the dynamic lattice interaction constant describing
the internal fields acting on a dipole produced by every other polarized
dipole in the lattice itself; the problem is that the series involved in
the calculation exhibits poor convergence and has no known closed-
form solution. Yatsenko et al. formulated an elegant but approximate
solution to the problem of intraplanar interaction for a single array
by explicitly considering discrete interactions from nearby scatterers
(within some radius R), while approximating the rest of the array
as a polarization sheet minus a hole of the same radius [11]. More
recently, Belov and Simovski re-expressed the offending divergent
series describing the local-field interaction in terms of a new rapidly
convergent series by utilizing the Poisson summation formula and a
singularity cancelation technique, and used it to solve for the dispersion
relation of both electric and magnetic composites in the case of oblique
electromagnetic propagation [12, 13]. The authors also demonstrated
that in the static limit the newly derived dynamic interaction constant
reduces to the known static interaction constant as developed and
presented for artificial dielectrics in Collin’s popular textbook [14].

More recently, the basic Mahan-Obermair approach has been
expanded by Simovski et al. to the case of a metamaterial with discrete
particles exhibiting both electric and magnetic dipole responses [15–
18]. In these works, the authors analyze the metamaterial response
by invoking the “zero-neighbor approximation”, meaning all near-field
interactions between planes are ignored. While this approximation
is adequate and instructive for investigating bulk effects, accounting
for near-field interactions between planes are essential for capturing
detailed boundary effects, as demonstrated by Berman for the
nonmagnetic case [19]. In the present work we analyze the response of a
metamaterial half-space composed of an ordered lattice of electric and
magnetic dipoles, akin to the structure studied by Simovski et al. in the
references above. However, because we are interested here in accurately
modeling and investigating surface effects, we shall go one step further
and employ the nearest neighbor approximation. In this manner, we
shall discover that the structure supports three polarization modes
(compared to only two modes for the nonmagnetic case), which are
necessary to satisfy the boundary conditions and give rise to an excess
polarization density localized to the surface region. Since our analytical
solution is independent of the effective medium description altogether,
it can be useful as a benchmark to compare with the various effective
medium and surface models proposed in the literature. It is also our
hope that this work will promote a better understanding and insight
into the problem of scattering from metamaterials in general.
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2. PROBLEM FORMULATION

Consider a transverse electromagnetic (TEMz) monochromatic plane
wave with wave vector k = k0âz normally incident from free-
space upon a metamaterial half-space composed of a semi-infinite
orthorhombic lattice of particles in the region z ≥ 0, as shown in
Fig. 1. The sites of the lattice are taken to be

Rs,l,n = âxas + âybl + âzdn, (1)

where s, l = 0,±1,±2, . . . , n = 0, 1, 2, . . . , and a, b, and d are the lattice
periods in the x-, y-, and z-directions, respectively. Since we are
interested in the structure’s electromagnetic response at frequencies
below the Bragg diffraction regime, we restrict the dimensions of the
lattice to be smaller a wavelength in free-space, i.e., k0 max(a, b, d) <
2π. Note that in the more general case of oblique incidence (not
considered here), the dimensions of the lattice would have to be smaller
than a half wavelength in free-space to avoid Bragg diffraction.
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Figure 1. Metamaterial half-space excited by a normally incident
plane wave. Shown here are views of the (a) xz-plane cross section
and (b) one point perspective in the transverse plane. For convenience,
the particles are shown as spheroids. By symmetry of the problem,
all particles in plane n have the same electric dipole moment pn and
magnetic dipole moment mn, which are polarized along the directions
of the incident electric and magnetic field vectors, respectively.

Following in the tradition of the microscopic model, in this study
we use the point-dipole interaction approximation. This means that
the fields produced by an individual particle are assumed to be equal to
those produced by an oscillating point-dipole located at the center of
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the particle. This approximation simplifies the problem considerably
in that the responses of the particles are characterized solely by
their electric and magnetic polarizability dyadics, denoted ←→αE(ω)
and ←→αM (ω), respectively. The point-dipole interaction approximation
requires that contributions from higher order multipoles be negligible.
Hence, we restrict our analysis to particles with dimensions sufficiently
smaller than a wavelength of the fields inside the medium so that
the variation of local fields over the volume of the particles can be
ignored. As a further simplification, in this work we consider only
biaxially anisotropic particles exhibiting no magnetoelectric coupling.
This corresponds to polarizability dyadics with non-zero elements
exclusively along the diagonal, i.e., ←→αE = âxâxαxx

E +âyâyα
yy
E +âzâzα

zz
E

and ←→αM = âxâxαxx
M + âyâyα

yy
M + âzâzα

zz
M . These polarizability

dyadics characterize the response of a wide range of particles which
can be used in the implementation of metamaterials such as single
and layered cuboids, ellipsoids, and cylinders fashioned from linear
media (including the disk-like resonators recently presented by Wang
et al. in [20]). The consideration of more complicated particles such
as asymmetrical split-ring resonators which exhibit cross-polarization
and magnetoelectric coupling are beyond the scope of this work. Note
that the point-dipole interaction approximation requires that the sizes
of the particles be sufficiently smaller than the lattice period. For
spherical particles, the theory is applicable even as the diameter of the
spheres approaches the lattice constant. However, for other particle
geometries a more stringent size limit is imposed.

Let us assume that the incident plane wave is polarized along the
x-axis, such that the incident electric field Einc and incident magnetic
field H inc take the form:

Einc = âxEinc,xe
−jk0z (2)

H inc = ây
Einc,x

η0
e−jk0z, (3)

where Einc,x is the amplitude of the incident electric field and η0 =√
μ0/ε0 is the wave impedance of free-space. In the point-dipole

approximation, the incident wave excites a distribution of oscillating
point-electric and point-magnetic dipole moments situated at the nodes
of the lattice, denoted ps,l,n ≡ p(as, bl, dn) and ms,l,n ≡ m(as, bl, dn),
respectively. Because the system obeys translational invariance in the
xy-plane, the electric and magnetic dipole distributions take the form
ps,l,n = pn and ms,l,n = mn, respectively, where pn ≡ pn,0,0 and
mn ≡ mn,0,0 denote the electric and magnetic dipole moments of the
particle located at the origin of lattice plane z = dn, n = 1, 2, 3, . . ..
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In this manner, the total dipole moment distribution of the structure
is determined by the distributions {pn} and {mn} in each plane.

3. THE LOCAL-FIELD EQUATIONS AND THE
PLANEWISE SUMMATION APPROACH

To find the distributions {pn} and {mn}, we write the following local-
field equations governing the electromagnetic response of each particle
along the z-axis:

pn′ = ε0
←→αE · Eloc,n′ , ∀ n′ = 0, 1, 2, . . . (4)

mn′ = μ−1
0
←→αM · Bloc,n′ , ∀ n′ = 0, 1, 2, . . . (5)

where Eloc,n′ and Bloc,n′ are the respective local-electric and local-
magnetic fields acting on the particle located at the origin of lattice
plane z = dn′. As a major simplification, we note that, due to the
translational symmetry in the xy-plane, and because the scatterers are
non-chiral and biaxially anisotropic, the induced electric and magnetic
dipole moments must be polarized along the same direction as the
incident electric and magnetic fields, respectively, i.e., pn = âxp

(x)
n

and mn = âym
(y)
n . Hence, our task of finding the plane-to-plane

distributions, {pn} and {mn}, is equivalent to that of finding the
distribution of the two relevant vector components, {p(x)

n } and {m(y)
n }.

Consequently, the local-electric and local-magnetic fields must also
be polarized along the same directions as the incident electric and
magnetic fields, respectively, i.e., Eloc,n′ = âxE

(x)
loc,n′ and Bloc,n′ =

âyB
(x)
loc,n′ . With this, Eqs. (4) and (5) simplify to the following:

pn′ = âxp
(x)
n′ = âxε0α

xx
E E

(x)
loc,n′, ∀ n′ = 0, 1, 2, . . . (6)

mn′ = âym
(y)
n′ = âyμ

−1
0 αyy

MB
(y)
loc,n′, ∀ n′ = 0, 1, 2, . . . , (7)

The local-electric field amplitude E
(x)
loc,n′ is found by superposing

the incident electric field at site (0, 0, n′) and the induced electric fields
produced at that site by all other scatters in the system with indices
(s, l, n) �= (0, 0, n′); a dual statement holds for the local-magnetic
field amplitude B

(y)
loc,n′. Mathematically, the above statements can be

implemented by taking a planewise summation approach, in which
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E
(x)
loc,n′ and B

(y)
loc,n′ take following form:

E
(x)
loc,n′ =

1
(ab)3/2ε0

[ ∞∑
n=0

p(x)
n CTEMz,xx

n−n′ − 1
c0

∞∑
n=0

m(y)
n DTEMz ,xy

n−n′

]

+Einc,xe
−jk0dn′ (8)

B
(y)
loc,n′ =

μ0

(ab)3/2

[
c0

∞∑
n=0

p(x)
n DTEMz ,yx

n−n′ +
∞∑

n=0

m(y)
n CTEMz ,yy

n−n′

]

+μ0
Einc,x

η0
e−jk0dn′ , (9)

where c0 is the speed of light in vacuum. The co-field planar
interaction constant, denoted CTEMz,xx

n−n′ (k0, a, b, d) in Eq. (8), quantifies
the contribution to the local x-polarized electric field at site (0, 0, n′)
produced by an array of x-polarized electric dipoles located in
plane z = dn. The co-field planar interaction constant, denoted
CTEMz ,yy

n−n′ (k0, a, b, d) in Eq. (9), quantifies the contribution to the local
y-polarized B-field at site (0, 0, n′) produced by an array of y-polarized
magnetic dipoles located in plane z = dn. In a similar manner, the
cross-field planar interaction constants, denoted DTEMz,xy

n−n′ (k0, a, b, d)
in Eq. (8) and DTEMz ,yx

n−n′ (k0, a, b, d) in Eq. (9), quantify magnetic-
to-electric coupling and electric-to-magnetic coupling, respectively.
We point out that, by construction, both the co-field and cross-
field planar interaction constants are dimensionless quantities. The
multiplying factors, (ab)−3/2ε−1

0 and (ab)−3/2μ0, on the right sides
of Eqs. (8) and (9), respectively, serve as the normalization factors.
To further simplify the problem, we note that due to reciprocity and
symmetry, the two cross-field planar interaction constants are the
negatives of each other, i.e., DTEMz ,xy

n−n′ = −DTEMz ,yx
n−n′ , and the co-

field interaction constants are related by interchanging a and b, i.e.,
CTEMz ,yy

n−n′ (k0, a, b, d) = CTEMz ,xx
n−n′ (k0, b, a, d). In this manner, only two

planar interaction constants are independent in Eqs. (8) and (9), which
for our purposes we take to be CTEMz,xx

n−n′ and DTEMz ,yx
n−n′ .

4. THE PLANAR INTERACTION CONSTANTS

Let us first single out and consider in detail the co-field planar
interaction constant, CTEMz ,xx

n−n′ . By definition, for intraplanar coupling,
i.e., n = n′, this interaction constant is found by first removing
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(a) Intraplanar coupling (n = n′) (b) Interplanar coupling (n �= n′)

Figure 2. The location of the source dipoles relative to the observation
site (0, 0, n′) for (a) intraplanar coupling and (b) interplanar coupling.

the dipole from the origin of plane z = dn′ and then summing
the contribution to the x-polarized electric field (normalized by
(ab)−3/2ε−1

0 ) at the position of the removed dipole as produced by
all other x-polarized dipoles (each normalized to have unit strength)
within the same plane, i.e.,

CTEMz ,xx
0 (k0, a, b) = ε0(ab)3/2

∑
(s,l)�=(0,0)

âx ·←→G(1)
(Rs,l,0) · âx (10)

where the double summation is over all indices s and l except for that
corresponding to transverse site (s, l) = (0, 0), Rs,l,0 ≡ âxas + âybl

is the transverse position vector, and the function
←→
G

(1)
(R) denotes

the dyadic Green’s function of free space describing the electric field
evaluated at position R = âxx + âyy + âzz as produced by a
single electric dipole with arbitrary vector orientation located at the
coordinate origin:

←→
G

(1)
(R) =

1
4πε0

(
k2
0

←→
I + ∇∇

) e−jk0|R|

|R| (11)

Fig. 2(a) illustrates the location of the source dipoles relative to the
observation site (0, 0, n′) for the lattice sum in Eq. (10) describing

intraplanar coupling. Substituting Eq. (11) for
←→
G

(1)
(R) into Eq. (10)

results in the following simplified expression for CTEMz ,xx
0 :
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CTEMz ,xx
0 (k0, a, b) =

(ab)3/2

4π∑
(s,l)�=(0,0)

[
k2
0

e−jk0

√
x2+y2+z2√

x2 + y2 + z2
+

∂2

∂x2

(
e−jk0

√
x2+y2+z2√

x2 + y2 + z2

)]
(x,y,z)=(al,bs,0)

(12)

A key challenge resides in evaluating the series on the right-hand side
of Eq. (12). The problem is that the series has no known closed-
form solutions, and is in fact classically divergent for a purely real
wavenumber k0. However, convergence can be secured using the
principal of limiting absorption, which entails first adding a small
imaginary part to the free space wave number k0 and then taking the
limit Im [k0] → 0. Using this approach along with the double Poisson
summation formula and a singularity cancellation technique, this series
has recently been cast by Belov and Simovski [13] into an equivalent
series with rapid convergence convenient for numerical calculation:

CTEMz,xx
0 (k0, a, b) = (ab)3/2Re

{
−2
πa

∞∑
l=1

∞∑
s=1

p2
sK0(psbl)

+
k2
0

2a

∞∑
l=1

(
2

glb
− 1

πl

)
+

1
πa3

∞∑
s=1

(2jk0a + 3)s + 2
s3(s + 1)(s + 2)

e−jk0as

+
k2
0

2aπ

(
ln

k0b

4π
+ 0.577

)

+
1

4πa3

[
−2(jk0a + 1)

(
t2+ ln t− + ejk0a

)
− 4jk0a(t+ ln t−) + 3

]}

+j(ab)3/2

{
− k0

2ab
+

k3
0

6π

}
(13)

where

ps =

√(
2πs

a

)2

− k2
0, gl =

√(
2πl

b

)2

− k2
0 ,

t+ = 1 − ejk0a, t− = 1 − e−jk0a.

and K0(x) is the zeroth-order modified Bessel function (as defined in
section 9.6 in Abramowitz and Stegun [21]). Note that both ps and gl

are real valued because of our initial assumption that k0 max(a, b, d) <
2π.

For interplanar coupling, i.e., n �= n′, the interaction constant
CTEMz ,xx

n−n′ is found by summing the contribution to the x-polarized
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electric field (normalized by (ab)−3/2ε−1
0 ) at site (0, 0, n′) produced by

a lattice of x-polarized electric dipoles (each normalized to have unit
strength) located in an adjacent plane z = dn:

CTEMz ,xx
n−n′ �=0 (k0, a, b, d)=ε0(ab)3/2

∞∑
s=−∞

∞∑
l=−∞

âx·←→G(1)
(Rs,l,n−n′)·âx, n �= n′

(14)
where Rs,l,n−n′ ≡ âxas + âybl + âzd(n − n′). Fig. 2(b) illustrates
the location of the source dipoles relative to the observation site
(0, 0, n′) for the lattice sum in Eq. (14) describing interplanar coupling.

Substituting Eq. (11) for
←→
G

(1)
(R) into Eq. (14) results in the following

expression for CTEMz,xx
n−n′ �=0 :

CTEMz ,xx
n−n′ �=0 (k0, a, b, d) =

(ab)3/2

4π

∞∑
s=−∞

∞∑
l=−∞[

k2
0

e−jk0

√
x2+y2+z2√

x2 + y2 + z2
+

∂2

∂x2

(
e−jk0

√
x2+y2+z2√

x2 + y2 + z2

)]
(x,y,z)=(al,bs,d(n−n′))

(15)

Using the principal of limiting absorption with the double Poisson
summation formula, we can rewrite Eq. (15) as the following expansion
of Floquet harmonics [8, 13]:

CTEMz,xx
n−n′ �=0 (k0, a, b, d) =

−j(ab)1/2

2

∞∑
l=−∞

∞∑
s=−∞

(
k2
0 − (2πs/a)2

kz
s,l

)
e−j(|n−n′|dkz

s,l), n �= n′ (16)

where the wavenumbers of the individual Floquet harmonics are given
by kz

s,l =
√

(2πs/a)2 + (2πl/b)2 − k2
0 . Here we choose the root of kz

s,l

such that Im(
√·) < 0. Note that if k0 max(a, b) < 2π then kz

s,l is purely
negative imaginary for all terms in the series expansion with indices
(s, l) �= (0, 0), i.e., kz

(s,l)�=(0,0) = −j|kz
(s,l)�=(0,0)|. It follows that the

corresponding terms in the series expansion in Eq. (16) decay rapidly
to zero with increasing interplanar distance |n−n′|d. Physically, these
terms are associated with the cut-off or evanescent free-space modes
produced by a two-dimensional array of dipoles, and define the reactive
near-field in the free-space region surrounding the array. On the other
hand, the zeroth-order term, corresponding to index (s, l) = (0, 0),
with wavenumber kz

0,0 = k0, does not decay. This term is associated
with the propagating free-space mode produced by a two-dimensional
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array of dipoles. Thus, for large interplanar distances |n − n′|d, the
zeroth-order term is dominant in the series expansion on the right-hand
side of Eq. (16).

With this in mind, we shall find it advantageous to expand
CTEMz ,xx

n−n′ as a sum of two components, describing separately short-
range (SR) and long-range (LR) interactions:

CTEMz ,xx
n−n′ (k0, a, b, d) ≡ CTEMz ,xx

n−n′,SR (k0, a, b, d) + CTEMz,xx
n−n′,LR (k0, a, b, d)

(17)
where the respective SR and LR components of CTEMz ,xx

n−n′ are
recognized from Eqs. (13) and (16) to be:

CTEMz ,xx
n−n′,LR (k0, a, b, d) = −j

k0(ab)1/2

2
e−j|n−n′|k0d (18)

CTEMz ,xx
n−n′,SR (k0, a, b, d) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
(s,l)�=(0,0)

(ab)1/2
[
k2
0 − (2πs/a)2

]
2kz

s,l

e−|n−n′|dkz
s,l , n �= n′

RE
{

CTEMz,xx
0

}
+ j(ab)3/2 k3

0
6π , n = n′

(19)

where kz
s,l is defined in the comments following Eq. (16) and CTEMz ,xx

0

is given by Eq. (13). In formulating Eqs. (17)–(19), we used the fact
that from Eq. (13) the imaginary part of CTEMz ,xx

0 is equal to:

Im
{
CTEMz ,xx

0 (k0, a, b)
}

= (ab)3/2j

{
k3
0

6π
− k0

2ab

}
. (20)

Additionally, by construction, the so-called radiation damping term
j(ab)3/2k3

0/6π is included as a short-range effect in Eq. (19) and
will end up compensating for dipole radiation losses as we shall
see in the next section. By the identity CTEMz ,yy

n−n′ (k0, a, b, d) =
CTEMz ,xx

n−n′ (k0, b, a, d), it follows that we can also expand CTEMz ,yy
n−n′ as

a sum of two components describing separately short-range (SR) and
long-range (LR) interactions, i.e., CTEMz,yy

n−n′ ≡ CTEMz ,yy
n−n′,SR + CTEMz ,yy

n−n′,LR .

From Eq. (18) we see that the long-range component of CTEMz ,xx
n−n′ is

invariant with respect to the interchange of variables a and b, i.e.,
CTEMz ,xx

n−n′,LR (k0, a, b, d) = CTEMz ,xx
n−n′,LR (k0, b, a, d). Hence, the long-range

components of CTEMz ,yy
n−n′ and CTEMz ,xx

n−n′ are equal, i.e., CTEMz ,yy
n−n′,LR =
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CTEMz ,xx
n−n′,LR . On the other hand, the short range components of CTEMz ,yy

n−n′

and CTEMz ,xx
n−n′ are only equal in the case of a square lattice (a = b).

In an analogous fashion we can also expand the cross-field planar
interaction constant DTEMz ,yx

n−n′ as a sum of two components, describing
separately short-range (SR) and long-range (LR) interactions:

DTEMz ,yx
n−n′ (k0, a, b, d) ≡ DTEMz,yx

n−n′,SR (k0, a, b, d) + DTEMz ,yx
n−n′,LR (k0, a, b, d)

(21)
where the respective SR and LR components of DTEMz ,yx

n−n′ are (see [22]
for details):

DTEMz ,yx
n−n′,LR (k0, a, b, d) = sgn(n − n′)

jk0(ab)1/2

2
e−j|n−n′|k0d (22)

DTEMz ,yx
n−n′,SR (k0, a, b, d) = sgn(n − n′)

jk0(ab)1/2

2

∑
(s,l)�=(0,0)

e−|n−n′|dkz
s,l (23)

where sgn(x) is the signum function (sgn(x) = 1 for x > 0, sgn(x) = −1
for x < 0, and sgn(x) = 0 for x = 0). Note that for intraplanar coupling
(n = n′), the cross-field coupling term DTEMz,yx

n−n′ is equal to zero.
The planar interaction constants corresponding to various planar

indices are calculated and tabulated in Table 1 for (i) a cubic lattice,
a = b = d, and rectangular lattices with lattice proportions (ii)
a = b, d = 2a, and (iii) a = b, d = a/2. For all three geometries,
we choose the operating frequency such that k0a = 0.1. In evaluating
Eqs. (18), (19), (22), and (23) used to generate Table 1, we took twenty
terms in each series, in which we estimate the truncation error to be
better than 0.001% for each.

A key feature of Table 1 is that the short range terms, CTEMz ,xx
n−n′,SR

and DTEMz,yx
n−n′,SR , decrease to zero very rapidly with increasing separation

distance |n−n′|d. This means that when solving Eqs. (6) and (7) with
Eqs. (8) and (9), we can neglect SR interactions after a finite number
of lattice planes. Guided by Table 1 (i) and (ii) we conclude that
if the lattice period along the normal is equal to or larger than the
period along the transverse directions (i.e., d ≥ max(a, b)), then the
SR co-field planar interaction term, CTEMz ,xx

n−n′,SR , is negligible and can be
set equal to zero for |n − n′| ≥ 2 with little loss of accuracy. We also
conclude that the SR cross-field planar interaction term DTEMz ,yx

n−n′,SR is
negligible for all planar indices. Therefore, this term can simply be set
to zero altogether. Substituting Eqs. (8) and (9) into Eqs. (6) and (7)
and utilizing these two approximations results in the following form of
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Table 1. Values of the planar interaction constants for k0a = 0.1.

(i) Cubic lattice (a = b = d)
Plane index 

n-n
TEM ,

',LR
z xx

n nC −
TEM ,

',SR
z xx

n nC −
TEM ,

',LR
z yx

n nD −
TEM ,

',SR
z yx

n nD −

0 0.05 0.3571 0 0 
1 0.05 -0.013 0.05 j4.03 410−×
2 0.05 -2.21 510−× 0.05 j7.02 710−×
3 0.05 -4.1 810−× 0.05 j1.3 910−×
4 0.05 -7.67 1110−× 0.05 j2.4 1210−×

(ii) Non-cubic lattice I (a = b, d=2a)
Plane index 

n-n
TEM ,

',LR
z xx

n nC −
TEM ,

',SR
z xx

n nC −
TEM ,

',LR
z yx

n nD −
TEM ,

',SR
z yx

n nD −

0 0.05 0.3571 0 0 
1 0.05 -2.2 510−× 0.05 j7.02 710−×
2 0.05 -7.66 1110−× 0.05 j2.44 1210−×
3 0.05 -2.68 1610−× 0.05 j8.52 1810−×
4 0.05 -9.35 2210−× 0.05 j3 2310−×

(iii)  Non-cubic lattice II (a = b, d=a/2)
Plane index 

n-n
TEM ,

',LR
z xx

n nC −
TEM ,

',SR
z xx

n nC −
TEM ,

',LR
z yx

n nD −
TEM ,

',SR
z yx

n nD −

0 0.05 0.3571 0 0 
1 0.05 -0.4313 0.05 j0.0118 
2 0.05 -0.013 0.05 j4.025 410−×
3 0.05 -5.22 410−× 0.05 j1.65 510−×
4 0.05 -2.21 510−× 0.05 j7.02 710−×

'

'

'

the local-field equations:

p
(x)
n′ =

αxx
E

(ab)3/2

[ ∞∑
n=0

p(x)
n CTEMz ,xx

n−n′,LR +
n′+1∑

n=n′−1

p(x)
n CTEMz ,xx

n−n′,SR

+
1
c0

∞∑
n=0

m(y)
n DTEMz ,yx

n−n′,LR

]
+αxx

E ε0Einc,xe
−jk0dn′ , ∀ n′=0, 1, 2, . . .

(24)

m
(y)
n′ =

αyy
M

(ab)3/2

[
c0

∞∑
n=0

p(x)
n DTEMz ,yx

n−n′,LR +
∞∑

n=0

m(y)
n CTEMz ,xx

n−n′,LR

+
n′+1∑

n=n′−1

m(y)
n CTEMz ,yy

n−n′,SR

]
+αyy

M

Einc,x

η0
e−jk0dn′ , ∀ n′=0, 1, 2, . . .

(25)
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where in writing Eq. (25) we have invoked the identity, CTEMz ,yy
n−n′,LR =

CTEMz ,xx
n−n′,LR . For the rest of the paper we assume for simplicity that

d ≥ max(a, b) and that Eqs. (24) and (25) hold valid. In contrast, as
Table 1 (iii) suggests, if the lattice period along the normal is smaller
compared to the transverse directions (i.e., d < max(a, b)) then the
SR interactions fall off more slowly with increasing separation distance
|n − n′|d, and, consequently, additional SR terms may be required. It
is straightforward to generalize the analysis presented here to include
such extra terms.

5. EIGENMODE SOLUTION FOR THE
METAMATERIAL HALF-SPACE

Eqs. (24) and (25) constitute an infinite system of coupled equations
in an infinite number of variables p

(x)
n′ and m

(y)
n′ , n′ = 0, 1, 2, . . .. To

solve this system of equations we use an expansion of polarization by
eigenmodes:

p(x)
n =

∑
i

Px,ie
−jqz,idn (26)

m(y)
n =

∑
i

My,ie
−jqz,idn (27)

where Px,i and My,i are the amplitudes of the eigenmodes
corresponding to wavenumbers qz,i. Each eigenmode (or Floquet wave)
constitutes a “natural” solution which can independently propagate
through the infinite periodic structure with wavenumber qz,i. This
was demonstrated to be true for non-magnetic crystals in [2, 8]. In
the present work, we will derive the dispersion relation for qz,i by first
substituting the form of the solution given by Eqs. (26) and (27) into
the inhomogeneous local-field Eqs. (24) and (25) governing the half-
space response to a normally incident plane wave. By employing self
consistency, the homogeneous components of the local-field equations
will be extracted, which describe the natural response of the structure
and yield the dispersion relation giving insights into the location of the
pass-bands and stop-bands as well as the number of eigenmodes the
structure can support. This approach is similar to that undertaken
by Philpott in his analysis of a non-magnetic crystalline half-space [4].
In a later section, we shall further demonstrate that the magnetic-to-
electric amplitude ratio is fixed for each mode, which we shall denote
BTEMz

yx,i ≡ My,i/(c0Px,i). Because this ratio is fixed, there is only
one independent parameter governing the amplitude for each mode,
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which we shall take to be the electric amplitude, Px,i. The particular
amplitudes of the eigenmodes are contained in the forced response and
are to be determined.

Substituting Eqs. (26) and (27) into Eqs. (24) and (25) leads to
the following set of coupled equations:

∑
i

Px,ie
−jqz,idn′ =

αxx
E

(ab)3/2

[∑
i

Px,i

[ ∞∑
n=0

e−jqz,idnCTEMz ,xx
n−n′,LR

+
n′+1∑

n=n′−1

e−jqz,idnCTEMz,xx
n−n′,SR

]]

+
αxx

E

(ab)3/2

[
1
c0

∑
i

My,i

[ ∞∑
n=0

e−jqz,idnDTEMz ,yx
n−n′,LR

]]

+αxx
E ε0Einc,xe

−jk0dn′ , ∀ n′ = 0, 1, 2, . . . (28)∑
i

My,ie
−jqz,idn′ =

αyy
M

(ab)3/2

[
c0

∑
i

Px,i

[ ∞∑
n=0

e−jqz,idnDTEMz ,yx
n−n′,LR

]]

+
αyy

M

(ab)3/2

[∑
i

My,i

[ ∞∑
n=0

e−jqz,idnCTEMz ,xx
n−n′,LR

+
n′+1∑

n=n′−1

e−jqz,idnCTEMz ,yy
n−n′,SR

]]

+αyy
M

Einc,xe
−jk0dn′

η0
, ∀ n′ = 0, 1, 2, . . . (29)

We proceed next by explicitly evaluating in closed-form the planewise
sums over n which appear in Eqs. (28) and (29). First, let us expand
the sums involving SR interactions:

n′+1∑
n=n′−1

e−jqz,idnCTEMz ,xx
n−n′,SR = e−jqz,idn′

[
C̃TEMz ,xx

0,SR +2CTEMz,xx
1,SR cos(qz,id)

]

−δn′0C
TEMz ,xx
1,SR e+jqz,id + j(ab)3/2 k3

0

6π
e−jqz,idn′ (30)

n′+1∑
n=n′−1

e−jqz,idnCTEMz ,yy
n−n′,SR = e−jqz,idn′

[
C̃TEMz ,yy

0,SR +2CTEMz ,yy
1,SR cos(qz,id)

]

−δn′0C
TEMz ,yy
1,SR e+jqz,id + j(ab)3/2 k3

0

6π
e−jqz,idn′ , (31)
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where we have defined C̃
TEMz ,xx(yy)
0,SR ≡ C

TEMz,xx(yy)
0,SR − j(ab)3/2k3

0/6π =

Re(CTEMz ,xx(yy)
0 ) and δij is the Kronecker delta function (δij = 1 for

i = j and δij = 0 for i �= j). Now let us single out the planewise sum
over n involving CTEMz ,xx

n−n′,LR which appears in both Eqs. (28) and (29):

∞∑
n=0

e−jqz,idnCTEMz ,xx
n−n′,LR = −j

k0(ab)1/2

2

∞∑
n=0

e−jqz,idne−j|n−n′|k0d (32)

where we have substituted Eq. (18) for CTEMz ,xx
n−n′,LR . We see that this sum

involves a geometric series, which can be evaluated exactly by assuming
that the imaginary part of the wavenumber qz,i is negative. However,
if the wavenumber qz,i is purely real, the series can still be evaluated by
adding a small imaginary part to the free space wavenumber k0 such
that convergence is secured, and then taking the limit Im[k0] → 0 (i.e.,
invoking the principle of limiting absorption). Both assumptions lead
to the same result:

∞∑
n=0

e−jqz,idne−j|n−n′|k0d =
n′∑

n=0

e−jqz,idne−j(n′−n)k0d

+
∞∑

n=n′+1

e−jqz,iane−j(n−n′)k0d

= e−jk0dn′
n′∑

n=0

e−j(qz,i−k0)dn + e−j[(k0+qz,i)+qz,in
′]d
∞∑

n=0

e−j(qz,i+k0)dn

= e−jk0dn′
[

1−e−j(qz,i−k0)d(n′+1)

1−e−j(qz,i−k0)d

]
+e−j[(k0+qz,i)+qz,in′]d

[
1

1−e−j(qz,i+k0)d

]

= e−jk0dn′
[

1
1−e−j(qz,i−k0)d

]
+ e−jqz,idn′

[
j sin(k0d)

cos(k0d) − cos(qz,id)

]
(33)

where the final expression has been purposely expressed as a sum
of two terms; one term proportional to e−jk0dn′ and the other term
proportional to e−jqz,idn′ . The rationale for this separation of terms
will be apparent shortly. Substituting Eq. (33) into Eq. (32) yields the
following closed-form expression:

∞∑
n=0

e−jqz,idnCTEMz ,xx
n−n′,LR = e−jk0dn′

(
−j

k0(ab)1/2

2

)[
1

1−e−j(qz,i−k0)d

]
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+e−jqz,idn′
(
−j

k0(ab)1/2

2

)[
j sin(k0d)

cos(k0d) − cos(qz,id)

]
(34)

Next, let us single out the planewise sum over n involving DTEMz ,yx
n−n′,LR

which appears in both Eqs. (28) and (29):

∞∑
n=0

e−jqz,idnDTEMz,yx
n−n′,LR =

jk0(ab)1/2

2

∞∑
n=0

sgn(n − n′)e−jqz,idne−j|n−n′|k0d

(35)
where we have substituted Eq. (22) for DTEMz ,yx

n−n′,LR . By again invoking
the principal of limiting absorption, this sum can be evaluated in closed
form:

∞∑
n=0

sgn(n − n′)e−jqz,idne−j|n−n′|k0d = −
n′−1∑
n=0

e−jqz,idne−j(n−n′)k0d

+
∞∑

n=n′+1

e−jqz,idne−j(n−n′)k0d

= −e−jk0dn′
n′−1∑
n=0

e−j(qz,i−k0)dn + e−j[(k0+qz,i)+qz,in′]d
∞∑

n=0

e−j(qz,i+k0)dn

= −e−jk0dn′
[

1−e−j(qz,i−k0)dn′

1−e−j(qz,i−k0)d

]
+e−j[(k0+qz,i)+qz,in

′]d
[

1
1−e−j(qz,i+k0)d

]

= −e−jk0dn′
[

1
1−e−j(qz,i−k0)d

]
+e−jqz,idn′

[ −j sin(qz,id)
cos(k0d) − cos(qz,id)

]
(36)

Substituting Eq. (36) into Eq. (35) yields the following closed-form
expression:

∞∑
n=0

e−jqz,ianDTEMz ,yx
n−n′,LR = e−jk0dn′

(
−jk0(ab)1/2

2

)[
1

1−e−j(qz,i−k0)d

]

+e−jqz,idn′
(

jk0(ab)1/2

2

)[ −j sin(qz,id)
cos(k0d) − cos(qz,id)

]
(37)

Finally, substituting Eqs. (30), (31), (34), and (37) into Eqs. (24) and
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(25) yields the following expanded form of the local-field equations:

0 =
∑

i

Px,i

{
−e+jqz,idδn′0

CTEMz ,xx
1,SR

(ab)3/2
+ e−jk0dn′

(
−j

k0

2ab

)
(

1
1 − e−j(qz,i−k0)d

)
+

e−jqz,idn′

(ab)3/2

[
C̃TEMz ,xx

0,SR + 2CTEMz,xx
1,SR cos(qz,id)

− (ab)3/2(αxx
E )−1+

j(ab)3/2k3
0

6π
+
(

k0

2ab

)(
sin(k0d)

cos(k0d)−cos(qz,id)

)]}

− 1
c0

∑
i

My,i

{
e−jk0dn′

(
jk0

2ab

)[
1

1 − e−j(qz,i−k0)d

]

− e−jqz,idn′
(

k0

2ab

)[
sin(qz,id)

cos(k0d) − cos(qz,id)

]}
+ε0Einc,xe

−jk0dn′ , ∀ n′ = 0, 1, 2, . . . (38)

and

0 = −c0

∑
i

Px,i

{
e−jk0dn′

(
jk0

2ab

)
[

1
1 − e−j(qz,i−k0)d

]
− e−jqz,idn′

(
k0

2ab

)[
sin(qz,id)

cos(k0d) − cos(qz,id)

]}

+
∑

i

My,i

{
−e+jqz,idδn′0C

TEMz,yy
1,SR + e−jk0dn′

(
−j

k0

2(ab)1/2

)
(

1
1−e−j(qz,i−k0)d

)
+

e−jqz,idn′

(ab)3/2

[
C̃TEMz ,yy

0,SR +2CTEMz,yy
1,SR cos(qz,id)

− (ab)3/2
(
αyy

M

)−1+
j(ab)3/2k3

0

6π
+
(

k0

2ab

)(
sin(k0d)

cos(k0d)−cos(qz,id)

)]}

+
Einc,xe

−jk0dn′

η0
, ∀ n′ = 0, 1, 2, . . . (39)

We emphasize that Eqs. (38) and (39) hold valid for all planar indices
(n′ = 0, 1, 2, . . .). Because both qz,i and k0 are independent of n′, this
requires that each group of terms proportional to e−jk0dn′ and e−jqz,idn′

appearing in these equations must separately equal zero (assuming
qz,i �= k0). Performing such a grouping leads to the following five
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separate equations:

∑
i

Px,ie
−jqz,idn′

{
C̃TEMz ,xx

0,SR

(ab)3/2
+

2CTEMz ,xx
1,SR

(ab)3/2
cos(qz,id)−

(
α
′xx
E

)−1

+
(

k0

2ab

)(
sin(k0d)

cos(k0d) − cos(qz,id)

)}

+
∑

i

My,ie
−jqz,idn′

{
1
c0

(
k0

2ab

)(
sin(qz,id)

cos(k0d) − cos(qz,id)

)}
= 0 (40)

∑
i

Px,ie
−jqz,idn′

⎧⎨
⎩

c0

(
k0
2ab

)
sin(qz,id)

cos(k0d) − cos(qz,id)

⎫⎬
⎭

+
∑

i

My,ie
−jqz,idn′

{
C̃TEMz ,yy

0,SR

(ab)3/2
+

2CTEMz,yy
1,SR

(ab)3/2
cos(qz,id)−

(
α
′yy
M

)−1

+
(

k0

2ab

)(
sin(k0d)

cos(k0d) − cos(qz,id)

)}
= 0 (41)

∑
i

Px,ie
+jqz,id = 0 (42)

∑
i

My,ie
+jqz,id = 0 (43)

∑
i

(Px,i + My,i/c0)
(

1
1 − e−j(qz,i−k0)d

)
=

−j2abε0Einc,x

k0
(44)

where, in Eqs. (40) and (41) we have defined(
α
′xx
E

)−1 ≡ (αxx
E )−1 − jk3

0/6π (45)(
α
′yy
M

)−1 ≡ (αyy
E

)−1 − jk3
0/6π, (46)

respectively. It has been previously shown that the imaginary parts of
(αxx

E )−1 and (αxx
M )−1 each contain the radiation damping term +jk3

0/6π

[13, 23, 24]. In our definitions of
(
α
′xx
E

)−1
and

(
α
′yy
M

)−1
this radiation

damping term is exactly canceled with its negative. Hence, α
′xx
E and

α
′yy
M are recognized to be the polarizations computed without radiation

damping.
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Eqs. (40) and (41) will be used in the next section to determine
the material wavenumbers, qz,i. Eqs. (42) and (43) constitute the
boundary conditions. Paralleling the interpretation by Mahan and
Obermair of their results for all-dielectric crystals [2], these equations
indicate that the electric- and magnetic-dipole moments both equal
zero at a “fictitious” plane located at a distance −d from the xy
plane (corresponding to the fictitious planar index n = −1). Eq. (44)
is a result of setting the group of terms proportional to e−jk0dn′ in
Eqs. (38) and (39) equal to zero, and constitutes the discrete analog
of the Ewald-Oseen extinction theorem for a magnetodielectric half-
space. Essentially, the equation indicates that in discrete space each
eigenmode produces a field traveling plane-to-plane in the +z direction
with wavenumber k0 such that the sum total over all eigenmodes
exactly cancels out the incident field. A similar expression was found
by Philpott for the case of an all-dielectric crystal (see Eq. (4.11) in
[4]; Philpott’s expression is equivalent to our Eq. (44) in the special
case of normal incidence and cubic geometry with My,i = 0.)

6. THE DISPERSION RELATION

Let us now turn our attention to Eqs. (40) and (41). These equations
involve sums of terms proportional to e−jqz,idn′ over index i. Because
these equations hold true for all planar indices, n′ = 0, 1, 2, . . . , and
because qz,i is independent of n′, each term in the sum must separately
equal zero:

Px,i

{
C̃TEMz ,xx

0,SR + 2CTEMz ,xx
1,SR cos(qz,id) −

(
α
′xx
E

)−1
(ab)3/2

+

(
k0(ab)1/2

2

)(
sin(k0d)

cos(k0d) − cos(qz,id)

)}

+My,i

{
1
c0

(
k0(ab)1/2

2

)(
sin(qz,id)

cos(k0d) − cos(qz,id)

)}
= 0 (47)

Px,i

{
c0

(
k0(ab)1/2

2

)(
sin(qz,id)

cos(k0d) − cos(qz,id)

)}

+My,i

{
C̃TEMz ,yy

0,SR +2CTEMz,yy
1,SR cos(qz,id)−(ab)3/2

(
a
′yy
M

)−1

+

(
k0(ab)1/2

2

)
sin(k0d)

cos(k0d) − cos(qz,id)

}
= 0 (48)
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Eqs. (47) and (48) constitute a 2 × 2 set of linear equations for the
unknown amplitudes Px,i and My,i. So that a nontrivial solution exists,
we set the determinant of the matrix of the coefficient of variables
equal to zero, which gives the dispersion relation for the structure. By
performing this operation and simplifying, we arrive at the following
dispersion relation written in the form of a cubic equation with variable
cos(qz,id):

Q3w
3 + Q2w

2 + Q1w + Q0 = 0; w = cos(qz,id) (49)

where

Q3 = 4CTEMz,yy
1,SR CTEMz,xx

1,SR α
′yy
M α

′xx
E (50)

Q2 = 2α
′yy
M CTEMz,yy

1,SR

(
C̃TEMz ,xx

0,SR α
′xx
E − (ab)3/2

)
+2α

′xx
E CTEMz ,xx

1,SR

(
C̃TEMz ,yy

0,SR α
′yy
M − (ab)3/2

)
−4α

′xx
E α

′yy
M CTEMz ,yy

1,SR CTEMz ,xx
1,SR cos(k0d) (51)

Q1 = − cos(k0d)2
[
α
′yy
M CTEMz ,yy

1,SR

(
α
′xx
E C̃TEMz ,xx

0,SR − (ab)3/2
)

+ α
′xx
E CTEMz ,xx

1,SR

(
α
′yy
M C̃TEMz ,yy

0,SR − (ab)3/2
)]

+
(
α
′xx
E C̃TEMz ,xx

0,SR − (ab)3/2
)(

α
′yy
M C̃TEMz,yy

0,SR − (ab)3/2
)

− sin(k0d)k0(ab)1/2
(
CTEMz ,xx

1,SR + CTEMz ,yy
1,SR

)
α
′xx
E α

′yy
M

+k2
0

(ab)
4

α
′xx
E α

′yy
M (52)

Q0 = − cos(k0d)
(
α
′xx
E C̃TEMz ,xx

0,SR − (ab)3/2
)(

α
′yy
M C̃TEMz ,yy

0,SR − (ab)3/2
)

−1
2

sin(k0d)k0(ab)1/2
[
α
′xx
E

(
α
′yy
M C̃TEMz ,yy

0,SR − (ab)3/2
)

+α
′yy
M

(
α
′xx
E C̃TEMz,xx

0,SR −(ab)3/2
)]

+
k2
0(ab)
4

α
′xx
E α

′yy
M cos(k0d) (53)

By taking the inverse cosine of the roots of Eq. (49), the eigenvalues
qz,i are found within a plus or minus sign. For the lossy case we choose
the sign of qz,i corresponding to a negative imaginary component
(Im[qz,i] < 0). In this manner, the eigenmodes decay along the z-
axis. For the lossless case, we choose the sign corresponding to positive
energy transfer to the z ≥ 0 half-space, such that ∂qz,i/∂ω > 0. For
practical numerical calculations of lossless structures, the sign can
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also be determined by first introducing a very small loss term into
the system and choosing the appropriate sign that gives a negative
imaginary part. This can be considered as the numerical counterpart
to the principle of limiting absorption. We note that our solution is
not unique in the sense that one can always add the real term 2πnt/d,
where nt is an arbitrary integer, to qz,i and arrive at the same final
answer to the scattering problem. This is because the term qz,i appears
solely in our formulas as an argument (multiplied by d) to a complex
exponential function (i.e., e−jqz,id), and e−jqz,id = e−j(qz,i+2πnt/d)d.

The dispersion relation given by Eq. (49) has precisely three roots
because we included only nearest-neighbor near-field interactions in
the analysis. In general, for magnetodielectric crystals in the case
of normal incidence, including L near-field interactions results in a
polynomial of degree 1 + 2L. This is in contrast to an all-dielectric or
all-magnetic structure in which the number of roots is 1 + L [2].

Recently, Simovski et al. derived the dispersion relation, in two
alternative equivalent forms, for a magnetodielectric crystal with
simultaneous electric and magnetic dipole moments [15, 16] (akin to
the structure we are considering here). However, in these works the
authors ignore all near-field interactions between neighboring planes.
While this is adequate for investigating bulk properties, we include
nearest-neighbor interactions, because, as Berman demonstrated for
the all-dielectric case [19], such near-field interactions are crucial for
accurately modeling and investigating realistic surface effects.

7. THE REFLECTION COEFFICIENT OF A
METAMATERIAL HALF-SPACE

After the eigenvalues are determined using the dispersion relation
given by Eq. (49), the magnetic-to-electric amplitude ratio for each
mode, denoted BTEMz

yx,i ≡ My,i/(c0Px,i) can be found using Eq. (47) (or
equivalently Eq. (48)):

BTEMz
yx,i ≡ My,i

c0Px,i
=

C̃TEMz,xx
0,SR +2CTEMz ,xx

1,SR cos(qz,id)−
(
α
′xx
E

)−1
(ab)3/2+ (k0/2)(ab)1/2 sin(k0d)

cos(k0d)−cos(qz,id)(
k0(ab)1/2

2

)(
sin(qz,id)

cos(qz,id)−cos(k0d)

)
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=

(
k0(ab)1/2

2

)(
sin(qz,id))

cos(qz,id)−cos(k0d)

)
C̃TEMz ,yy

0,SR +CTEMz ,yy
1,SR cos(qz,id)−

(
α
′yy
M

)−1
(ab)3/2+ (k0/2)(ab)1/2 sin(k0d)

cos(k0d)−cos(qz,id)

(54)

Given the amplitude ratios BTEMz
yx,i ; (i = 1, 2, 3) we can now rewrite

Eqs. (42)–(44) as a 3 × 3 set of linear equations that can be used to
solve for the three unknown amplitudes, Px,i; (i = 1, 2, 3)⎡
⎢⎢⎣

e+jqz,1d e+jqz,2d e+jqz,3d

BTEMz
yx,1 e+jqz,1d BTEMz

yx,2 e+jqz,2d BTEMz
yx,3 e+jqz,3d

1+BTEMz
yx,1

1−e−j(qz,1−k0)d

1+BTEMz
yx,2

1−e−j(qz,2−k0)d

1+BTEMz
yx,3

1−e−j(qz,3−k0)d

⎤
⎥⎥⎦
⎡
⎢⎣

Px,1

Px,2

Px,3

⎤
⎥⎦

=

⎡
⎣ 0

0
Ẽinc,x

⎤
⎦ , (55)

where we have defined Ẽinc,x ≡ −j2abε0Einc,x/k0. The solutions of
Eq. (55) are:

Px,1 =
Ẽinc,x

(
BTEMz

yx,3 − BTEMz
yx,2

)
e−jqz,1d

ΔD
(56)

Px,2 =
Ẽinc,x

(
BTEMz

yx,1 − BTEMz
yx,3

)
e−jqz,2d

ΔD
(57)

Px,3 =
Ẽinc,x

(
BTEMz

yx,2 − BTEMz
yx,1

)
e−jqz,3d

ΔD
(58)

where:

ΔD ≡
(
BTEMz

yx,1 +1
)(

BTEMz
yx,2 −BTEMz

yx,3

)
ejk0d−ejqz,1d

+

(
BTEMz

yx,2 +1
)(

BTEMz
yx,3 −BTEMz

yx,1

)
ejk0d−ejqz,2d

+

(
BTEMz

yx,3 + 1
)(

BTEMz
yx,1 − BTEMz

yx,2

)
ejk0d − ejqz,3d

(59)

The electric dipole distribution {p(x)
n } is found by substituting

Px,i; (i = 1, 2, 3) given by Eqs. (56)–(58) into Eq. (26). The
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magnetic dipole distribution {m(y)
n } is found by substituting My,i =

c0B
TEMz
yx,i Px,i; (i = 1, 2, 3), as determined using Eqs. (54), (56)–(58),

into Eq. (27).
The total scattered electric field in the air region (z < 0) is a

superposition of a reflected plane wave Er = âxShalf
11 Einc,xe

−jk0|z| and
a combination of scattered evanescent waves produced by the lattice,
all of which decay rapidly to zero with increasing distance normal from
the surface. For observation points a sufficient distance away from
the surface (generally three lattice periods in the normal direction is
adequate for a cubic lattice), the evanescent fields are negligible and
the total scattered field equals that of the reflected plane wave.

The plane wave component of the electric field produced by a sin-
gle lattice of dipoles in plane z = dn′ with electric dipole moment distri-
bution pn′ = axp

(x)
n′ and magnetic dipole moment distribution mn′ =

aym
(y)
n′ is given by Escat

n′ (z) = ax(Ep
n′e
−jk0|z−dn′| ± Em

n′e
−jk0|z−dn′|)

where Ep
n′ = −jp

(x)
n′ ωη0/(2ab), Em

n′ = −jm
(y)
n′ ωμ0/(2ab), and the sign

± corresponds to half spaces z > dn′ and z < dn′, respectively. Note
that Escat

n′ (z) describes the plane wave produced by an equivalent cur-
rent sheet carrying electric current density Js = axjωp

(x)
n′ /(ab) and

magnetic current density M s = axjωm
(y)
n′ /(ab). Using this expression,

we find the reflection coefficient for the half-space Shalf
11 by summing

the electric field amplitudes (normalized by Einc,x) produced by each
array of discrete elements evaluated at the reference plane z = 0:

Shalf
11 =

1
Einc,x

∞∑
n=0

Escat
n (z = 0)

=
k0

jEinc,xε02ab

∞∑
n=0

(
p(x)

n − m
(y)
n

c0

)
e−jk0dn

=
k0

jEinc,xε02ab

3∑
i=1

∞∑
n=0

Px,ie
−j(qz,i+k0)dn

(
1 − BTEMz

yx,i

)

=
−1

Ẽinc,x

3∑
i=1

Px,i

1 − BTEMz
yx,i

1 − e−j(qz,i+k0)d
(60)

where we invoked the principle of limiting absorption to ensure
convergence of the geometric series. Substituting the amplitudes
Px,i; (i = 1, 2, 3) given by Eqs. (56)–(58) into Eq. (60) and simplifying
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Figure 3. Dispersion diagram showing the first two pass bands for
a cubic lattice of nonmagnetic particles with polarizability densities,
α′ENv = π/2 and α′MNv = 0 (substituting these values into Eqs.
(63) and (64) results in the following corresponding effective medium
parameters: εCM

r,eff = 4.297 and μCM
r,eff = 1).

yields our desired result:

Shalf
11 =

ΔN

ΔD
(61)

where ΔD is defined by Eq. (59) and ΔN is defined as:

ΔN ≡
(
BTEMz

yx,1 −1
)(

BTEMz
yx,2 −BTEMz

yx,3

)
e−jk0d−ejqz,1d

+

(
BTEMz

yx,2 −1
)(

BTEMz
yx,3 −BTEMz

yx,1

)
e−jk0d−ejqz,2d

+

(
BTEMz

yx,3 − 1
)(

BTEMz
yx,1 − BTEMz

yx,2

)
e−jk0d − ejqz,3d

(62)

8. PROPERTIES OF THE DISPERSION RELATION

In this section, the dispersion relation given by Eq. (49) is solved
numerically for a cubic lattice (a = b = d) of isotropic particles with
electric and magnetic polarizabilities denoted α′E ≡ α

′xx
E = α

′yy
E = α

′zz
E

and α′M ≡ α
′xx
M = α

′yy
M = α

′zz
M , respectively. In Fig. 3 the dispersion

diagram is plotted for a dielectric crystal with parameters, α′ENv = π/2
and α′MNv = 0, where Nv = d−3 is the volume density of dipoles; these
parameters correspond to the quasi-static polarizabilities of a densely
packed lattice of conducting spheres (recall that the static electric and
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magnetic polarizabilities for a conducting sphere with volume Vvol are
αE = 3Vvol and αM = 0, respectively [25]). From the figure, we see that
the first passband (between k0d = 0 and k0d = 1.6) corresponds to a
single purely real solution for the propagation constant, while the other
two solutions are purely imaginary. In the first stopband (between
k0d = 1.6 and k0d = 3.14) all solutions for the propagation constant
are purely imaginary. In the second passband (between k0d = 3.14
and k0d = 4.5), we have a single purely real solution which exhibits
negative dispersion; meaning the phase velocity vp = ω/qz is opposite
in sign to the group velocity vg = ∂ω/∂qz. In general, as k0d increases
beyond what is shown, the dispersive behavior continues to alternate
between bands and gaps as demonstrated in references [12, 26], which
is characteristic of a photonic bandgap crystal.

Within the framework of the quasi-static approximation,
the Clausius-Mossotti approximation relates the effective relative
permittivity εr,eff and effective relative permeability μr,eff to the
electric and magnetic polarizabilities of the particles, respectively. For
a cubic lattice of isotropic particles, the Clausius-Mossotti relations
take the form:

εCM
r,eff =

1 + (2/3)Nvα
′
E

1 − (1/3)Nvα
′
E

(63)

μCM
r,eff =

1 + (2/3)Nvα
′
M

1 − (1/3)Nvα′M
(64)

We should keep in mind that Eqs. (63) and (64) follow from
the approximations inherent to the Clausius-Mossotti approach
and may not represent the “true” homogenized parameters; such
approximations include operation in the long-wavelength regime
(k0a � 1) with negligible spatial dispersion. Hence, the theory
only accounts for purely “bulk” properties sufficiently far away from
discontinuities and surfaces. To remind us of this fact, we include
the superscript “CM” in the notation in Eqs. (63) and (64). In
the homogenous media approximation (HMA), the electrical length
of a single unit cell qzd is simply given by the light line in the
effective medium, qzd = nCM

eff k0d, where nCM
eff is the effective index

of refraction determined within the Clausius-Mossotti formulism, i.e.,
nCM

eff =
√

εCM
r,eff μCM

r,eff where εCM
r,eff and μCM

r,eff are calculated from Eqs.
(63) and (64).

In Fig. 4 we compare the dispersion curves for a cubic structure
for three different sets of polarizabilities; for each set we choose the
parameters α′ENv and α′MNv such that the corresponding index of
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Figure 4. Dispersion diagram for a cubic lattice of particles with
polarizability densities, α′ENv and α′MNv, chosen such that the

corresponding index of refraction is nCM
eff =

√
εCM
r,eff μCM

r,eff =
√

22 where

εCM
r,eff and μCM

r,eff are calculated using Eqs. (63) and (64), respectively:
(a) α′ENv = 2.625 and α′MNv = 0 (εCM

r,eff = 22 and μCM
r,eff = 1), (b)

α′ENv = 2.571 and α′MNv = 0.15 (εCM
r,eff = 19 and μCM

r,eff = 1.158), and
(c) α′ENv = 1.165 and α′MNv = 1.165 (εCM

r,eff =
√

22 and μCM
r,eff =

√
22).

For reference we also plot the light line in the effective medium
qzd = nCM

eff k0d as determined by the homogenous media approximation
(HMA).

refraction, nCM
eff =

√
εCM
r,eff μCM

r,eff =
√

22. The three dispersion curves

are labeled (a)–(c) in the plot and the corresponding values of α′ENv

and α′MNv are given in the figure caption. The light line in the
effective medium, qzd = nCM

eff k0d, as determined by the HMA is also
plotted for reference. The most striking feature of this plot is the
behavior of case (a), which corresponds to parameters α′ENv = 2.625
and α′MNv = 0 (εCM

r,eff = 22 and μCM
r,eff = 1). From the plot of the

dispersion curve (a), we see that there exist two purely real solutions
for the propagation constant at all frequencies below the first bandgap.
Even in the static limit k0d → 0 we have two solutions, qzd = 0 and
qzd = 2.54. It follows, that in the static limit, the lattice supports a
steady, periodic, electric dipole moment distribution with wavelength
λ1 = 2π/qz = 2.47d. In the context of a general one-dimensional
periodic structure, the possibility of having two solutions in the static
limit has been pointed out and discussed by Brillouin (e.g., see Sec. 8
and Sec. 10 in [27]).

To help explain this behavior, we find that, in the long-wavelength
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limit, the solutions to the dispersion relation Eq. (49) are:

qz,1d = ±k0d⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1+

− (ab)1/2

d

⎡
⎢⎢⎢⎣

α
′xx
E α

′yy
M

(
2CTEMz ,xx

1,SR + 2CTEMz ,yy
1,SR +

C̃TEMz ,xx
0,SR +C̃TEMz,yy

0,SR − (ab)1/2

d

)

−
(
α
′xx
E +α

′yy
M

)
(ab)3/2

⎤
⎥⎥⎥⎦

⎡
⎣
(
α
′xx
E

(
C̃TEMz ,xx

0,SR +2CTEMz ,xx
1,SR

)
− (ab)3/2

)
×
(
α
′yy
M

(
C̃TEMz ,yy

0,SR +2CTEMz ,yy
1,SR

)
− (ab)3/2

)
⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

(65)

qz,2d = ±arccos

(
C̃TEMz,xx

0,SR α
′xx
E − (ab)3/2

2CTEMz ,xx
1,SR α

′xx
E

)
(66)

qz,3d = ±arccos

(
C̃TEMz,yy

0,SR α
′yy
M − (ab)3/2

2CTEMz ,yy
1,SR α

′yy
M

)
. (67)

The solution specified by Eq. (65) corresponds to the “ordinary”
propagation constant as calculated using the conventional HMA for a
rectangular lattice, while the solutions specified by Eqs. (66) and (67)
correspond to “extraordinary” modes that are excited at the surface
of the air-metamaterial interface. To have more than one purely real
solution for the propagation constant (such that at least one of the two
extraordinary modes is non-decaying), the particles must be lossless
(i.e., Im(α

′xx
E ) = Im(α

′yy
M ) = 0), and the argument of the arccos

function in Eq. (66) and/or Eq. (67) must be purely real and less
than or equal to one in magnitude, i.e.,∣∣∣∣∣C̃

TEMz ,xx
0,SR α

′xx
E − (ab)3/2

2CTEMz ,xx
1,SR α

′xx
E

∣∣∣∣∣ ≤ 1 (68)

∣∣∣∣∣C̃
TEMz ,yy
0,SR α

′yy
M − (ab)3/2

2CTEMz ,yy
1,SR α

′yy
M

∣∣∣∣∣ ≤ 1 (69)

For the special case of a cubic lattice, Eqs. (68) and (69) simplify to:
1

C̃TEMz ,xx
0,SR + 2CTEMz ,xx

1,SR

≤ α
′xx
E Nv ≤ 1

C̃TEMz ,xx
0,SR − 2CTEMz ,xx

1,SR

, (70)

1

C̃TEMz ,yy
0,SR + 2CTEMz ,yy

1,SR

≤ α
′yy
M Nv ≤ 1

C̃TEMz ,yy
0,SR − 2CTEMz ,yy

1,SR

. (71)



370 Scher and Kuester

For a cubic lattice in the static limit, the numerical values of the first
two planar interaction constants are C̃TEMz ,xx

0,SR = C̃TEMz ,yy
0,SR = 0.3594

and CTEMz,xx
1,SR = CTEMz,yy

1,SR = −0.0130. By substituting these values

into Eqs. (70) and (71), and in turn substituting α
′xx
E and α

′yy
M into

the Clausius-Mossotti Eqs. (63) and (64), we find that there will
be more than one purely real solution to the propagation constant
if the corresponding effective permittivity and/or permeability are
numerically greater than or equal to 20.2 (i.e., εCM

r,eff ≥ 20.2 and/or
μCM

r,eff ≥ 20.2). In [28], Kar and Bagchi solved for the electric dipole
moment distribution in the quasi-static limit near the surface of a cubic
electric-dipole lattice using a simple matrix inversion technique. In this
work, they found that the inversion procedure breaks down for a range
of electric polarizabilities equivalent to that specified by our Eq. (70) in
which the system supports “spontaneous polarization modes”. Mochan
and Barrera have also noted special cases in which the polarization in
dielectric crystals exhibits higher-order oscillations which do not decay
[29].

r r,( )

1cm

1cm

1cm

0.76cm

0.76cm

ε μ

Figure 5. Unit cell composed of a magnetodielectric cube centered in
a free-space cubical region.

Commonly, only near resonances do particles exhibit polarizabili-
ties for which Eqs. (68) and (69) hold. Consider a metamaterial com-
posed of a cubic lattice of magnetodielectric cubical particles in which
the unit cell is shown in Fig. 5. The lattice period d = 1cm and the
particle edge length is 0.76 cm. As a hypothetical material, we choose
the relative permittivity εr and relative permeability μr of the mag-
netodielectric cube to be Re(εr) = Re(μr) = 500 with loss tangents of
tan δE = tan δM = 5 × 10−4 (these parameters describe the cube and
are not to be confused with the effective parameters of the composite
as a whole). With these parameters, the particle undergoes its first
resonance around 94.06 MHz (k0d = 0.0197). A single lattice of such
particles were simulated using Ansoft HFSS (a commercially available
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finite-element based electromagnetic solver) and the polarizabilities ex-
tracted using the method presented in [23]. By symmetry of the prob-
lem, the electric and magnetic polarizabilities are numerically equal.
Fig. 6 shows a plot of the real part of the extracted electric polariz-
ability density α′ENv and the real part of the corresponding effective
permittivity εCM

r,eff calculated using Eq. (63). As the curve Re(α′ENv)
goes through resonance, it intersects the line Re(α′ENv) = 3. This is
the point at which the denominator of Eq. (63) approaches zero and
the effective permittivity reaches its maximum. As Re(α′ENv) increases
beyond this point, Re(εCM

r,eff ) flips sign and becomes negative.
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Figure 6. Real part of the electric polarizability density and effective
permittivity vs. k0d for a metamaterial composite with the unit cell
shown in Fig. 5 for Re(εr) = Re(μr) = 500 and tan δE = tan δM =
5 × 10−4. Because the particles are matched, a corresponding plot of
the magnetic polarizability density and the effective permeability vs.
k0d is numerically equivalent to the plot shown.

Fig. 7 presents the dispersion diagram for the structure in the
previous example as determined using both the present method and the
Ansoft HFSS eigensolver; the latter being included as an independent
check for comparison. Because of the small loss tangent of the
magnetodielectric cube, there exist no purely real solutions for the
propagation constant, and the results shown are for eigenmodes with
slowest decay. Both techniques exhibit good agreement and both
demonstrate a small frequency band near resonance in which there
exists simultaneous propagating modes. In particular, the HFSS
eigensolver shows that the three simultaneous modes propagate within
the frequency band k0d = 0.019674 to k0d = 0.019679 (0.025%
bandwidth).

Consider again a metamaterial in which the geometry of the unit
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Figure 7. Dispersion diagram for a metamaterial composed of a cubic
lattice of magnetodielectric cubes in which the unit cell is shown in
Fig. 5 and Re(εr) = Re(μr) = 500 and tan δE = tan δM = 5 × 10−4.
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Figure 8. Real part of the electric polarizability density and effective
permittivity vs. k0d for a metamaterial composite with the unit cell
shown in Fig. 5 for Re(εr) = Re(μr) = 50 and tan δE = tan δM =
5 × 10−4. Because the particles are matched, a corresponding plot of
the magnetic polarizability density and the effective permeability vs.
k0d is numerically equivalent to the plot shown.

cell is shown in Fig. 5. Let us choose the relative permittivity εr and
the relative permeability μr of the magnetodielectric cube to each be
ten times smaller than the corresponding parameters in the previous
example, i.e., Re(εr) = Re(μr) = 50 with a loss tangent of tan δE =
tan δM = 5 × 10−4. With these parameters, the particle undergoes
its first resonance around 0.907 GHz (k0d = 0.19). Fig. 8 shows a
plot of the real part of the extracted electric polarizability density
α′ENv and the corresponding effective permittivity εCM

r,eff calculated
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using Eq. (63). Fig. 8 presents the dispersion diagram for the
structure determined using both the present method and the HFSS
eigensolver. Both methods exhibit good agreement and, as opposed
to the previous example, both demonstrate no frequency bands in
which multiple modes exist simultaneously. At first glance, this may
seem to contradict the previous findings in which we stated that
simultaneous propagating modes exist if the effective permittivity
and/or permeability are numerically greater than or equal to 20.2,
because from Fig. 8, we clearly see that this condition is satisfied near
resonance. However, this special condition only applies to the first
passband. In this example, the resonant frequency is roughly ten times
higher than in the previous example, and, consequently, near resonance
the composite operates in a higher passband in which only one mode
propagates.

0 1 2 3

0.185

0.19

0.195

k 0d

Re(q d)

Present Method
HFSS eigensolver

Re(qz,id)

Figure 9. Dispersion diagram for a metamaterial composed of a cubic
lattice of magnetodielectric cubes in which the unit cell is shown in Fig.
5, Re(εr) = Re(μr) = 50 and tan δE = tan δM = 5 × 10−4.

9. DIPOLE MOMENT DISTRIBUTION NEAR THE
BOUNDARY OF FREE-SPACE AND A SEMI-INFINITE
METAMATERIAL

Let us now investigate how the polarization distribution varies from
plane-to-plane near the surface of a semi-infinite metamaterial. Fig. 10
displays the magnitude of the dipole moment distribution |p(x)

n | at
planes n = 0, 1, . . . , 9 calculated using the equations presented in
Sec. 8 for three different sets of parameters involving non-magnetic
particles: (a) α′ENv = 1.71, α′MNv = 0 (εCM

r,eff = 5, μCM
r,eff = 1),

(b) α′ENv = 2.47, α′MNv = 0 (εCM
r,eff = 15, μCM

r,eff = 1), and (c)
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α′ENv = 2.57, α′MNv = 0 (εCM
r,eff = 19, μCM

r,eff = 1). In this display,
the magnitudes for each case are normalized to that of the “bulk”
value taken here to be the magnitude at plane n = 9. In the
calculations, the free-space electric length per unit cell is k0d = 0.01
and the lattice is cubic (a = b = d). We see from Fig. 10 that the
polarization undergoes near-surface oscillations before settling into its
bulk behavior. The appearance of such “wiggles” in the polarization
near the boundaries of electric-dipolar slabs was discussed in some
detail by Poppe et al. [30] and later by Berman [19]. In the context of
the eigenmode approach, these wiggles are explained by the presence
of an extraordinary mode that is excited at the surface in addition
to the ordinary propagating mode. We emphasize that for a purely
non-magnetic structure, only one extraordinary mode is excited if the
nearest-neighbor approximation is made, as originally established by
Mahan and Obermair [2]. For the three cases considered in Fig. 10
the extraordinary mode is evanescent. Its decay length is dependent
on the value of the electric polarizability density α′ENv; specifically, as
the size of α′ENv is enlarged, the decay length increases accordingly.
This is consistent with the behavior of the extraordinary mode’s
wavenumber as determined using Eqs. (66) and agrees with the findings
of Gadomskii and Sukhov [31].
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Figure 10. Polarization variation near the boundary of a non-
magnetic metamaterial half-space at planes n = 0, 1, . . . , and 9 for
three different cases involving evanescent extra-ordinary modes. k0d =
0.01.

For case (c) in Fig. 10, corresponding to the polarizability
densities, α′ENv = 2.57 and α′MNv = 0 (εCM

r,eff = 19 and μCM
r,eff =

1), the near-surface oscillations decay to zero approximately within
the first ten lattice planes. If we increase α′ENv, then the decay
length increases in kind, until the perturbation eventually extends



Progress In Electromagnetics Research B, Vol. 14, 2009 375

throughout the entire structure. At this point, the structure supports
a propagating extraordinary mode. This occurs when α′ENv satisfies
the inequality given by Eq. (70), which is equivalent to the condition
εCM
r,eff ≥ 20.2. Fig. 11 displays the magnitude of the dipole polarization

|p(x)
n | calculated near the boundary for such a case; here we choose the

polarizability densities to be α′ENv = 2.63 and α′MNv = 0 (εCM
r,eff =

22 and μCM
r,eff = 1). From the figure we see that the propagating

extraordinary mode has the effect of modulating the amplitude of the
ordinary mode in the discretized spatial domain.
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Figure 11. Polarization variation near the boundary of a non-
magnetic metamaterial half-space at planes n = 0, 1, . . . , and 9 for
a case involving a propagating extra-ordinary mode. The polarization
is normalized to the magnitude at plane n = 10, k0d = 0.01.

Fig. 12 displays the magnitude of the dipole polarization |p(x)
n |

calculated at the planes n = 0, 1, . . . , 9 for three different sets of
double-negative parameters (εCM

r,eff < 0 and μCM
r,eff < 1): (a) α′ENv = 6,

α′MNv = −6 (εCM
r,eff = −5 and μCM

r,eff = −1), (b) α′ENv = 3.7,
α′MNv = −6 (εCM

r,eff = −15, μCM
r,eff = −1), and (c) α′ENv = 3.53,

α′MNv = −6 (εCM
r,eff = −19, μCM

r,eff = −1). As in the previous examples,
the free-space electric length per unit cell is k0d = 0.01 and the lattice
is cubic (a = b = d). For all three cases, the polarization variation
settles into its bulk behavior within three or four lattice planes from the
boundary and, as opposed to the behavior in the previous examples,
the damping does not oscillate. This behavior is reminiscent of the
response of an over-damped system.

In passing, we point out that the polarization profiles shown
in Figs. (10) and (12) generally change only slightly with
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Figure 12. Polarization variation near the boundary of a semi-infinite
double-negative metamaterial at planes n = 0, 1, . . . , and 9 for three
different cases. k0d = 0.01.

increasing frequency. So long as k0d is small (k0d < 1 is a
good metric), the decay lengths of the extraordinary modes remain
comparable, and, consequently, the polarization settles into its bulk
behavior after roughly the same number of lattice planes in the
direction of propagation from the boundary as shown. However,
as the frequency is increased, the electrical length of this effective
surface-to-bulk transition layer increases, which in turn increasingly
perturbs the metamaterial’s response from that found by assuming
a sharp boundary and bulk behavior throughout. A more thorough
investigation into the degree to which the scattering is perturbed by
surface effects compared to dispersive bulk effects is reserved for future
work.

10. SUMMARY AND CONCLUSIONS

In this paper we solved for the electromagnetic response of a
metamaterial half-space in the case of normal incidence using an
expansion of polarization in eigenmodes in the point-dipole model.
Our results can be regarded as an extension of the Mahan-Obermair
theory [2] to the case of a magnetodielectric crystalline structure. In
our work, the problem was simplified considerably by assuming the
lattice dimensions to be smaller than a half wavelength and invoking
the nearest neighbor approximation. With this, we found that the
metamaterial half-space supports three modes traveling in the +z
direction: an ordinary mode and two extraordinary modes. In the long-
wavelength limit, the ordinary mode propagates with approximately
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the same wave number as that predicted by effective medium theory
using the Clausius-Mossotti relations, while the two extra-ordinary
modes propagate with wave numbers given by Eqs. (66) and (67).

If the electric polarizability obeys condition (68) and/or the
magnetic polarizability obeys condition (69), then either one or both of
the extra-ordinary modes will propagate. This behavior was confirmed
for a metamaterial composed of cubic particles near resonance using
the Ansoft HFSS eigensolver (see Fig. 7). In this case, the structure
supports multiple bulk modes even in the long-wavelength limit, and
the Clausius-Mossotti relations do not present a complete description
of the bulk properties of the medium.

At frequencies far removed from particle resonances, however,
the extraordinary modes are evanescent and decay to zero within a
few planes away from the boundary, thus giving rise to near-surface
oscillations in the polarization. For such a case, the bulk of the medium
can be modeled as a continuum, while the surface effects can possibly
be taken into account using one of a variety models in the literature
such as a thin Drude transitional layer [32], an equivalent surface
conductivity [29, 33], or the generalized sheet transition conditions
(GSTCs) [34, 35]. We leave the development of phenomenological
models for surface effects to future work.

Our analytical solution is useful because it accounts for near-
field (i.e. quasistatic) couplings between planes for metamaterials
with particles exhibiting both electric and magnetic dipole responses.
In this manner, our model captures detailed surface and dispersive
bulk effects, which are essential for an accurate solution. Because
the solution is independent of the effective medium description, it
can be used as a benchmark to compare with the myriad of effective
medium and surface models proposed and available in the literature.
For design purposes, it is hoped that the model will promote a better
understanding and insight into the scattering problem.

This work also gives insight into the problem of material parameter
extraction. A common way to retrieve the material parameters of
a metamaterial, based on the Nicolson-Ross retrieval algorithm for
ordinary media [36], is to measure the scattering (transmission and
reflection) from a finite number of cascaded planes, and infer the
material parameters by assuming the structure is equivalent to an
effective medium slab with sharp interfaces [1, 37]. The equations
are based on the Fresnel reflection and transmission coefficients at
the interface, which are in turn based on the assumption that the
tangential electric and magnetic fields are continuous across the
interface. This simple model, however, is in disagreement with the
results of the present work and earlier works on nonmagnetic structures
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(e.g., see [19, 28, 30, 38]), which find that the polarization distribution
is perturbed at the surface before settling into its bulk value. Hence,
one would expect the Nicolson-Ross method to present problems when
applied to metamaterials, which is indeed the case. For example,
the Nicolson-Ross method yields values of the retrieved material
parameters that depend on the sample thickness. Specifically, as the
thickness is increased, by means of adding more lattice planes to the
sample, the extracted results tend to converge to some bulk value. For
certain cases, convergence is reached only after three or more planes
are included in the analysis [37]. This agrees, at least qualitatively,
with the findings presented in Figs. 10 and 12, which suggest that the
surface perturbation extends only one or two layers into the bulk for
most cases of interest.

Strikingly, it has also been found that the Nicolson-Ross method
applied to metamaterials sometimes produces effective permittivities
and permeabilies which exhibit gain, even for passive structures (e.g.,
see Fig. 3 in [1] and Fig. 2 in [39]). Such non-physical artifacts are
probably a result of not properly accounting for surface effects. In [40]
it was recognized that the retrieval algorithm yields different results
depending on the location of the effective boundaries and an attempt
to solve this problem was made by choosing the appropriate location of
the boundaries to that which yields a constant wave impedance (or at
least as “constant” as one can achieve within some small error). While
this is perhaps an improvement over earlier works, this approach still
assumes the interface can be modeled by a sharp boundary. However,
if quasi-static coupling between planes is non-negligible, a simple
shift of reference plane does not give enough degrees of freedom to
capture the surface effects, and a more complicated model is required.
Additionally, it should be stressed that for cases when multiple bulk
modes are present (as that shown in Fig. 11), the concept of a localized
surface effect loses its meaning altogether.
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