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ABSTRACT

A numerical solution of the three dimensional frictionless contact problem
and its data parallel implementation on the Connection Machine system
CM-2 is presented. The numerical solution is obtained by means of bound-
ary element discretization of a variational inequality and related extremum
principle; the associated Green's function is approximated by means of stan-
dard direct boundary element procedure. Important new results for the
three dimensional finite body contact problem are reported. The results
clearly illustrate the distinct ability of the method to capture the influence
of the body shape and loading on the contact area and the pressure acting
in it.

1 INTRODUCTION

In recent years, much interest has been devoted to the mathematical formu-
lation of structural problems involving unilateral constraints (Kikuchi and
Oden, 1988; Alliney et al., 1990). An important class of these problems is
the frictionless contact between two elastic bodies.

A rigorous numerical treatment of contact problems, has to start from the
variational inequalities, Fichera (1972), Kikuchi (1979). The first variational
formulations defined on the contact area were proposed in the seventies. A
variety of variational principles for contact problems and an extensive bib-
liography is given in Kalker (1975). A systematic and rigorous mathemati-
cal treatment of the variational boundary formulations in terms of Green's
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function is reported in Kikuchi and Oden (1988). Recently, Panagiotopoulos
and Lazaridis (1987), and Alliney et al. (1990), have proposed a numerical
scheme, similar to the one presented in this paper, for the contact prob-
lem with unilateral constraints for two-dimensional homogeneous bodies.
We have formulated, previously, Rabinovich et al. (1992), the numerical
method for the three-dimensional homogeneous body frictionless contact
problem. The method is based on the rigorous variational formulation and
application of a direct boundary element procedure for the approximation
of the related Green's functions. The method has been implemented in a
data parallel programming environment - the Connection Machine System
(CM-2) - Rabinovich and Sipcic (1992). Recently, we have extended the for-
mulation to the nonhomogeneous composite body contact problem, Sipcic
and Rabinovich (1993).

The present investigation is undertaken to further document the theoretical
and numerical aspects of the proposed method. Examples chosen illustrate
the distinct ability of the method to capture the influence of the body shape
and loading on the contact area and the pressure acting in it. An important
new result for the three dimensional finite body contact problem, namely,
that of the rigid punch indenting a corner of an elastic unit cube subjected
to a bending loading is presented.

2 FORMULATION OF THE PROBLEM

The boundary value problem governed by the Navier-Cauchy equations of
linear elasticity subjected to the natural, essential and frictionless contact
conditions is defined. An equivalent reciprocal variational formulation for
the problem is outlined. Two partial boundary value problems, whose so-
lution preceed the solution of the variational problem, are introduced. The
boundary integral formulation for both partial problems is developed.

2.1 Boundary Value Problem

Two three dimensional linearly elastic bodies, 0* (a = 1,2), are pressed to-
gether as in Figure 1. Note that upper Greek indices will be used throughout
the paper to denote bodies, and that no summation convention is assumed
on a repeated Greek index. The boundary F* = dfi" is assumed to be
piecewise continuous, and composed of three mutually disjoint open man-
ifolds F%,F%-, and r%. We demand that on F£ the surface traction t° be
specified and that on F% the displacement be specified. The contact area
is assumed to be small so that only displacements perpendicular to the
common tangential plane at a representative contact point are taken into
account. Furthermore, the two surfaces Fg., (a = 1,2), can be identified by
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Figure 1: A model of two-body contact problems.

their projection TC to the tangential plane (contact plane). We will assume
that the normal n to the tangential plane is oriented from the region SV to
the region fi* as shown in Figure 1.

Assuming that the bodies are in equilibrium, the problem becomes one of
finding the displacement field uf, stress field ?%, and the contact pressure
p, that satisfy the equilibrium conditions

The associated natural, essential, and frictionless contact conditions are

given as,

(2)

(3)

*Ti = 0 }
p = 0 for u* < g \ on TC (4)
p < 0 for u* = g }

respectively, where cr?, denotes the tangential component of stress vector,
p is the contact pressure, u* = u\ - %% is the relative displacement per-
pendicular to the common tangential plane at a contact point, and g is the
"gap" function between the two surfaces T^ and T£, as measured along the
normal n before the deformation. Since the contact zone is not known in
advance the problem is nonlinear.

if = (tf)o on

u? = 0 on per
* D

2.2 Equivalent Variational Formulation

An equivalent reciprocal variational formulation for the problem considered
is outlined here, the details are presented in Rabinovich and Sipcic (1992)
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and Rabinovich et al. (1992). Suppose that for each elastic body 0*, (a =
1,2) and given essential boundary conditions (3) we have determined the
Green's matrices G°(X,TJ) such that the resultant displacement u° may be
decomposed as

t»-(x) = &«(*) + / G°(x,ij)-n(T,)p(v)dS, (5)
JTc

where ii* are the displacement fields in the bodies 0* constrained at F^
and loaded with the boundary tractions t° along F£. Then the normal
component of the boundary value problem under consideration is equivalent
to the minimization of the complementary energy functional

p(x) G(x,rj)p(r,)dS,dS,- p(x)g(x)dS, (6)
P<O 2 JTc J?c J^c

where G(x,rj) = n(x) • (G*(x,Tj) — G*(X,TJ)) • n(rj) is the relative nor-
mal component of the Green's matrices G*, and where the gap function is
modified by the relative normal displacement u%, i.e.,

9 = 9~tf (7)

The key point of this formulation is that the minimization problem (6) has
been obtained by using Green's matrix for the elastic problem without the
contact condition. This amounts to considering the solution of the complete
problem as the superposition of two partial solutions. First, is a solution for
#, or, according to (7), solution for the displacement fields u" in the bodies
0* constrained at FJ and loaded with the boundary tractions t" along Fp.
Second, is a solution for Green's matrix G(x,r;), which, according to (5),
amounts to the necessity of solving for the displacement fields in the bodies
0* constrained at F% and loaded with unit pressure at 77 6 F£. We define
the boundary integral formulation for both partial problems.

2.3 Boundary Integral Equation

It is well known, Cruse (1969), that the mixed boundary value problem
of finding a displacement field u in the linear elastic body fi, with the
boundary F, constrained at F# and loaded with the boundary traction t
along FF, has a unique solution that admits the representation

T(x, 77) • «(*) dT, = jf U(x, t|) • *(*) dT, (8)

The matrix components of U and T in (8) are given by

CL. = ̂r~r\ — 7- ((3lO7r/l(l — V) T
(9)
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with 1 < m,n < 3. Here A and \JL are Lame coefficients, and v = g,̂ _ , is
the Poisson ratio, of a body 17. In addition r is the distance between the
field point x and the load point 77, and the comma indicates derivative; note
that all differentiations are with respect to the field point.

Equation (8) can be viewed as a constrained equation relating surface trac-
tions to surface displacements. We establish an integral equation (8) for each
of the partial problems defined in Section 2.2 and use the direct boundary
element procedure for their numerical approximation.

3 NUMERICAL SOLUTION

A boundary element technique was adopted as a method for discretization
of the continuous variational problem (6), leading to the finite dimensional
quadratic programming problem. Boundary integral equations (8) for the
partial displacements (5) are approximated using a standard direct bound-
ary element procedure.

3.1 Approximation of the Variational Inequality

We partition the candidate contact surface TC into Me fiat polygonal re-
gions {F̂ },_̂ . We approximate the smooth function p £ H~*(Tc) by its
finite dimensional subspace of all linear combinations of the zero-order shape
functions which are constant over any boundary element F^ in F&, namely

Me

t=i

where p, < 0 6 %, and <fo(x) is an indicator function for the boundary
element F!-

For a chosen approximation p, the minimization problem (6) turns into the
following finite dimensional quadratic programming problem,

A/c A/c Me
(13)

where K**° = {p 6 K^ | Vt p, < 0} and

,-)u;j(»i) (14)
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Bi = / <f>i(x)g(x)dS: = mes(r,)g(z.) (15)
•/PC

Here
Wj(x) = G(x,Tj)h(Tj)dSv (16)

JTc

denotes the relative normal displacement at x 6 FC due to a unit pressure
along F^. Furthermore, the functions Wj(x) and g(x) have been approxi-
mated by the piecewise step functions.

Thus the problem becomes one of finding the displacements Wj(xi) and
u*(xi) for a = 1,2 and z,j = l,...,A/c. We utilize a direct boundary
element method for the numerical evaluation of these displacements.

3.2 Boundary Element Formulation

Let us start with the numerical approximation of the integral equation for
the displacement fields if in the bodies fV*, a = 1,2, constrained at Fg>
and loaded with the boundary tractions t" along Pp.

Consider discretizing the boundary F* into M* plane triangular elements,

|F' j _ , such that {F̂ } C {F̂ }. Let the boundary data be approximated

by,
M*

u»(x) = 5>(«) u«(x,) (17)
/=!

*"(x) = 2>(x) t«(x,) (18)
/=!

where ti"(x/), t"(x/) G %^ are displacement and traction at the centroid x/
of the boundary element F% and the indicator function for the boundary
element F' is defined as in (12). Substituting these functions into (8), writ-
ten for the centroid % of the boundary element F*, we arrive at a linear
algebraic system of the form

"
/=! /=!

The integrals

(20)

(21)

are calculated exactly from the size, orientation, and location of the element
F' and the point 17̂ ., according to Cruse (1969). The unknown data in
equation (19) are the displacements it* along int(F* — F^) and traction
along F£>. Consequently, the solution of the mixed boundary value problem
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is obtained by first appropriately rearranging the columns in equation (19)
so that all the unknown data appear in the vector x",

A* • x* = B° (22)

Solving equations (22), for bodies a = 1,2, one obtains the boundary dis-
placements 6*(x,-) in the candidate contact surface {T̂ }̂  and the ap-
proximation for the modified gap function #(x,-) from (7).

Consider, now, the numerical approximation for the relative normal dis-
placement Wj(xi) at the centroid x, of the boundary element TQ due to a
unit pressure along F£.. In order to apply an integral equation (8) to this
case we set the boundary traction to

*?(x) = <%(*) ""(*) (23)

and, following the boundary-integral solution strategy that led to equation
(22), we derive a set of equations

A* - x* = J3° (24)

for the unknown displacements along int(F* - F%) and traction along r%.
Solving equations (24), for bodies a = 1,2, one obtains the boundary dis-
placements in the candidate contact surface {F̂ }̂  and the approximation
for the relative normal displacement Wj(xi) from (16). In order to establish
equation (16) for all t?, (j = l,...,A/c, a = 1,2), as required by (14),
equations (24) ought to be solved 2 x Me times, with defined boundary
conditions on F%. The fact that A* matrices in equations (22) and (24)
are equal, allows for an efficient numerical solution of the problem involving
only one matrix inversion per body.

3.3 Algorithm

An algorithm for the solution of the quadratic programming problem (13)
is as follows:

(i) Discretize the boundaries F*, a = 1,2, into AP plane triangular
elements and calculate the integrals T^ and U^ using equations (20)
and (21) respectively.

(ii) Using the matrices 1%, &%, with the given essential boundary con-
ditions (3), assemble and invert the matrices A*, a = 1,2.

(iii) Using the matrices T^, (7%, with the given natural boundary condi-
tions (2), assemble the B" vector and obtain the solution vector by
multiplying (A°)~* • B", a = 1,2. Extract the displacements 6"(x,)
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in the candidate contact surface {Fk},-Jj from the solution vector a*.
For a given gap function g(x{) and calculated displacements u"(xi)
obtain the modified gap function ̂(z,), from (7), and then the linear
part of the functional $Mc(boldmathp), 5,-, using (15).

(iv) Using the matrices T^, C/Ĵ  assemble the vectors B° from (24) and

obtain the solution by multiplying (A")~* • B°. Extract from the
solution vector xj the boundary displacements in the candidate con-

tact surface {F̂ }̂  and obtain the approximation for the relative
normal displacement Wj(xi) from (16). Knowing the displacements
Wj(xi) obtain the quadratic part of the functional $A/c(koldmathp),
Atj, from (14). Repeate this step for all j = 1,..., MC.

(v) Solve the quadratic programming problem (13).

3.4 Data Parallel Implementataion

In a data parallel environment, the implementation of a computationally in-
tensive algorithm such as the boundary element method, involves a judicious
choice for the logical unit for the data. All processors of the computing sys-
tem can operate on such logical unit concurrently. The general strategy for
the problem implementation described herein was to use the local network
capabilities as much as possible and to use a high-speed parallel storage
system (Data Vault) for the extensive storage requirements associated with
the strategy. Consequently, the computing system is configured as a two
dimensional lattice of processors, and the logical unit on which the lattice
of processors operate is an element-load point pair.

The general division of labor between the front end computer, (Sun 4/480),
and the CM-2 in this application is as follows: the problem is initiated on
the front end computer, steps (i) through (iv) of the algorithm defined in
Section 3.2 are performed in parallel on the CM-2, while the variational
part of the solution procedure, step (v), is performed on the front end.

4 APPLICATIONS

Previously, a variety of contact problems including Hertzian and non-Hertzian
were investigated numerically see Rabinovich and Sipcic (1992), Rabinovich
et al. (1992), and Sipcic and Rabinovich (1993) for details. The results of
our calculations are in good agreement with existing analytical and nu-
merical results. Presented here is an important new result for the three
dimensional finite bodies contact problem, namely, that the rigid punch is
indenting a corner of the elastic unit cube subjected to the bending loading
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Candidate for a
contact zone

Figure 2: Indentation of an elastic unit cube by a
rigid punch with the shape of fourth order
paraboloid.

as shown in Figure 2. Required data includes the material properties, the
surface element arrangement in general and in the candidate contact sur-
face FC in particular. The known surface tractions and displacements are
assumed constant over each surface element. In the case of a rigid punch
problem the total compressive force or the indentation is required. The re-
sults consist of the contact area, the pressure acting in it, as well as stresses
and displacements where required.

4.1 Finite Bodies Contact Problem

Consider first the indentation of a rigid punch into the center and corner
of a unloaded unit elastic cube. The profile of the punch is a fourth-degree
paraboloid and the depth of indentation is d = 1.64 x 10""̂ . The contact
pressures are given in Figures 3 and 4 respectively. Numerical results are
plotted along with the analytical solution obtained for the half-space by
Lur'e (1964), pp. 279-284. Note that the calculated pressure in the case
of an indentation into the center is in a good agreement with the Lur'e
solution, indicating that the influence of the free boundary is negligible. In
the case of an indentation into the corner, one can see that the pressure is
lower at the points close to the free surface, as what should be expected on
the physical ground; the material is "softer" close to the free boundary.

In order to examine the influence of the bending loading on the contact
pressure, an indentation into the corner of a unit elastic cube loaded with the
traction along one its side is considered, see Figure 2. The contact pressure,
for the same indentation as in all previous cases, is given in Figure 5, showing
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Figure 3: Indentation of an elastic unit cube by a
rigid punch with the shape of fourth order
paraboloid: contact pressure.
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Figure 4: Contact pressure in y plane of Figure 2:
illustration of the influence of the free
boundary.
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Figure 5: Contact pressure in y plane of Figure 2:
illustration of the influence of the bending
traction.

overall increase compared to the unloaded case.

In Figure 6 a contact area and several isobars are given for the case of an
indentation into the corner; the corresponding pressure distribution is given
in Figure 4. It is seen that the contact zone is symmetric with respect to
the diagonal plane and that the region of higher pressure is shifted towards
the bulk of the material. Note that the slight irregularities in the shape of
the contact zone are the consequence of the discretization.

The influence of the bending traction on a structure of the contact zone is
illustrated in Figure 7; the corresponding pressure distribution is given in
Figure 5. Note that the region of higher pressure is shifted towards the side
of the cube loaded by the traction.

5 CONCLUSION

A method for the numerical solution of the frictionless contact between two
elastic bodies having arbitrary shape and loading is presented. The method
has a reciprocal variational formulation for a strating point. The numerical
solution is obtained by means of a boundary element discretization of the
variational inequality and related extremum principle. The numerical pro-
cedure is highly efficient involving only one matrix inversion per contacting
body.

The method is highly suited for a data parallel implementation, and a
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Figure 6: Contact zone for the case given in Figure 4.
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Figure 7: Contact zone for the case given in Figure 5.
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methodology for implementation is outlined. The computing system is con-
figured as a two dimensional lattice of processors, and the logical unit on
which the lattice of processors operate is an element-load point pair.

The results of our numerical calculations are in good agreement with existing
analytical results. Presented here are important new results which illustrate
the distinct ability of the method to capture the influence of the body size
and loading on the contact area and the pressure acting in it.
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