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We present an accurate fast method for the computation of potential internal axisym-
metric flow based on the boundary element technique. We prove that the computed
velocity field asymptotically satisfies reasonable boundary conditions at infinity for
various types of inlet/exit. Computation of internal axisymmetric potential flow is an
essential ingredient in the three-dimensional problem of computation of velocity fields
in turbomachines. We include the results of a practical application of the method to
the computation of flow in turbomachines of Kaplan and Francis types.
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1 INTRODUCTION

The intrinsic three-dimensional problem for internal potential incom-
pressible flows past objects in axisymmetric passages, such as flows
past blades of turbomachines, can be solved by superposition of
several flows: (a) axisymmetric flow in the passage; (b) constant whirl
flow (rvy =const) in the passage; (c) flow induced by vortex filaments
on the blades; (d) flow induced by distributed sources on the boundary
(including the surfaces of blades) that compensates for the nonzero
normal components of velocity at the boundary of flows (a), (b), and
(c). This paper is devoted to the problem of computing flow (a).
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56 A. GOKHMAN AND D. GOKHMAN

Computation of flow (a) is also needed for quasi-three dimensional
design of turbomachine blades.

In (3] the authors applied a finite element technique to axisymmetric
flow. The finite element scheme was formulated using curvilinear
coordinates that follow the boundary and closed form integration was
used to compute the Galerkin integrals. The flow was assumed to be
potential and the problem was treated as a boundary value problem
for the Stokes stream function. The use of curvilinear coordinates and
closed form integration was shown to provide significantly higher
accuracy than comparable ordinary Cartesian finite element schemes
and can be applied to viscous laminar or turbulent flows using a
generalization of the Galerkin method formulated in [2).

Under the assumption that the flow is potential it is advantageous
to use a boundary element method, because the boundary has
codimension 1. With a comparable mesh size, boundary element
methods lead to much smaller systems than other methods, such as
finite element or finite difference, which involve a higher dimensional
mesh covering the whole passage.

In [1} a boundary element method was formulated for internal
potential axisymmetric incompressible flow in a passage with a
cylindrical draft tube and applied to the simple problem of external
flow past a sphere. The boundary elements and the vorticity distribu-
tion were assumed to be piecewise linear and the boundary condition
that the normal velocity is zero (v, =0) was imposed at the midpoints
of the elements.

In this paper we avoid the under-determinacy of the system due to
boundary conditions v, =0 being imposed at midpoints of elements.
This is done by imposing the boundary conditions v, = 0 at the vertices
of the elements. In this situation it becomes necessary to perform a
more careful computation of velocity at a vertex induced by the
adjoining elements. While in general, the geometry of the elements is
assumed to be piecewise linear, the geometry of one or two elements
adjoining a given vertex is represented by cubic splines (using Hermite
interpolant polynomials). The vorticity distribution is assumed to be
piecewise linear throughout.’

VIn principle, to achieve greater accuracy at the cost of roughly doubling the size of the
problem the vorticity distribution may be represented by Hermite splines throughout.
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The above method has been applied to the practical cases of
axisymmetric flow in Francis and Kaplan turbine passages with
conical and cylindrical draft tubes.

2 FORMULATION OF THE PROBLEM

‘We consider internal fluid flow through an axisymmetric passage. We
use cylindrical coordinates 7,0,z, where the z axis is the axis of sym-
metry of the passage. We make the following assumptions about the
flow.
Hypotheses for the flow V:

(i) incompressible,i.e. V-7 =0,

(if) potential, i.e. there exists a scalar potential ¢ with ¥ = Vo,
(iil) axisymmetric, i.e. ¥ = ¥(r, z),

(iv) irrotational, i.e. the circumferential component of velocity vy =0.

With practical applications to hydraulic turbomachinery in mind we
make the following assumptions about the geometry of the passage.
The word domain means a connected open set.

Hypotheses for the geometry of the passage:

(v) The passage is a domain of revolution in R? generated by a simply
connected domain Q C {(r,z) € R* r > 0}.

(vi) The boundary of the passage is the union of two disjoint C'
surfaces of revolution. The inner surface represents the crown and
the outer surface represents the bend.

(vii) The inlet and the exit are either (see Fig. 1)

(a) radial, 1.e. for sufficiently large » the boundary of the passage is
formed by two parallel planes extending to infinity as r — co.

(b) or axial, 1.e. for sufficiently large z (or -z) the boundary of the
passage is formed by a vertical circular cylinder, two such
cylinders, or a vertical cone extending to infinity as z — =+ oo.
Note that the case of a cone was not considered in [1].

Governing equation Since the flow is potential and incompressible,

V%p =0. In cylindrical coordinates, using axisymmetry we obtain

o 18p Py 0 ) Op v_a_cp
0z2  ror  or ’ "Tert P8z
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10
Radial Cylindrical Annular Conical

FIGURE 1 [Inlet/outlet types.

Boundary conditions At the boundary of the passage we have the
normal component of velocity v, = ¥- /2 = 0. At the inlet and the exit
we impose the simplest possible boundary conditions. The exact form
depends on the type of inlet/exit (see hypotheses for the geometry of
the passage above). In the radial case we require a uniform radial flow
at infinity. In the case of a cylinder or two cylinders we require a
uniform vertical flow at infinity. In the case of a cone we require a
uniform central flow with respect to the vertex of the cone.

In each case we can determine the required magnitude of velocity by
dividing the flux ¢ by the appropriate cross-sectional area orthogonal
to the flow v. In the radial case this area is a cylinder. For a cylinder
each cross-section is a disk. For two cylinders each cross-section is an
annulus. For a cone each cross-section is a spherical cap. The final
formulas for the boundary conditions on ¥ are given below (notation
for asymptotic formulas is explained in detail in Section 3.3):

(a) Radial with distance between the planes by: v, < v, ~ xq/(27nrby)
as r — oo between the planes forming the passage;

(b) Cylinder with radius ro: v,— 0, v, — £q/(7r3) as z— oo inside
the cylinder;

(¢) Two cylinders with radii 0 <ry <rg: v,— 0, v, — £q/7(r3 — r?) as
z — =4 0o between the cylinders;

(d) Cone with vertex (0, z,) and generatrix r=(z —z,)tana: v, ~ +q/
(sin® ap?), as p— oo, where p= |(r, z — z,)| inside the cone.

3 INTEGRAL EQUATION FOR VORTICITY ON THE BOUNDARY

The boundary element method is based on the idea of using distributed
sources/sinks or vorticity of a priori unknown intensity on the
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boundary to generate potential flow. In this work, in order to easily
satisfy the boundary conditions at the inlet and exit, we use distributed
circular vortex filaments. In this section we reformulate the problem in
terms of the distributed vortex intensity .

Taking into account the symmetry of the problem we assume that
the distributed vortex intensity v does not depend on 8, i.e. v=~(r, 2).

To derive the equation for v and to specify the general boundary
conditions for v, we introduce the following notation. On the bound-
ary let v, denote the tangential component of velocity inside the
passage and v. the tangential component of velocity outside the
passage.

3.1 Induced Velocity

The bounding surfaces are generated by C' curves which can be
parametrized by arclength £. Since the vortex intensity is axisymmetric,
we can write it as a function of £ too. We start by determining the
induced velocity due to a circular vortex filament of constant linear
vortex density.

THEOREM 3.1  The induced velocity at a test point X due to a circular
vortex filament z =z, r = ro with intensity -y is

V= N

w0 [ 7(6)  p(6)
wh S

where

7(0) = (—sin b, cos b, 0), p(8) = X, — (rocos 8, rgsin b, zp).

Proof By the Biot—Savart law, the velocity at X. induced by an
infinitesimal linear vorticity dv at X is

a“; = 'l" dpy__i p ’
At |p|

where p = %, — X. In our case dy = ~y 7ro d6, where 7 is the unit vector
in the direction of d~. Integrating around the circular filament, with 7
tangent to the circle, gives the desired result.
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Now we integrate along the generatrices of the bounding surfaces of
revolution to obtain the total induced velocity at a test point. For
convenience we introduce an expression for the square of the distance
to the test point: R(r, z,8) = |p|*.

THEOREM 3.2 The induced velocity at a test point X, = (0,7, z.) due
to axisymmetric distributed surface vorticity ~(£) on the bounding
surfaces of revolution is

1 2 sin @
vy =— Or(8)(ze — z(£ / —————————d@dé,

. yv()()(c (0) R0 007"

2n
vy = )/ r(€) — resin 93/2 dode, (2)
R(r(£),2(4),6)
vg = 0,
where
R(r,z,0) = 1} + 12 = 2rrsin 0 + (z — 27, (3)

L denotes the union of curves that generate the boundary, and £ is
arclength along these curves.

Proof The direction vector to a test point (0, r., z.) is

p=(0,r,2z.) — (r(€)cos 8, r(¢)sin 0, z(¢))
= (=r(€)cosb,r. — r(£) sind, z, — z(£)).

Taking square of the magnitude we obtain the required expression for

R. By Theorem 3.1, the induced velocity at (0, r, z.) due to distributed
vortices on the boundary is

_ 1
e RO

2m (o} _ _ i —
></ (—sinf,cos8,0) x (—r(f) cos b, rc3 2r(é) sin 6, z, Z(e))deé.
0 R(r(0),2(£), )"

We take the cross product in the numerator of the integrand. Since the
x coordinate of the test point is zero, by symmetry, the x component
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of v is zero, so vy =0. Furthermore, we can ignore the x component of
the integrand and obtain v, by integrating the y component.

3.2 Boundary Conditions and the Integral Equation for Vorticity

The integral equation for +y is obtained from the formulas for induced
velocity and boundary conditions at the walls.

At the wall an obvious boundary condition is the absence of flow
across the wall. However, using the condition v, =0 directly leads to a
Fredholm integral equation of the first kind, which is unsuitable due
to small diagonal entries in the matrix for the numerical solution [1].

THEOREM 3.3  The boundary condition v,=0 is equivalent to v, =",
where v, is the tangential component of velocity inside the wall.

Proof Consider the problem for potential flow outside the passage
with boundary conditions: v} = 0 at the passage walls, where v is the
tangential component of velocity just outside the wall; and v =0 at
infinity. This problem has a unique solution ¥ = 0, i.e. the outside of
the passage is a stagnation zone. In particular, v, =0 (see e.g. [1,5]).

It is well known that the discontinuity of the tangential component
of velocity across a vortex sheet is precisely the vortex density, i.e.
v = v; — vi (see e.g. [5]). To see this, integrate the velocity field along a
thin closed contour, the shape of a curvilinear rectangle following the
vortex sheet on opposite sides positioned orthogonally to the vortex
density field (see Fig. 2). The contribution of the short sides BC and
DA, transversal to the sheet, can be made arbitrarily small, since
velocity is bounded. The contribution of the long sides AB and CD
following the sheet is v.& — vih, where A is the arclength of AB (or
CD). Note that the two contributions have opposite signs, since the
contour goes in opposite directions on the two sides of the sheet. By
the Stokes theorem this is equal to the surface integral of the vortex

FIGURE 2 Contour of integration around a vortex sheet.
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current, i.e. v.h — vih = ~vh. Taking limit as 2 — 0 gives the desired
result v, — v} =~ and we see that the boundary condition v} =0 is
equivalent to v, =-.

THEOREM 3.4 Axisymmetric distributed surface vorticity ~v(£) on the
bounding surfaces of revolution satisfies a Fredholm integral equation of
the second kind

18— [ ~orte

o P {€:)(z(€:) — z(£)) sin & + 2’ () (r(£) — r(gc) sin 0)
X/O (r(0)? + r(€:)? — 2r(L)r(£) sin 6 + (z(&) — 2(£))?)*/? dede
(4)

where ¥ denotes the union of curves that generate the boundary, and
prime denotes differentiation with respect to arclength £ along these
curves.

Proof At each point (re, z;) =(r({), z(£:)) on the boundary we set
ur = (v, +v§)/2. Since by Theorem 3.3 y=v, and v} =0, we have
u,.=+/2. Therefore,

dr dz
%:azvr'f'azvz. (5)

Combining (5) and (2) gives the desired result.

3.3 A priori Conditions onVorticity

In general, v is a priori unknown and is obtained by solving the
integral equation (4). However, in the infinite parts of the domain,
namely at the inlet and exit, we impose fairly simple ~ distributions
and prove that the resulting velocity field asymptotically satisfies the
boundary couditions at the inlet and exit. We perform the asymptotic
analysis in several propositions for each of the cases of inlet/exit. The
various formulas for « are also collected in Theorem 3.14 below.

We begin with a brief explanation of asymptotic notation used in
what follows. We are interested in what happens as x — x,, where
X0 € R or xp = 0.
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(1) f=0(g) means that there exists a constant k such that for all x
sufficiently close to xo, we have | f(x)| < k|g(x)|.

(2) f~ g means that f/g— 1.

(3) f < g means that ffg — 0.

LEMMA 3.5 Suppose v =/r for r> £y on a horizontal plane z = z,.
Then as ro— oo, the components of the induced velocity v at the test
point (0,r., z.) are

v, = :}Iz—sgn(zC —z0)rt + 007,

- i.r_c+ o053, v =0.

Proof The horizontal plane can be parametrized by #(€) = £ for £ > £,

Let h,=z. — zo. By Theorem 3.2, with R as in (3), the components of
the induced velocity field are vy =0,

27 2r
), fyoh // sin 6 32d€d0, ), = // rcsm;j2 4edo.
t R(0,z,0)" R(¢, 20,0

We write R(/,zo,0) (see (3)) as a polynomial R=a+ bl +¢* with
coefficients

a=r}+h, b= —2r¢sind,
and integrate with respect to ¢ using the formulas (15) in the

Appendix:

V,ZM/ZWSmQT*dg vzzjﬁ’./zﬁ(T*—rcsineT*)dB
47(_ 0 0 Ll 47'(' 0 1 0 ?

where T} = limg_q, Ti(4) — Ti(6y), i=0,1, 1.

e L, fo—resing
O " B2+ rlcos?d R(l,20,0)'? )

1 2+ W2 — foresin @ .
Tf = 5—5— fe ¥ 5% orcls;n +resind .
h% +r2cos?0 \ R4y, z,0)"
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In other words,

27[' . . .
), = :y_g_hS i 51210 _(1- by —re s1n102 do,
A Jo h%:+ricos?d R(by, z,6)"/ ©)
) _E/ZW deo
: 4m 0 R(fo, Z0, 9)1/2 '
We expand R~ ' in a series in r; :

R(to,20,0) ™" = 7' [1 = 21T g sin 0 + r72(6 + 1)
=r; (1 + ;% sin 6) + O(r).

Since

(r7'4 — sin @) (1 + 7y sin ) = —sin @ + r; 4y cos? 6 + O(r;2),

_ yoh [*sin6 + sin® 0 — r; 4y sin O cos? 4
e /0 h2 + r2cos? 0 40+ 0(r:"),
2r
v, :ﬂ/ (r7! + 172y sin 0) A6 + O(r73).
47 0

Since those terms, that are odd with respect to 8 =0, do not con-
tribute to the integrals, we may rewrite

2w i 2
y, = Joh / SO 464 0,
0

" Anr? Jy o r72hE 4 cos? O
w [ 3
v = A rg do+ O(r7).

The result for v, follows immediately after integration with respect to 6.
To derive the desired result for v, we note that sin’@(r;2h2+
c0s26) ' = =1+ (1 + %) (17 + cos?8)™", where n = r;2h2. Evaluat-
ing the needed integral (see [4, 2.562.2])

/2” o 2 arctan _llcotd |7 _ 2
o MHeost il 4ep) T+ o Inl(1+2)"%
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we obtain

 ohe 21 + 7]/ 4
”‘4wz(‘*’ ) O

=% san(h)[1 + 72K 4 O(1?)

and the conclusion follows by expanding [1 + A2r;2]"/? in a series in ;2.

PROPOSITION 3.6  Suppose v =yo/r on the horizontal plane z =z, and
y= — ~yo/r on the horizontal plane z = z; = zoy + by > zo for ¥ > ry. Then as
ro— 00 the components of the induced velocity at the test point (0, r., z.)
satisfy (i) vp=0, (i) v, = O(r;?), and (i) if zo<z<z, then v, =
Yorg! + O(r?), and if z is outside the interval [zo, 2], then v, = O(r7?).
Proof The proof follows by the superposition principle applied to
the results of Lemma 3.5 for each of the two planes. The results for v,
and v, are obvious, whereas

Yo
2

and we observe that if zp <z <z, then sgn(z, — zg) — sgn(z, — z;) =2,
while if z ¢ [zo, z;], then sgn(z, — zp) — sgn(z. — z;) =0.

[sgn(ze ~ z0) — sgn(ze — z21)lrg! + O(r7?)

Vr =

COROLLARY 3.7 Under the assumptions of the above proposition, the

Slux through a cylinder of radius r. between the two planes is 2wyybo+
o@rsh).

PROPOSITION 3.8 Suppose v="ryy on a cylinder with radius ry for z >

zgor z < zo. Then as z.— too, the components of the induced velocity at
the test point (0,r.,zc) satisfy () v¢=0, (i) v, = O(z7?), and (i) if
re<ro, then v, = o + O(z7%), and if r¢ > ro, then v, = O(z7?).

c

Proof A cylindrical exit can be parametrized by r =rg, z(¢) = £ £ for
£ > £y, where throughout this proof we will use the + notation to deal
with the cases z. — £ co. By Theorem 3.2, with R as in (3), the compo-
nents of the induced velocity field are vy =0,

27
or()// (ze F¢) smf2 drde,
& R(ro, +0,6)%

2
v =22 / / B L LTS
17 r(), ié 0 /
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We write R(ro+¢,0) (see (3)) as a polynomial R=a=+bhl+¢* with
coefficients

a= r(z) + rz — 2rcrosin @ + zg, b= -2z,

and integrate with respect to £ using the formulas (15) in the
Appendix:

Yoro [, .. o
v,:—47r— A (zcTy F T7) sin 0 dé,
2r
¥ .
Vv, = ’ZO—WO/O (ro — resin6) T d6,

where T} = limg_o Ti(£) — Ti(4y), i =0, 1, 1.c.

- 1 __ Fhze
© T R +12 = 2rergsind R(ro, £40,0)'* )
Tl*— 1 V%+r§_2rcr08in0—t/§<23:‘:zc£0+Zc .
R(ro, £ £, 6)

T 2412 - 2rrgsind
In other words,
Yoro /2” sin #d6
Vv, =——— —
’ 4r Jo R(ro,i£0,9)1/2

2r : (7)
_ Yoro ro — reSiné T4y — 2,
vz —_ T ) N b} :|:1 - '_“"'—‘—1/2 d .

A Jo 12 —2rcrpsing + g R(ro, +£4,,6)

We expand R~ "2 in a series in z;!

R(ro, & £o,0) "= k2" [1 F 20027 + 22(r3 + 12 — 2rcrg sin 04-£3)] /2
=42 (1 + 42" + O(z3)

and, since £z (£6y — zo) (1 £ 4oz 1) = £(¢327%2 — 1), we obtain

~1 2n
. ﬂ_o_rg(_lﬂo_zg_l/ Sin0dd + 0(=2),
0

2r .
Yoro rg — reSin @ 9
;= —d6+ O .
k 2m /0 r2+r} — 2rcrosin 0

drz,
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By 2.551.2 [4]

— 4 Yoo b +larctan (r2 + r§) tan(8/2) — 2rero]”
: 2m |2rg 1o r(2) — rg

+O(z5%) = %79 + O(2;?).

-7

If ro <ro, then v, = +rg + O(z;2), and if r. > ro, then v, = O(z;2).
COROLLARY 3.9 Under the assumptions of the above proposition, the
Slux through a horizontal plane z=z. inside the cylinder is :i:m%'yo +
O(z;%).

PropPoOSITION 3.10 Let 0 <ry <ry. Suppose that for z > zy or z < zy,
¥ =1yo on a cylinder with radius rq and v = — ¢ on a cylinder with radius
r1. Then as z,— =+ 0o, the components of the induced velocity at the test
point (0,re, z) satisfy (i) vo=0, (i) v, = O(z;3), and (iii) if ry <r.<ro,
then v, = v + O(z;%), and if r. is outside the interval [ry,r], then
v, = O(z;?).

C

Proof This follows from Proposition 3.8 by the superposition
principle.

COROLLARY 3.11  Under the assumptions of the above proposition, the
Sflux through a horizontal plane z =z, between the two cylinders is
7 (1§ — 1)y + O(252).

PROPOSITION 3.12  Suppose v=r,/s* on a cone with generatrix r=
(z—ztana, where s=|(r,z—z,)|. Let sc=|(te,zc—z,)|. Then as
sc— 00, vo=0 and inside the cone the central component of v with
respect to the cone vertex is

Yo

Vp ~ F(il + cos &),

(4
where + corresponds to the case 0<a<m/2 and — to the case
T2 <<

Proof A cone with angle « to the z axis can be parametrized by
z=z,+4cosq, r=~{sina. In this case s=¢. Let h,=2z.—z, and let 8
be the angle between the vector (r., k) and the z axis. Then r = s.sin 8
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and A, = s.cos 8. By Theorem 3.2, with R as in (3), we have vy =0, and

Osma/z’r/ (he — £cos @) sin@dldb
% ER(£sino,z, + Lcosa, )/

7051na /2“ / (¢sina — r.sin @) d¢ d
& % ER(ésina,zv—i—écosa,G)m'

We write R(/sin o, z,+ £ cos a, §) as a polynomial R = a + bf + £* with
coefficients

a= r + h2 = s b = —~2s.0, where o = sin asin §sin 8 + cos acos 3,
and integrate with respect to £ using the formulas (15) in the Appendix

Yo SIn @
Vp =
4
Yo Sin @
v, =
4

27
/0 (heT*{ — cosa Ty ) sin 0 dé,

2%
/0 (—resin@ T, +sina T;) d6,

where T} = limy_,, T;(¢) — Ti(4), i=—1,0,ie.

where
Ry = R({psina, z, + £y cos @, §) = sg — 2s.byo + 63,

— by + R1/2

S i
A= log- 1= o)l

In other words,

1 2w
_ JoSinc 1 by + Scpir .
vy = dms? /0 L — 2 (Tr - R(l)/z ) + Acos ﬁ] sin #dé,

i 2r
_YoSIM« 1 ngo — Scfbs ' .
e = 4rs? /0 [1 — o2 <TZ - R(l)/z ) — Asin gsin 0} de,

®)
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where

T, = ocos § — cos a, T, =sina — osin3sin 6,

pr = ocosa —cos B(20% — 1),  p, = osina — sin Bsin (207 — 1).

/2

1
Assc — 00, Ry ~ 5, and

2
A =logsc + logm

Therefore, since log s sin @ integrates to 0,

: 2
~o Sin o Ty — Uy 2 .
Yy~ /0 [1—02+10g(1——a)éocosﬂ] sin 6 dé,

4rs2
) ’)’osinc)z/27r Tz+uz+10 2 sin 3sin §|df
a2 fy (T2 TR0 = o)l .

In spherical coordinates ( p, ©, 6) centered at the vertex of the cone the
velocity components vg=0, v,=v,sin 3+ v,cos § and v,= —v,cos 3 +
v, sin 3 have the following expressions:

v N%sina/z” & dé
P Amst Jy 1—a2

: 27
o SIN ¢ & 2 .
~ —— 1 —— e,
Ve ) /o [ = o2 og 0= o sin §|d6,

where

& = (v — pr)sin @sin @ + (7, + p.) cos B,
&, = (tr — 77) cOS Bsin 0 + (7 + 1) sin B.

Since £,=(1 + o)(sin cvcos § — cos asin Fsin ),

ysina [ sinacosf — cosasin Bsinf
vy~
0

4rs? 1 —sinasinFsing —cosacosf



70 A. GOKHMAN AND D. GOKHMAN

Using 2.551.2, 1.314.5, 1.317.1 [4], we obtain

~Yosina |sinacos § — cota(l — cos acos 3)

~ + coto
4 2
255 \/(l — cosacos 8) — sin® asin® B
Yo cos 3 — cosa
=— + cos a
253 | /T = cos(a — B)y/1 - cos(a + f)
= 2%(:&:1 + cos ),

where + corresponds to the case 0 < < a<n/2 and — to the case
TR2<a< <.

COROLLARY 3.13  Consider a spherical cap given in spherical coordi-
nates (p,p, ) by 1) p=s,0<p<a<n/2,{)orp=s,72<a<p<m,
where s and o are constants. Under the assumptions of the above pro-
position, the flux through this spherical cap is asymptotically given by
+7y0 sin® afs?, where + corresponds to (i) and — to (ii).

Proof By the preceding proposition the component of velocity
orthogonal to the cap is v, ~yo(£ 1 +cos @)/(25%) and the area of the
cap is 2ms* (1 Fcos ).

Remark In all cases, except the cone, tangential velocity outside the
wall has asymptotically smaller order than inside the passage. For a
cone this is not the case — induced central velocity outside the cone
(with « close to 0 or 7), while much smaller than inside the cone, is of
the same asymptotic order. This fact inevitably leads to errors.

THEOREM 3.14  Let q be constant. If +y satisfies the following a priori
conditions for the different cases of inlet/exit:

(@) v= %q/(2wby,) on two horizontal planes, a distance by apart with
opposite signs on the two planes,

(b) v = q/(nrd) on a vertical cylinder with radius ro,

(©) v=+q/(x(r} —1?)) on a vertical annular cylinder with radii 0 <
ry < ro, with opposite signs at r and ry,
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(d) v= tq/(rsin’ap?®), where p=|(r,z —z,)|, on a cone with genera-
trixr=(z—z,) tanaq,

then the induced velocity field has flux that is asymptotic to q and
asymptotically satisfies the boundary conditions at infinity (inlet/exit) of
Section 2.

Proof This follows from the preceding results of this section.

THEOREM 3.15 At the intersection of the inner bounding surface with
the z axis y=0.

Proof This follows from the symmetry of the problem.

4 COMPUTATIONAL APPROACH

For practical purposes the integrals in (4) are taken on parts (elements)
of . On each element we represent (£) by a linear spline with
undetermined coefficients, take the integrals and solve the resulting
system of equations for these coefficients.

Each element is taken to be linear, except when computing the
induced velocity at one of its nodes. In the latter situation, we
represent the element with a cubic spline. This way, though the
integrals are improper in the sense that the integrands blow up, they
are convergent.

The overall representation scheme is given by the Table 1.

TABLE I
Type of boundary Geometrical Representation of Integration
element representation vortex density -y
of the generatrix
General linear spline linear spline r: “closed form”
#: numerical
Incident cubic spline linear spline Split the integrand

into regular and
principal parts.
Principal: r: “closed form”
Regular: numerical
Semi-infinite linear spline a priori values r: “closed form”
§: numerical
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4.1 Boundary Elements notIncidentto theTest Point

Generally each bounded element is approximated by a linear spline. If
we start at a point r(£;) = r;, z(;) = z; this spline is of the form

r(f) =ritmu(l— &),  z2(0) = zi+mu(f — &),

where m% +m?, = 1. Letting a,=r; — mfly, by=m,;, a,=z; — m,l;,
b, =m,; we write

r(€) = a, + b4, z(f) = a, + b,4.
The vorticity is taken to be linear as well
(€)= (1 = )y + tyie1 = vi + (i1 — W),

where t=(£ —£;)/(¢; .| — £;) and ~; are the nodal values of . We can
rewrite this in the form

v = A+Bl,  where A=~ _ Al —) g M T
Liyy — 4 A
Letting T,y = T,,(£i+1) — Ty(4;), with ¢ and b as given below, we

obtain the following form for the integrals (2) restricted to the given

element:

déde

Zi/ma+ﬁ€+qﬁ+dﬁ
(a + bl + 2)*?

27
—/ a,T*+b Ty + 6,15 +dT3)d()

2</”%z+b£+c%”+dﬁ

drde
(a+ bt + £2)*?

Z

1

(aZT + b, T} +e.T; +d.T;)d6,
47T 0
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where

a=a+r2—2rasind+ (z — a,)’,

b=2(a,b, — rb, sinb — (z; — a;)b;),
ar = Aa,(zc — a;) sin 6,
b, = (Ba,(zc — a;) + Ab,(zo — a;) — Aa,b,)sin 6,
¢ = (Bb,(z; — a;) — Ba,b, — Ab,b,)sinb,

, = —Bb,b,sin b,
d; = Aa,(a, — rcsin ),
b, = Ba,(a, — resin6) + Ab.(a, — resin6) + Aa,b,,
¢. = Bb,(a, — rcsin6) + Ba,b, + AP,
d, = Bb2.

<

Note that the coefficient of ¢* in the denominator of the integrands in
9)is b2 + b2 = 1.

4.2 APairof Boundary Elements Incident to theTest Point

Suppose the test point is at £=/; and angle n/2. Its coordinates are
(0,r;z), where r;=r({;) and z;=2z(¢;). Integration over the elements
b 1< f<{;and £;<£< ¢, requires special consideration due to the
fact that the integrand has a singularity at the test point.

As in the preceding section, we represent vortex density -y linearly.
The coordinates, however, are represented by cubic splines using
Hermite interpolant polynomials

Hy(x) =1 —=3x% +2x°, Hyp(x) = 3x% —2x3,
Hy(x) =x-2x2+x°, le(x):—x2+x3,
as follows:
r(t) = rjm1Hot(¢) + riHoo (8) + Ay [rj_ Hii (2) + rjH1a(2)],
z{1) = Zj_lH()l(t) + Zngz(l) + Afjﬁl[zj’»_lH]] () + Z;Hu(l‘)],
V(1) = 51 (L = 1) + i,
where

tze[’;ee,_ll for e/—l SKSE, A£/~1 22,—51,1, and ]:l, l+ 1
j—




74 A. GOKHMAN AND D. GOKHMAN

The coefficients r;, 7}, z;, and z] are determined from the geometry of
the passage via splining technique. Prime represents differentiation
with respect to £ and the subscript j represents subsequent evaluation
at £;. The coefficients y; are a priori unknown.

The contributions of the two segments surrounding the test point to
the integral in (4) may be written, using symmetry with respect to 6,
interchanging the order of integration, dropping the explicit depen-
dence on ¢, and substituting s =£ — £,, in the form

7r/2/ ryr(zi — z)sin @ + zpyr(r — risin6) dsdé. (10)
Azl 1

—7/2 (12 + 12 = 2rrsin 0 + (z; — 2)2)*/*
We use Taylor expansions, and the substitution §=x/2—0 to
analyze the behavior of the integrand near the test point

sinf =1 —16% + O(8*),
r=ro+ros+irgs® + 1y,

(11)
z=1z0+zps +320s* + 125,

Y = Yo + YouSs

where prime represents differentiation with respect to s, the subscript 0
represents subsequent evaluation at s=0, and + corresponds to the
cases s <0 and s > 0.

THEOREM 4.1 Let I be the integrand in (10). Then with the above
notation

rhyr(zo — z) sin @ + zhyr(r — rosin @ orod
- o 2 ) . ot 3 3/2) = 2orodly) + T(¢) + O(p),
(r2 415 — 2rorsin@ + (zo — 2)°) P

where pcos @ = red, psing =s, and

1 !
Alp) =5 (25 — ryzg) sin® ‘HEZFOCOS ®,

T() = sinp(Yyiro + 4v0) A(p)

/
rom ;o 3

. i
+’70V0[2 5 C°S2‘Psm<ﬁ+6(20’0¢ — FpZoy) SID” ¢

3 /1 1
-3 <:—0 cos*psinp + = 5 (rors + zozg) sin 4,0) A(go)] .
0
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Proof Since s is arclength, r 4z = 1. Substltutmg Taylor expan—
sions (11) into the expression R =r?+r} —2rr sin 0+ (z; — z)?
appearing in the denominator of 7, we obtain

R=s+ rﬁ62 + ror{)sé2 + (15 + aps + a38?) + O(p*),

where «;, ap, and «3 are independent of s and 6. Note that
oy = ryry + zpzg. Converting to polar coordinates p and ¢ we obtain

/
= p*(1 —ap) + O(p*), where a = 10 052 @sing + ay sin’ .

ro
(12)

Similarly, the expression in the numerator N = rj(z; — z) sin 6+
zj(r — r;sin @) can be written as

N = ry(—zgs - 1zps* — Lz0s%) (1 - 16%)

+ zo(rps + 3158 + lr(,’its3 +1r082) + O(p*)

(00 2 162
=5 (z4rg — rozo)s + 1 24ro8% + L ryzgs6

+5 (2075 — 15204)8” + O(p*).
Therefore,

N = p*4(p) + P’ B(p) + O(p*), (13)

where
il I/l

/ /
1
B(yp) = 20 20 cos? psinp +— < (2070, = r07%) sin® .
"o

Combining (13) and (12) and expanding the denominator we obtain
_ —32 _F 3 2
I=~rNR = (AQp) +pB(p)) | 1 —50p | +O(p7) . (14)

Multiplying out the parentheses and (14) we obtain

I=~rNR? =y (@ + B(y) — %A((p)a + (’)(p)).
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Finally, expanding v and p
7= +%epsine +0(p%),  r=ry+rypsing + O(p%),

and multiplying out the parentheses we obtain the required formula.

In order to integrate I accurately, we split it into its principal part
and the remaining regular part

= 00A(e) | ( I woA(w))
p p

Since

lim (1 - M) = T(y),

p—0 p

the regular part leads to a proper integral, which is evaluated
numerically.

Note that, the regular part is discontinuous at s=0, since ry_,z; ,
¥y may not equal g, 2z, , 7, . In the special case when s=0 (£ =1
is the juncture of two arcs with different radii or an arc and a straight

line segment, even rg_, zg_ may not equal rg, , 7., .

THEOREM 4.2 Let P denote the contribution to u, of the principal
part of L.

(a) If ¢; is an interior point of a cubic spline representing the boundary
generatrix, then

P=20 (b E

+and|% + A6,
27

/2
where ¢ _ = arg(mrg, Al; ), ¢, = arg(nry, AL), and

1 zy (1 1 —cosyp
Ji(p) = —E(zf)rg roZg) COS @ +§—(; <§log<m> + cos (p),

1 1 1+sing . zy
Jo(p) = 3 (zors — roZ0 (E log (m) — sin <p> + ﬁsm p.
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(b) If ¢, is the juncture of arcs with different radii or an arc and a
straight line segment, then

P=22(-nbn|f

2n /2

2
+ 7rgds I +7rr0J2+|<p +A€J1|w/ ),
where J, . are constructed the same way as J,, but using left or right
second derivatives ry, and zjj, .

Proof The region of integration is a rectangle — A¢;_; <s<A¥,
0 <6< . In order to integrate the principal part of I with respect to p
and ¢ (see Theorem 4.1), we divide the region of integration into three
triangles shown in the Fig. 3.

The area element in polar coordinates is pdpdy, so, using the
notation of Theorem 4.1,

2 P {p) er oo
T / / A(p) dpdgo—%—/ / p)dpde
70"0 —w/2
w/2 f'w(v—’
/ / v)dpdy,
P+

where
—Ae,'_[ o N Aé,
pl (90) - Sin<p s 102(90) COS(p P3(S0) - Sintp'
s
Al
Y,
‘x\}\(b_ nr,
Al

FIGURE 3 Regions of integration.



78 A. GOKHMAN AND D. GOKHMAN

Therefore,
27P Rl A
= - Al / —.(SD) do + 7rro/ (%) dy
Yo¥o —m/2 SINQ —p_CO8¢p
7(/2 A
+ Aéi/ ﬁ de.
o, SiNQ
Recalling the definition of A(y) we see that
A(p) 1 . zh cos?
Ji(p) = Ty =2 (zory — rozg) sing + Q%—Sinw ,
Alp) 1 sinfp  Z
J5(p) = cosp =3 (zors = ro20) o5 + é—rogcos ®.

Evaluation at the endpoints gives the desired result.

In the special case when s=0 is the juncture between two arcs of
different radii or an arc and a straight line segment, we further split up
the middle term and use right and left values of r{j and z{.

4.3 Improper Integrals atthe inlet and Exit

The inlet and the exit are of particular interest since the integrals are
improper in the sense that they are taken over unbounded intervals.
On these intervals we use the a priori values of ~, so their contribution
to the integral is fixed.

Consider the integrals in (2). In each of the cases of inlet/exit we
reverse the order of integration and take the inner improper integrals
with respect to ¢. Integration with respect to £ is in closed form
using the formulas (15) given in the Appendix. Specifically we use
(6) for the radial case, (7) for the cylindrical case, and (8) for the
conical case.

4.4 Linear System

Since A and B are linear in +y; and the expressions for u, and u, (9) are
linear in 4 and B, we obtain a linear system of equations for the
unknown nodal values +;.
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5 APPLICATION

Below we show the streamlines and equipotentials obtained by the
described method for a real passage geometry (Fig. 4). In this case the
inlet is radial and the draft tube is conical. The streamlines were
obtained from the velocity field data, which were in turn computed
from the vorticity distribution on the boundary obtained by solving
the linear system in Section 4.4 using Gaussian elimination. Equipo-
tentials were found via an iterative technique as a family of curves
orthogonal to the streamlines.

This particular example was computed using FORTRAN 77 code
(not optimized) with 35 nodes per surface (70 x 70 linear system). We
obtained the following timing:

CPU Os Compiler Time

300 MHz Pentium II Linux 2.0.30 g770.5.20 130.820u 0.030s
2:11.71 99.3%

296 MHz UltraSPARC-II SunOS 5.6  g770.5.19 122.28u0.59s
2:03.01 99.8%

FIGURE 4 Computed streamlines and equipotentials (Butt Valley/Pacific Gas &
Electric).
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0.007 T T T T T

0.006 [ Flow rate —~—
Potential -
0.005 [

0.004
0.003 [
0.002 -
0.001 [

0 5 10 15 20 25

FIGURE 5 Relative errors.

The output was subjected to an internal verification procedure based
on comparing computed flow rate values to the theoretical constant
value across each equipotential. Also we compared the computed
values of potential at the endpoints of equipotentials on the hub and

the crown. Relative errors are shown in Fig. 5.

APPENDIX

The following integrals with respect to d¢ are taken exactly (see e.g.
2.264.5-8, 2.269.4 in [4]). These expressions are used with various
values of the coefficients ¢ and b. Definite versions of the integrals are

denoted T,

nd
T":/);p—/f’ where R = a + bx + x%;

To :M, where D = 4a — b?;

DR!/2

2(2a+ bx)
h=-""prm

2[(2a — b*)x — ab
I =- (24 DRI)/); 4 ]+log(2R1/2+2x+b);

_ {a—bY)x? + b(10a — 3b%)x + a(8a - 3b?)

I3 = DR!/2

3b 12

—Tlog(ZR +2x + b);

L 2bx—2a+b) _3/210g2a+bx+2(aR)‘/2

aDR!/2 “ x

, (a>0).
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