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AAbstract 
The present work introduces the boundary element method applied to 
the bending analysis of functionally graded plates. It is assumed that 
material properties are graded through the thickness direction of the 
plate according to a power law distribution. The neutral surface posi-
tion for such plate is determined and the classical plate theory based 
on the exact neutral surface position is employed to extract the equi-
librium equations. A direct approach based on the Green’s identity is 
used to formulate boundary element method. By introducing a novel 
approach, domain integrals which arise from distributed transverse 
loads are transformed into boundary integrals. In case studies, three 
geometrical shapes including, rectangular, circular and elliptic for 
functionally graded plates with/without hole are considered. Compara-
tive studies are first carried out to evaluate the sufficiency of the pro-
posed method for bending analysis of isotropic and functionally graded 
plates subjected to the transverse loads. Then, a series parametric 
study is performed to examine the influences of the power of function-
ally graded material, boundary conditions and geometrical parameters 
on the deformation and stress of functionally graded plates. 
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11 INTRODUCTION 

Thin plates are light weight structures with high load-carrying capacity, and technological effec-
tiveness. These are extensively used in engineering applications, such as aerospace, mechanical and 
civil and ocean engineering which manufactured in various geometrical shapes and made from vari-
ous materials. In recent years, a new class of composite materials known as functionally graded 
materials (FGMs) has gained considerable attention as advanced structural materials. FGMs have 
superior thermal and mechanical performance to conventional homogeneous materials. Due to this 
fact, they have a wide variety of engineering applications especially for the purpose of removing 
mismatches of thermo-mechanical properties between two neighboring layers and reducing stress 
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level in structures. A number of research works have been carried out in static and dynamic analy-
sis of functionally graded (FG) plates (see e.g. Ref. [1, 5, 11, 19-21, 27]). For instance, in the field of 
static analysis, Reddy et al [19] investigated the axisymmetric bending of functionally graded solid 
and annular circular plates. They presented exact solutions for deflections, force and moment re-
sultants using the first-order shear deformation theory (FSDT). Reddy and Cheng [20] studied the 
three-dimensional thermo mechanical deformations of simply supported, functionally graded rectan-
gular plates by using an asymptotic method. In general, the material properties of FG plate do not 
have symmetry about the middle plane of the FG plate. This condition leads to the stretching–
bending coupling in constitutive equations of FG plate. Abrate [1] showed that there is no stretch-
ing–bending coupling in constitutive equations of FG plates, if the reference surface is properly se-
lected. Zhang and Zhou [27] presented a theoretical analysis to the FG thin plates based on the 
physical neutral surface. They carried out the bending, buckling and free vibration analysis of simp-
ly supported rectangular and clamped circular FG plates. Recently, Bodaghi and Saidi [5] developed 
an exact analytical solution for buckling of functionally graded rectangular plates subjected to non-
uniformly distributed in-plane loading acting on two opposite simply supported edges. 
 As mentioned above, analytical solutions of plate problems using classical methods is limited to 
relatively simple plate geometry, load configuration, and boundary supports. If these conditions are 
more complicated, the classical analysis methods become increasingly tedious or even impossible. In 
such cases, approximate methods are the only approaches that can be employed for the solution of 
practically important plate problems. The boundary element method (BEM) is a popular computa-
tional tool among numerical methods. The BEM is well suited for treating complicated boundaries, 
for discontinuous internal actions, mixed boundary conditions, etc. In particular, the BEM has been 
applied successfully for the solutions of plate bending problems, its advantages have been demon-
strated [3, 4, 6, 8, 12, 15, 22, 23, 26]. One of the main advantages of this method is a possibility of 
reduced dimensionality of the problem which leads to a reduced set of equations and makes smaller 
amount of data required for computation. For the linear problem, the BEM is especially effective 
because integral equations are formulated only on the boundary of the domain under consideration. 
The various boundary element formulations for thin plate bending can be generally categorized as 
the direct and the indirect formulations. The first boundary element formulation was based on the 
so-called indirect methods [12], where the integral equations do not relate to the natural variables of 
the problem, such as deflections, rotations, bending or twisting moments and shear forces. Instead, 
they involve some source distribution densities, apparently without any physical meaning. Some 
authors have followed the same bases to propose alternative indirect schemes [3, 26]. The natural 
variables appearing in the integral equations gave origin to the direct methods applied to plate 
bending, as in Bezine [4], Stern [22] and Tottenham [23]. They established the main bases of the 
boundary element technique for plate bending, nowadays used as a standard tool. 
 In the general plate bending boundary element method, domain integrals arise in the formula-
tion owing to the distributed load on the domain. The fact that domain integrals need to be evalu-
ated spoils the pure boundary character of the BEM and weakens the advantages this method has 
over domain methods. During the past three decades, various techniques such as Galerkin tensor 
method [6], dual reciprocity method [15], multiple reciprocity method [16] and radial integration 
method [8] have been developed that successfully overcome this problem and at the same time pre-
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serve the purely boundary character of the BEM. A brief comment on the popularly used transfor-
mation methods was described by Gao [8]. 
Using the direct boundary element method based on Green’s identity, Gospodinov and Ljutskanov 
[10] investigated the static analysis of thin rectangular plates. They discretized the plate domain to 
solve domain integrals in their BEM formulation. They also used the indirect boundary element 
method for dynamic and stability analyses of the plates. Du et al. [7] presented some fundamental 
aspects of the direct boundary element method of the Kirchhoff theory of thin plate. The boundary 
element results of plates in bending can exhibit disturbances in the vicinity of points where abrupt 
changes in the boundary conditions occur. Due to this event, Venturini and Paiva [24] proposed 
several different ways of defining the boundary element system of equations to improve their nu-
merical responses and consequently to increase the reliability of the technique. Paris and de Leon 
[17] formulated the thin plate bending problem by means of two coupled Poisson equations. The 
domain integrals were evaluated approximating the integrands by a series of simple domain func-
tions whose coefficients were calculated by a collocation procedure at points placed along the 
boundary and domain. Recently, Leonetti et al. [14] presented a symmetric model for the boundary 
element analysis of Kirchhoff plates. They showed that the convergence of their model is more regu-
lar than the collocation boundary model. 
 Although some research works dealt with bending analysis of thin isotropic plates,  but there are 
few research works that dedicate to the bending analysis of non-homogeneous plate. For example, 
Paiva et al. [18] presented an approach for anisotropic thin-plate bending problems using the 
boundary element formulation when the source points were located on the boundary. Albuquerque 
et al. [2] presented a boundary element formulation without any domain integral for anisotropic 
plate bending problems using the radial integration method. A robust boundary element method 
that can be used to solve elastic problems with nonlinearly varying material parameters, such as the 
functionally graded material and damage mechanics problems was presented by Gao et al. [9]. Re-
cently, Ruocco and Minutolo [21] investigated two-dimensional stress analysis of multi-region func-
tionally graded materials using a field boundary element model. 
To the best of authors’ knowledge, there is no research work on the bending analysis of functionally 
graded plate based on the boundary element method. 

The present work develops a pure boundary element method for bending analysis of functionally 
graded plates based on the classical plate theory (CPT) and physical neutral surface concept. The 
material properties of the FG plate are assumed to vary continuously and smoothly through the 
thickness according to the power-law distribution of the volume fraction of the constituents. The 
equilibrium equations are derived from the principle of minimum total potential energy. The direct 
boundary element method is employed to solve plate bending problem. By introducing a novel ap-
proach and using auxiliary potential functions, domain integrals which arise from distributed loads 
are transformed into boundary integrals. To certify the accuracy of the present boundary element 
method, the results obtained by the present analysis are compared with those available in the liter-
ature. Moreover, the effects of power of FGM and geometrical parameters together with various 
combinations of boundary conditions on the deformation and stress of FG plates are investigated in 
detail. 
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22. EQUILIBRIUM EQUATIONS 

2.1 Physical neutral surface concept 

The material properties of FGMs vary smoothly and continuously from one surface to the other. 
This is achieved by gradually varying the volume fraction of the constituent materials. FGMs are 
usually made from a mixture of metal and ceramic, or a combination of different metals. In the 
present work, it is assumed that the FG plate is made of ceramic and metal. Since, the material 
properties of the FG plate vary through the thickness direction, the neutral surface of such plate 
may not coincide with its geometric middle surface. Therefore, stretching and bending deforma-
tions of FG plates are coupled. Some researchers [1, 5, 27] have shown that there is no stretching-
bending coupling in constitutive equations if the origin of coordinate system is suitably selected in 
the thickness direction of the FG plate so as to be the neutral surface. To specify the position of 
neutral surface of FG plates, two different planes are considered for the measurement of  z , 
namely, zms  and  zns , as depicted in Fig. 1.  

 
 
 
 
 
 
 
 
 
 

Figure 1   The position of middle surface and neutral surface for a functionally graded plate. 

 
The volume-fraction of metal (Vm) can be expressed based on these coordinates as [5, 27]:
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where h  is the thickness of the plate, the parameter  Δ  is the distance of neutral surface from the 
middle surface and n  denotes the power of FGM ( 0)n ≥ . The effective Young’s modulus (E)  
based on the Voigt model can be expressed as: 
 

   E(z) = Ec + (Em − Ec)Vm(z)  (2) 
 
where  Em  and  Ec  are the Young’s modulus of the metal and ceramic, respectively. The situation 

of the neutral surface of the FG plate is determined to satisfy the first moment with respect to 
Young’s modulus being zero as follows [5, 27]: 
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E(zms)(zms − Δ)dzms−h
2

h
2∫ = 0  (3) 

 
 Therefore, the position of neutral surface can be obtained as: 
 

   

Δ =
E(zms)zms dzms−h

2

h
2∫

E(zms)dzms−h
2

h
2∫

 (4) 

 
 Eq. (4) shows that the distance of neutral surface from the middle surface   (Δ)  is zero for ho-
mogeneous isotropic plates. 
 
22.2 Governing equations  

According to the classical plate theory and physical neutral surface concept, the displacement 
components of a material point within the plate domain in Cartesian coordinates system can be 
written as: 
 

    

U1(x,y,zns) = ψ1(x,y) − znsw,x

U2(x,y,zns) = ψ2(x,y) − znsw,y

U3(x,y,zns) = w(x,y)

 (5) 

 
where   ψ1,ψ2  and w  are the displacements of neutral surface of FG plate along the   x,y  and  zns  

coordinate directions, respectively. 
 Substituting Eqs. (5) into linear strain–displacement relationship, kinematic equations are 
obtained as: 
 

    ε = ε0 + znsε1  (6) 
where 
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 (7) 

 
 The constitutive relations of the plate in the plane stress state are expressed as [25]: 
 

   σ = Qε  (8) 
where 
 



554      H. Ghassemi et al / Boundary element method applied to the Bending Analysis of Thin Functionally Graded Plates  �

Latin American Journal of Solids and Structures 10(2013) 549 – 570 
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⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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 (9) 

 
 The parameter  ν  is Poisson ratio and it is assumed to be constant through the thickness of 
the FG plate [1, 5, 19, 20, 27]. By using the principle of minimum total potential energy, the 
equilibrium equations of plate are derived as follows: 
 

    

δψ1 : Nxx,x + Nxy,y = 0

δψ2 : Nxy,x + Nyy,y = 0

δw : Mxx,xx + 2Mxy,xy + Myy,yy + F = 0

 (10) 

 
where  δ  represents the variational symbol;    F = F(x,y)  is the mechanical load per unit area, and 

 N  and  M  are resultant forces and resultant moments, respectively, which are defined by the 
following expressions 
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 Substituting Eq. (6) into Eq. (9) and the subsequent results into Eqs. (11), gives the stress 
resultants in term of the displacements as: 
 

    N = Aε
0

; M = Dε
1  (12) 

 
where 
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and 
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 The matrices A  and D  are extensional and bending stiffness matrices. Eq. (12) reveals the 
fact that there is no stretching-bending coupling matrix, and subsequently, the coupling in the 
constitutive equations when the physical neutral surface concept is utilized. 
Finally, the bending equation of the FG plate may be obtained upon substitution of Eqs. (12) 
into Eq. (10) as below: 
 

   
∇2∇2w =

F
D

 (15)

 
where ∇2  is known as the Laplace operator, and the constant D  is the equivalent flexural rigi-

dity of the FG plate which is simplified as D
m

= Emh3

12(1−ν2)
 and D

c
= Ech

3

12(1−ν2)
 for a homogeneous 

fully metallic and ceramic plates, respectively. 
 Utilizing the boundary element method, the bending equation (15) will be solved for stress 
analysis of FG plates in the next section. 
 
33. BOUNDARY ELEMENT FORMULATIONS  

3.1. Fundamental solut ion 

Considering Eq. (15), the boundary element formulation is now well established [13]. Let us con-
sider a point source placed at point P(x,y)  of the  xy -plane as shown in Fig. 2a. Its density at 
Q(ξ,η)  can be expressed by Dirac delta function as follows: 
 

    f (Q) = δ(Q − P)  (16) 
 
 
 

 
Figure 2   Geometry and modeling of boundary domain: (a) Coordinate system, (b) Modeling of the boundary with superparametric 

elements, (c) Definition of nodal-point location, relative distance and relative angle. 
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 The deflection   v(Q,P)  produced at point  Q  satisfies the governing equation as follows: 
 

    ∇
4v = δ(Q − P)  (17) 

 A singular particular solution of Eq. (17) is called the fundamental solution of the governing 
equation (15). Applying Green’s second identity for  w  and    ∇

2v  yields: 
 

   
w∇4v − ∇2w∇2v( )dΩ

Ω∫ = w ∇2v( )
,n

− ∇2vw,n( )dΩ
Γ∫  (18) 

 
where n  is normal to the boundary  Γ . Using Eq. (18) and following Ref. [17], the fundamental 

solution can be obtained as 
    
v =

1
8π

r 2 lnr . 

 The governing equation (15) can be written in the new form by introducing a potential func-
tion as: 
 

    
∇2ϕ =

F
D

 (19) 

 
where 
 

    ϕ = ∇2w  (20) 
 
 By considering Eqs. (17), (19) and (20), and also using Green’s second identity for �  and � , 
the representation of integral equation (18) can be rewritten as follows: 
 
 

    
εP wP = v F

D
dΩ

Ω∫ + w ∇2v( )
,n

− ∇2vw,n + ϕv,n − vϕ,n( )dΓ
Γ∫  (21) 

 
  
where   εP  is a coefficient which depends on the position of point  P . This coefficient for the 

smooth boundary is defined as follows [13]: 
 
 

    

εP =

1 forP inside Ω
1
2

forP on Γ

0 forP outside Ω

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

 (22) 

 
 It should be noted that the integral representation of the solution (21) involves the following 
domain integral: 
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v F

D
dΩ

Ω∫ . (23) 

 
 Although the integrand 

 
v F

D
 is known, the fact that domain integral need to be evaluated 

spoils the pure boundary character of the method. In the present work, to overcome this draw-
back, a novel procedure is introduced by converting the domain integral (23) to a boundary inte-
gral. To this end, an auxiliary function called v  is assumed by satisfying the following equation: 
 

  
∇4v = F

D
 (24) 

 
 Then, Green’s second identity for  v  and   ∇

2v  is written as: 
 

    
v∇4v − ∇2v∇2v( )dΩ

Ω∫ = v ∇2v( )
,n

− ∇2v v,n( )dΓ
Γ∫  (25) 

 
 Now, by substituting Eq. (24) into Eq. (25) and using of Green’s second identity for    ∇

2v  and
 v , the following equation can be obtained: 
 

    
v F

D
dΩ

Ω∫ = εPvP + v ∇2v( )
,n

− ∇2v v,n + ∇2v v,n − v ∇2v( )
,n( )dΓ

Γ∫  (26) 

 
 It is seen that the domain integral (23) has been successfully converted to the above boundary 
integral. Finally, substituting Eq. (26) into Eq. (21) yields: 
 

    
εP wP = εPvP + v ∇2v( )

,n
− ∇2v v,n + ∇2v v,n − v ∇2v( )

,n
+ w ∇2v( )

,n
− ∇2vw,n + ϕv,n − vϕ,n( )dΓ

Γ∫  (27) 

 
 In Eq. (27), the quantity  ϕ  and its derivation   ϕn  are unknown. To specify these quantities, a 

new potential function called u  and satisfied the following Laplace equation is assumed. 
 

    ∇
2u = δ(q − P)  (28) 

 
In the well-known procedure as expressed in Ref. [13], the fundamental solution  u  can be de-

rived as 
    
u = 1

2π
lnr . 

 By virtue of Eqs. (19) and (28), Green’s second identity for  ϕ  and u  can be written as: 
 

    
εP ϕP = u F

D
dΩ

Ω∫ + ϕu,n − uϕ,n( )dΓ
Γ∫  (29) 

 
 It can be seen that the integral representation of the solution (29) involves the domain inte-
gral. To convert this domain integral to a boundary integral, similar process that was presented 
for Eq. (23) were carried out.  
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 An auxiliary function by satisfying the following Poisson equation is considered as: 
 

   
∇2u = F

D
 (30) 

 
 Applying Green’s identity for the functions u  and u  that satisfies Eq. (30) yields: 
 

    
u F

D
dΩ

Ω∫ = εPuP + uu,n − u u,n( )dΓ
Γ∫  (31) 

 
 Substituting Eq. (31) into Eq. (29) gives: 
 

    
εP ϕP = εPuP + uu,n − u u,n + ϕu,n − uϕ,n( )dΓ

Γ∫  (32) 

 
 Thus, the bending equation of FG plates (15) is reformulated into two dependent boundary 
integral solutions (27) and (32). 
 
33.2 The BEM with superparametr ic boundary elements 

In the present work, superparametric elements are employed to discretize the plate boundary [13]. 
The boundary  Γ  is discretized into  N  superparametric elements (see Fig. 2b), which are num-
bered in the counter-clockwise sense. The geometry is modeled by a parabolic arc (two degree 
polynomial), whereas the boundary quantity is assumed to be constant along the element and 
equal to its value at the nodal middle point. The discretized form of Eqs. (27) and (32) are ex-
pressed for a given point  pi  on  Γ  as: 

 

    

1
2
wi = 1

2
v i + v q ∇2v( )

,n

iq
ds j

Γj∫j=1
N∑ − v,n

q ∇2v( )iq ds j

Γj∫j=1
N∑

+ ∇2v( )q v,n
iq ds j

Γj∫j=1
N∑ − ∇2v( )

,n

q
viq ds j

Γj∫j=1
N∑

+ wj ∇2v( )
,n

iq
ds j

Γj∫j=1
N∑ − w,n

j ∇2v( )iq ds j

Γj∫j=1
N∑

+ ϕ j v,n
iq ds j

Γj∫j=1
N∑ − ϕ,n

j viq ds j

Γj∫j=1
N∑

 (33) 

  

    

1
2
ϕi = 1

2
ui + uiqu,n

q ds j

Γj∫j=1
N∑ − u,n

q u,n
iq ds j

Γj∫j=1
N∑

+ ϕ j u,n
iq ds j

Γj∫j=1
N∑ − ϕ,n

j uiq ds j

Γj∫j=1
N∑

 (34) 

 
where 

  
Γj  is the segment on which the  j

th  node is located and over which integration is carried 

out. Also,  pi  is the nodal point of the  ith  element which remains constant, while the point  q  
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varies over the  j
th  element (see Fig. 2b). Definition of all parameters presented in Eq. (33) and 

(34) are expressed as follows: 
 

   
( ),n

q
= ( ),x

q
nx + ( ),y

q
ny    ,   

    
( ),n

iq
= ( ),riq

iq ∂riq
∂n

= ( ),riq
iq

cosαiq  (35a) 

   
riq

2 = (xq − xi)
2 + (yq − yi)

2    ,   
  
n = nxi + ny j  (35b) 

     

xq = Sx , yq = Sy

S(μ) = 1
2 μ(μ −1) 2(1 − μ2) μ(μ + 1)⎡

⎣⎢
⎤
⎦⎥

−1 ≤ μ ≤ 1

xT = xj1 x j2 x j3{ } , yT = yj1 yj2 yj3{ }
 (35c) 

 

where 
  
αiq  is the angle between the vector 

 
riq  and the unit vector n  which is normal to the 

boundary at point  q  and the  S, x  and  y  are the shape function and elemental position vectors, 
respectively.  
Equations (33) and (34) are applied consecutively for all the nodes    pi (i = 1...N )  yielding two 

systems of  N  linear algebraic equations, which are arranged in matrix form as follows: 
 

   
C1

⎡
⎣

⎤
⎦ w{ } − C2

⎡
⎣

⎤
⎦ w,n{ } + C3

⎡
⎣

⎤
⎦ n{ } − C4

⎡
⎣

⎤
⎦ n,n{ } = − C5{ }  (36) 

  

   
C6

⎡
⎣

⎤
⎦ n{ } − C7

⎡
⎣

⎤
⎦ n,n{ } = − C8{ }  (37) 

 
These two systems of equations are coupled and should be simultaneously solved. Prior to solving 
them, it is necessary to separate the unknown from the known quantities which is possible by 
applying the plate boundary conditions. 
 
33.3. Appl icat ion of bboundary condit ions 

The functionally graded plate boundary can be any combination of clamped, simply supported 
and free boundary conditions. These boundary conditions which are developed from the principle 
of minimum total potential energy can be expressed in terms of normal and tangential coordi-
nates as follows: 
 

Clamped: 
  
w = w,n = 0  (38a) 

Simply supported:   w = Mn = 0  (38b) 

Free: 
  
Mn = Qeff = 0  (38c) 

 
where  Mn  and 

 
Qeff  are the resultant normal moment and the effective shear force, respectively, 

which are defined as: 
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M

n
= −D ∇2w −(1−ν)(

1
R

w
,n

+w
,tt
)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
 (39a) 

  

    
Q

eff
= −D ∇2w

,n
−(1−ν)(

1
R

w
,tt

+w
,ntt

)
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
 (39b) 

 
where the Laplacian has the form: 
 
 

  
∇2 = ∂2

∂n2 + 1
R

∂
∂n

+ ∂2

∂t2  (40) 

 
 
in which  R  is the radius of curvature of boundary. By using Eq. (20), these boundary conditions 
can be simplified for  j

th  node as follows: 
 
 

Clamped: 
  
w j = w,n

j = 0  (41a) 

Simply supported: 
    
wj = 0 and ϕ j =

1−ν
Rj

w
,n
j  (41b) 

Free: 
    
ϕ

,n
j = (1−ν)(

1
Rj

w
,tt
j −w

,ntt
j ) and ϕ j = (1−ν)(

1
Rj

w
,n
j +w

,tt
j )  (41c) 

  
 

The known boundary conditions are applied at nodal points, and then Eqs. (36) and (37) are 
rearranged according to unknowns nodal parameters. The prescribed quantities are multiplied by 
their influence vectors and added to the right-hand side, and the unknowns and their influence 
vectors are placed on the left-hand side, thus leading to two standard sets of linear algebraic 
equations in terms of unknown nodal values as: 
 

 C9[ ] X{ } + C10[ ] Y{ } = C11{ }  (42a) 
  

 C12[ ] X{ } + C13[ ] Y{ } = C14{ }  (42b) 
 
which can be solved for unknown boundary values at each boundary point. Once these unknown 
boundary values have been obtained, it is possible to calculate any of the required internal values, 
using Eqs. (27) and (32). Moreover, the partial derivatives of  w  and  ϕ  can be evaluated at 

points within domain by direct differentiation of Eqs. (27) and (32) for     εP
= 1 . 
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44  NNUMERICAL RESULTS AND DISCUSSION 

In order to present the results of developed boundary element method, the three geometrical 
shapes for a functionally graded plate including, rectangular, circular and elliptic shapes 
with/without hole are considered. The geometry and dimensions of mentioned plates are given in 
Fig. 3. 

 
Figure 3   Geometry and dimensions of the FG plates: (a) rectangular, (b) annular, (c) elliptic. 

 

44.1 Comparative and convergence studies 

To validate the present formulation and ensuring the accuracy and convergence of the proposed 
boundary element method, several bending analyses of thin plates are first solved and results are 
compared with those that are available in the literature for isotropic homogenous annular and 
rectangular plates [25] and functionally graded circular plates [19] subjected to transverse uni-
formly distributed load. Also, the study of convergence is implemented by increasing the bounda-
ry elements for the plate. 
 For the transverse uniformly distributed load, the auxiliary functions v  and u  presented in 
Eqs. (26) and (34) are given as follows: 
 

v = F
D

x2 + y2

8

⎛
⎝⎜

⎞
⎠⎟

2

 (43a) 

  

u =F
D

x2 +y2

4
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
 (43b) 

 
 In Table 1, the non-dimensional maximum deflection and resultant moments obtained from 
the present BEM are compared with the exact closed form solution obtained by Ventsel and 
Krauthammer [25] for bending analysis of isotropic simply supported rectangular plates with dif-
ferent aspect ratios (L / W ) . The plate has been modeled in two cases with 20 and 40 boundary 
elements. From this table, it is observed that the present BEM converges exactly when the num-
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(c) (b) 
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ber of boundary elements increases. Furthermore, in Table 2, the non-dimensional maximum de-
flection of an isotropic annular plate with different boundary conditions obtained from the pre-
sent BEM are compared with those obtained from the exact solution given by Ventsel and 
Krauthammer [25]. The annular plate with a clamped (or simply) support at the inner edge 

  (r = Ri )  and free at the outer edge   (r = Ro )  is named as clamped (or simply supported)-free an-
nular plate and vise versa. It is seen from Table 2 that the results of proposed BEM are in good 
correlation with the exact results as maximum discrepancy is about 0.59 % when 300 boundary 
elements have been used. 
 

Table 1   Convergence test of the non-dimensional maximum deflection and resultant moments for isotropic simply supported 
rectangular plates. 

 
Aspect 
ratio 

  (L / W )  
Method   

w* = w D
FL4  

   
M

xx
* = Mxx

FL2
 

   
M

yy
* =

Myy

FL2  

1 
Exact solution [25] 0.2600 0.0479 0.0479 
Present BEM-40* 0.2600 (0.00%)† 0.0479 (0.00%) 0.0479 (0.00%) 
Present BEM-20 0.2612 (-0.46%) 0.0480 (0.00%) 0.0480 (-0.20%) 

2 
Exact solution [25] 0.0405 0.0116 0.0254 
Present BEM-40 0.0405 (0.00%) 0.0116 (0.00%) 0.0254 (0.00%) 
Present BEM-20 0.0408 (-0.74%) 0.0116 (0.00%) 0.0255 (-0.39%) 

3 
Exact solution [25] 0.0097 0.0045 0.0132 
Present BEM-40 0.0097 (0.00%) 0.0045 (0.00%) 0.0132 (0.00%) 
Present BEM-20 0.0097 (0.00%) 0.0045 (0.00%) 0.0133 (-0.75%) 

4 
Exact solution [25] 0.0032 0.0024 0.0077 
Present BEM-40 0.0032 (0.00%) 0.0024 (0.00%) 0.0077 (0.00%) 
Present BEM-20 0.0032 (0.00%) 0.0024 (0.00%) 0.0077 (0.00%) 

*The number of boundary elements used in the present BEM 

†The discrepancy 
 

Table 2   Convergence test of the non-dimensional maximum deflection 
4

64*( )
o

w D
FR

w =  for isotropic annular plates with various  

boundary conditions. 
 

Annular-
ity 
( / )o iR R  

Method 
Boundary conditions 

clamped-free simply supported-free free-clamped 
free-simply support-
ed 

2 
Exact solution [25] 0.337 3.996 0.549 5.284 
Present BEM-300 0.335 (0.59%) 4.012 (-0.40%) 0.546 (0.54%) 5.294 (-0.18%) 
Present BEM-150 0.331 (1.78%) 4.081 (-2.12%) 0.539 (1.82%) 5.336 (-0.98%) 

4 
Exact solution [25] 0.950 4.862 2.626 7.631 
Present BEM-300 0.951 (-0.10%) 4.889 (-0.55%) 2.615 (0.41%) 7.643 (-0.15%) 
Present BEM-150 0.943(-0.73%) 4.970 (-2.22%) 2.604 (0.83%) 7.703 (-0.94%) 
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Another comparative study for evaluation of maximum deflection between the present BEM and 
exact solution developed by Reddy et al. [19] is carried out in Table 3 for FG circular plates with 
different power of FGMs and boundary conditions. The material properties of titanium-Zirconica 
FG circular plate 

    (Em
/E

c
= 0.396, ν = 0.288)  are taken from Ref. [19]. Also, the non-dimensional 

deflection has been considered as 
  
w* = 64wDc

FRo4
 which was defined by Reddy et al. [19]. It is seen 

from this table that both results for simply supported FG circular plate are the same for all pow-
er of FGMs when 100 boundary elements are used, although errors below 1.4% are observed be-
tween results of clamped FG circular plates in this case. This table also shows that a better con-
vergence for clamped FG circular plate is achieved when 200 boundary elements is employed as 
maximum discrepancy reduces to 0.34 % in this case. This comparison study verifies the validity 
of functionally graded classical plate theory based on the physical neutral surface concept. More-
over, the stress distribution 

    (σrr
* = σrrDc

FD
)  related to the present problem for clamped FG plate has 

been modeled by the present boundary element method for checking convergency that is present-
ed in Fig.4. This figure shows the good accuracy for stress distribution when a few number of 
boundary elements have been employed. Finally, the three comparative studies show that the 
results obtained from the proposed BEM agree well with exact results of plates with straight and 
curved simply support edges. The numerical results presented in the next section have been calcu-
lated with maximum number of boundary elements after performing the convergence study. 
 
 
 

Table 3. Convergence test of the non-dimensional maximum deflection 
  
(w* = 64 w Dc

FRo
4 )  for functionally graded clamped and 

simply supported circular plates with different power of FGMs. 
 

Boundary 
conditions 

Method 
Power of FGM ( )n  

0 2 4 6 8 10 105 

Clamped 

Exact solution [19] 2.525 1.388 1.269 1.208 1.169 1.143 1.000 

Present BEM-200 
2.518 
(0.27%) 

1.384 
(0.28%) 

1.265 
(0.31%) 

1.204 
(0.33%) 

1.166 
(0.25%) 

1.139 
(0.34%) 

0.997 
(0.30%) 

Present BEM-100 
2.4953 
(1.17%) 

1.3718 
(1.16%) 

1.254 
(1.18%) 

1.1913 
(1.38%) 

1.1554 
(1.16%) 

1.1292 
(1.20%) 

0.988 
(1.20%) 

Simply supported 

Exact solution [19] 10.368 5.700 5.210 4.958 4.800 4.692 4.106 

Present BEM-100 
10.368 
(0.00%) 

5.700 
(0.00%) 

5.210 
(0.00%) 

4.958 
(0.00%) 

4.800 
(0.00%) 

4.692 
(0.00%) 

4.106 
(0.00%) 

Present BEM-50 
10.342 
(0.25%) 

5.686 
(0.25%) 

5.197 
(0.25%) 

4.946 
(0.24%) 

4.789 
(0.23%) 

4.680 
(0.25%) 

4.096 
(0.24%) 
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(a) (b) 

 

Figure 4   Convergence test of the non-dimensional maximum stress 
    (σrr

* = σrrDc

FD
)  for functionally graded clamped circular plates 

  (n = 0.5) : (a) stress distribution through the radial direction, (b) stress distribution through the thickness. 

 
  

4.2 Case studies 

In order to obtain new results, it is assumed that the functionally graded plate is made of a mix-
ture of Aluminum   (Em = 70GPa)  and Alumina   (Ec = 380GPa)  with constant Poisson ratio  (0.3)  
[11]. The mechanical load is assumed to be uniform in spatial domain. 
 

  
(a) (b) 

 
Figure 5   Non-dimensional deflection   w*  along the radial direction of FG annular plate with different boundary conditions for various 

powers of FGM
  

R0
Ri
= 2( ) : (a) clamped-free, (b) free-clamped. 
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(a) (b) 

 
Figure 6   Non-dimensional radial resultant moment   Mrr

*  along the radial direction of FG annular plate with different boundary 

conditions for various powers of FGM 
  

R0
Ri
= 2( ) : (a) clamped-free, (b) free-clamped. 

 
 
 

  

(a) (b) 
 

Figure 7   Non-dimensional tangential resultant moment   Mtt
*  along the radial direction of FG annular plate with different boundary 

conditions for various powers of FGM 
  

R0
Ri
= 2( ) : (a) clamped-free, (b) free-clamped. 

 
In Figs. 5-7, the variation of non-dimensional transverse deflection

  
(w* = 64 w Dc

FRo
4 ) , radial and tangen-

tial resultant moments 
  
( Mrr

* = Mrr Dc

FRo
2D

, Mtt
* = Mtt Dc

FRo
2D

)  are plotted along the radial direction of FG annular 

plate, respectively. It is assumed that the annular FG plate with different power of FGMs can 
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have two mixtures of clamped and free boundary conditions at inner and outer edges. Fig. 5 re-
veals that fully metallic and fully ceramic annular plates have the maximum and minimum value 
of transverse deflection, respectively. Also, the deflection of functionally graded annular plates 
occurs between those of full-metal and full-ceramic plates. This event is due to the fact that the 
stiffness of the metal is lower than that of ceramic so the stiffness of FG plate increases by in-
creasing the power of FGM from zero (full-metal) up to the maximum value for n → ∞  (full-
ceramic). Related with the variation of non-dimensional radial and tangential resultant moments 
along the radial direction of FG annular plate, Fig. 6 and 7 show a similar trend as in Fig. 5, 
namely that for the considered FG plate deflection, the resultant moments of FG annular plates 
(in absolute sense) decrease with the increase of the power of FGMs. It is worth noting that the 
tangential resultant moment of free-clamped FG annular plates with any power of FGMs are zero 
around r / Ro = 0.85 . Finally, Figs. 5-7 show that free-clamped FG annular plate has smaller deflec-
tion and absolute resultant moments in comparison with clamped-free FG annular plate. In fact, 
the more length clamped constraint at the edges increases the more stiffness of the annular plate, 
which results in a smaller deflection and resultant moments. 
 Through the thickness distribution of non-dimensional normal stress 

    (σrr
* = σrrDc

FD
)  of free-

clamped FG annular plate related to the present example at   r / Ro = 0.75  is shown in Fig. 8. As it 
can be seen from this figure, unlike the homogeneous plates  (n = 0) , the normal stress of FG plates 
has not vanished at the middle plane. In fact, the mentioned stress is equal to zero at neutral 
surface which is located at the distance of Δ  from the middle surface. 
The variation of non-dimensional transverse deflection, radial and tangential resultant moments 
along semi-minor and semi-major axes of FG elliptic plates with free-clamped boundary condi-
tions are illustrated in Fig. 9. 
 
 

 

 
Figure 8   Non-dimensional normal stress σ rr

*  through the thickness of free-clamped FG annular plate for various powers of FGM 
R0
Ri
= 2, r

R0
= 3

4( ) . 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
Figure 9   Non-dimensional deflection   w*  and resultant moments   Mrr

*, Mtt
*  along semi-major (a, c, e) and semi-minor axes (b, d, f) of 

free-clamped FG elliptic plate with various powers of FGM 
   

Rx

Ry
= 2, Rx

Rh
= 4( ) . 
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The primary inference drawn from Fig. 9 is that the deflection and absolute resultant moments of 
FG elliptic plates decrease with the increase of the power of FGM. Moreover, it is found that the 
behavior of resultant moments along semi-minor and semi-major axes of FG elliptic plates is not 
similar. By focusing on values of the resultant moments along semi-major axis of free-clamped FG 
elliptic plates presented in Figs 9c and 9e, it can be found that regardless of the power of FGM, 
the resultant moments are zero near clamped edge. 
 
55 CONCLUDING REMARKS 

In the present article, a pure boundary element method has been developed for bending analysis 
of functionally graded plates subjected to the transverse load. The material properties have been 
assumed to vary through the thickness as a power law distribution. Based on the classical plate 
theory and physical neutral surface concept, the equilibrium equations have been derived. A di-
rect approach based on Green’s identity has been used to formulate boundary element method. 
By introducing a novel approach and using auxiliary functions domain integrals which arose from 
distributed loads are transformed into boundary integrals. The bending results have been ob-
tained for a functionally graded plate with various geometrical shapes including, straight and 
curved boundary domain. Several comparison studies are investigated to reveal accuracy of the 
present formulation and procedure. Furthermore, the effects of power of FGM and geometric pa-
rameters together with various combinations of boundary conditions on the deformation and 
stress of functionally graded plates have been discussed in detail. Finally the following main re-
sults can be concluded: 

1)  The obtained results from the present BEM agree well with exact results of plate with 
straight and curved simply support edges. 

2) The functionally graded classical plate theory based on the physical neutral surface concept 
leads to accurate results. 

3) Fully metallic and fully ceramic annular plates, respectively, have the maximum and mini-
mum value of non-dimensional deflection and absolute resultants moments. Furthermore, 
these quantities decrease with the increase of power of FGM. 

4) The free-clamped FG annular plate has smaller deflection and absolute resultant moments in 
comparison with clamped-free FG annular plate. 

5) Unlike the homogeneous plates, for which their normal stress is vanished at the middle sur-
face, normal and stress of functionally graded plate is equal to zero at neutral surface. 

6) The resultant moments along semi-major axis of free-clamped FG elliptic plates are zero near 
clamped edge. 
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