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Abstract

A boundary element numerical scheme for a flowing mixture of solid particles
and a fluid is developed within the context of mixture theory. Major differences
between the two in literature on the subject are studied, these are typically
employed theories called the averaging approach and mixture theory. A
numerical technique applied is the boundary element method based on velocity-
vorticity formulation of general equations describing the flow of a two-
component mixture of a Newtonian fluid and a granular solid. Integral
representations for conservation and field functions, based on parabolic diffusion
fundamental solution, are presented. Special attention is focused on the
mechanical interaction between the mixture components.

1 Introduction

Fluidised multiphase reactors are of increasing importance in nowadays chemical
industries, even though their hydrodynamic behaviour is complex and not yet fully
understood. Especially the scale-up from laboratory towards industrial equipment
is a problem. For example, equations describing the bubble behaviour in gas-solid
fluidised beds are (semi) empirical and often determined under laboratory condi-
tions. For that reason there is little unifying theory describing the bubble behaviour
in two-phase two-component flows.

From the other hand computational fluid dynamics (CFD) is becoming more and
more an engineering tool to predict flows in various types of apparatus on indus-
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trial scale. Although the tools for applying single phase CFD are widely available,
application of multiphase CFD is however still complicated from both a physi-
cal and numerical point of view. Moreover, experimental validation of multiphase
CFD models is still in its infancy because simulations are time consuming and reli-
able predictions of average flows in large-scale equipment are therefore not readily
obtained.

In the past some sets of partial differential equations (PDE) describing complex
behaviour of gas-solid multiphase flows were written for primitive variables espe-
cially on the basis of kinetic theory of granular flow {1]. With no exception system
of these PDE was solved using finite difference method, finite volume method or
finite element method. The scheme of PoZarnik and gkerget [2] was first known
alghoritm where set of governing equations was written for velocity-vorticity vari-
ables in combination with a novel boundary domain integral method (Skerget and
Rek [3]) to extend the applicability of boundary element method (BEM).

The purpose of this work is to study the differences between two basic app-
roaches and to develop the closed set of PDE for general application in BEM based
on mixture theory.

2 Fundamental theories: averaging vs. mixture theory

The large number of articles published concerning fluid-solid flows typically em-
ploy one of two theories, averaging or mixture theory (theory of interacting con-
tinua). In the averaging approach [4] equations of motion, valid for a single fluid or
a single particle, are modified to account the presence of the other components and
the interactions between components. These equations are then averaged over time
or some suitable volume, which is large compared with a characteristic dimension
(for example, particle spacing or the diameter of solid particle) but small compared
to the dimesions of the whole system. From the mathematical manipulation of the
averaged quantities, a number of terms arise. These terms are usually interpreted
as some form of interaction between constituents. Constitutive relations to repre-
sent these interactive forces, as well as the stress tensors for each constituent, are
required to complete the description.

The other method of modeling multicomponent systems is mixture theory. In
this theory the equations and principles of the mechanics of a single continuum
are generalized to include any number of superimposed continua. The fundamental
assumption of the theory is that, at any instant of time, every point in space is occu-
pied by one particle from each constituent, in a homogenized sense. The details of
mixture theory are given in [5]. Like averaging, mixture theory also requires con-
stitutive relations for the stress tensor of each component of the mixture and for
the momentum exchange between the components.
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Our previous model of solid particles immersed in a fluid (PoZarnik and Skerget;
{21, [6], [7], and [8]) has relied upon an assumption that the solid particles behave
as a linearly viscous fluid with a dynamic viscosity 7, and a pressure field p,. The
meaning of p; in this context is not entirely clear and it leads to an indeterminacy
in the governing equations without adding a number of additional relations for e.g.
granular temperature, radial distribution function,... Sometimes this indeterminacy
is overcome by assuming a relationship between the solid pressure p, and the fluid
pressure py in order to reduce number of unknowns. A typical assumption is that
ps = py. This assumption may be justified if the mixture is composed of materials
like water and steam, but is inappropriate when one component is a granular solid.
Some of the two fluid models (TFM) are also inconsistent in that they fail to reduce
to the appropriate single phase model in the two extreme limitis.

3 Conservation equations

The continuity equations or mass balances for fluid and solid take the following

form 9 9
op
. ) =0 1
57 + 811?]' (QPUPJ) s (1)
where vy, is the ith instantaneous phase velocity component (p = f for fluid and
p = s for solid). g and gg are bulk densities (i.e. mass of the constituent per unit
volume of the mixture) of the component given by

QF = Ef@fa QS = 65987 (2)

where gy is density of the pure fluid, s is density of the solid grains, 5 is vol-
ume fraction of the fluid phase, and €, is volume fraction of the solid grains. Mass
exchange between the constituents, e.g. due to chemical reaction or combustion, is
not considered. The additional equation giving the relation between volume frac-
tion of the contituents of the mixture is also valid

eftes=1. 3)

Let Syi; and S5 denote the partial stress tensors of the fluid and the solid,
respectively. Then the momentum balances for the fluid and solid are given by

0 0 0Spij
e (opvpi) + oz, (opUpivp;) = 821 + opbpi £ f4, )
where by,; represents the body force, f; represents the mechanical interaction called
local exchange of momentum, and sign + becomes + in case of fluid and — in case
of solid phase.
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Alternative set of conservation equations is formed applying the definition of
Stokes derivative D (-) /D7 = 0(-) /01 + vx0 (-) /Oxy

Ovp; 1D
pj , © ZCP

=0, 5
oxz; op DT )
D?in BSpi]—
e 3

In the following contribution densities of pure constituents are assumed to be
constant (g, = const.). Modified viscosities are defined as np = npey,.

4 Constitutive equations

It is assumed that the fluid and solid phases are dense enough to be modeled as
homogeneous continuous media. The fluid constituent behaves as a linearly vis-
cous fluid, whose constitutive equation is

2 .
Sfij = —E&y <P + §nf@f> 6ij + 277F5fz‘j; )]

where P is the fluid pressure, 75 is fluid dynamic viscosity, € 7, is fluid stretching

tensor, d;; is Kronecker delta function, and &, = div ¥,. If the fluid is incom-

pressible, then P is one of the unknown quantities in the problem that have to be

calculated. If the fluid is compressible, an equation of state is needed for P,
Stress tensor for a granular material is given by

dos Oos
Ox; 0z’

dos dos
Oz 8

Sszj - (ﬂo + 251 -+ /82@ > 51’]’ + ﬁ3ésm 2ﬂ4 (8)

where the terms multiplying d;; in eq. (8) can be interpreted as the solid pressure p,
similar to the definition in the kinetic theory of granular flow, % %L;—f = grad pg-

grad og, and g%f g%j = grad gs @ grad gs. The material moduli 8; and 3, are

material parameters that reflect the distribution of solid particles, and 3, plays a
role analogous to pressure in a compressible fluid and is given by an equation
of state. The material modulus f2 is a viscosity similar to the bulk viscosity in a
compressible fluid and 5 denotes the viscosity (i.e. the resistance of the material to
flow) of the granular solids. In general coefficients 8; depend upon the distribution
of solid particles and stretching tensor, 3; = 5; (€, £si5), but here it is assumed

that 8; = 5; (ES).
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The mechanical interaction between the mixture components f; is written as

O
= A —
f 5.

+ AZF (53) (Usi - vfz') + A3avmi7 &)

where a.,m; 1S a invariant measure of the relative acceleration between the mixture
components and F (g,) represents the dependence of the drag coefficient on the
volume fraction. A, Ay, and Aj are constants. Terms in eq. (9) reflect the presence
of volume fraction gradients, drag, and virtual mass.

5 Summary of governing equations

Combining equations (5), (6), (7), (8), and (9) yields the equations describing the
flow of a mixture of a Navier-Stokes fluid

3’Ufj 1 DQF
— = T e ——————— 1
oz & or D71’ (10)
Dy, oP Baf o0 ) 2
=— -P =— | 2nrép; — ij i+ fi, (11
eF 55 2 6xi+8acj ( NFE fij BﬁF@f5 ])+@be +fi, (11)
and a granular solid
Ovs; 1 Dgg
=y =9 12
o os Dt (2
Dvg; 0By = 0O B1 Oos Oos . B4 dos Oos
— g rLeesdes 5o i 4+ 2 ves
5 or Ox; + Ox; |\ 02 Oz Oxy + 0275 | iy + Bsois + 02 Oz; Oz,
+osbsi — fi. (13)

For three-dimensional geometry, the equations (10), (11), (12), (13), and (3) pro-
vide nine relations for nine unknowns, Ve, Uy, Vfz, Uszs Usys Vszs €4, €s, and p.
The above field equations have to be solved for appropriate boundary and initial
conditions.

By taking into account the extended form of Sy (Skerget and Samec [9])
momentum equations (11) and (13) are reformed in the following for the velocity-
vorticity formulation more convenient form

Dv . . 4
QF—DTf = —gpgradp —pgradey — rot (Npdys) + 3 grad (npDy)

+2grad @y - gradnp + 2 gradnp x 35 — 295 gradnp + opbs + f,  (14)

Dy, = grad By — %rat (B3¢) + grad [(B2 + B3) Ds)

2s Dr
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+grad s - grad B3 + grad B3 x &5 — Fs grad B3 + ¥, + osbs — f,  (15)
where ¥ is defined as
Y, =

0 (ﬂl Ops Ops /@4 dos 3@3) (16)

8:103 g_gﬁ—xl—a—a—:; g 0?2 dx; Oz,
6 Velocity-vorticity formulation

In BEM, the original set of Navier-Stokes equations is further transformed with
the use of the velocity-vorticity variables formulation. Introducing by definition
the solenoidal vorticity vector field function wy; (r;, 7) as a curl of the compat-
ibility velocity field vp; (15, 7) (Skerget and Rek [3]), the fluid and solid motion
computation procedure is partitioned into its kinetics and kinematics. The advan-
tages of this approach lie with the numerical separation of kinematic and kinetic
aspects of the Navier-Stokes fluid flow and granular solid flow from the pressure
computation.

Kinetics of two-phase two-component mixture is given by vorticity transport
equations obtained as a curl of momentum balances, equations (14) and (15). It
reads for the fluid motion part as

—

V x (opGy) = V x [~rot (nrpdy) + 2 grad vy - gradnr + 2 gradnr x &
29 gradr + orb; + 1] an
while kinetics of granular solid flow part is given by

—

- 1
V x (gsds) =V % ~§rot (Badf) + grad ¥, - grad B3 + grad B3 x &,
=, grad B + ¥, + osb, — f] (18)

where d, is defined as @, = Du,/D7. Material properties are given as a sum
of a constant and a variable part. In case of Navier-Stokes fluid flow part of a
mixture motion modified viscosity and modified denstity are decomposed, while
for granular solid flow part coefficients 3; (: = 1,2, 3, 4) and modified densitiy
are rewritten as follows: ng = npo -+ 7F, 0F = 0F0 + 0r, Bi = B + Bis
and ps = gso + Os. Finally, nonlinear parabolic diffusion-convective vorticity
transport equations suitable for implementation in BEM are obtained

Duwy; 0wy Ovg; 1 OFp, 1 afs

N ' — 19

o Vo 81,0, +wej bz, sz@f—F eUk 9, + — “’“a . (19)
Dugi _ B 0'wsi Pt 1 OFw 1 Of

- ’ Ds - 20

Dr 2@5’0 a.’IZj aZL'j +ws] 6 Wi + 50 — €45k 6.’13_7' 050 €ijk = a ~s ( )
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where f; represents the local exchange of momentum, eq. (9), and Fy;, and F; are
defined as

. . Owyy, Ofp Ovyg; OnF teliTa
i = i~ Qfi) — NFeijk——— — €ijkWj = - — 2% )
Fyi = 0r (bgs — agi) — firegk Bz, G G + dz; B, e
~ ~ ~ 21
. Lo Ows 1 9Bs | Ovs; 9fs B3
Fy = 0s (bsz - asz)_ 2/6361319 6mj zeljkaj Dk + 82?]' 81']' s Gxi +7/3'
(22)

As abasis to derive the kinematics of two-phase two-component flow of Navier-
Stokes fluid and a granular solid reformed continuity equations (10) and (12) are
taken. Finally, the kinematics of both components motion is carried out in form of
vector elliptic Poisson equation (Skerget and Samec [9])

vy, Owpr, 0%y
i - =0. 2
6‘ccj8xj + Cijk 8.73]' 832@ ( 3)

To increase the stability of the coupled velocity-vorticity iterative scheme on the
one side and at the same time coupled Navier-Stokes fluid flow and granular solid
flow scheme on the other side kinematics equations (23) are rewritten using the
false transient approach

vy, 1 Oy Qwpr, 0Dy

S i - =0, 24
0r;0x; op OT ik or;  Oxy 0 (o4

with oy, as a relaxation parameter. It is obvious that the governing equations (24)
are exactly satisfied only at the steady state (7 — o0), when the false accumulation
term vanishes.

Equations (19), (20), (24), and derivatives of the additional equation defining the
volume fraction (3), provide for the three-dimensional geometry fourteen relations
for fourteen unknowns, Vsy, Uy, Utz Vses Usys Vsz> Wi, Wys Wiz, Wegs Wsys Wsz,
€, and ;. The equations present the leading non-linear set of equations governing
the two-phase two-component flow to which the weighted residuals technique of
the BEM has to be applied.

7 Boundary element model

The advantage of the boundary element method originate from the application
of the Green fundamental solutions as particular weighting functions. Since they
only describe the linear transport phenomenon, an appropriate selection of a lin-
ear differential operator % [-] is of key importance in establishing a stable and
accurate singular integral representation corresponding to the original differential
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conservation equation. All differential conservation models can be written as in
the following general statement

L] +b=0, (25)

where the linear differential operator £ [-] can be either elliptic or parabolic and
u (r;,7) is an arbitrary field function while the nonhomogeneous term b (r;, 7) is
generally used for the nonlinear transport effects or pseudo body forces.
Considering the kinetics in an integral representation one has to take into acc-
ount the parabolic diffusion-convection character of the vorticity transport equa-
tions, (19) and (20). Since only linear parabolic diffusion differential operator is
employed, i.e.
2
oL 00) (26)
Oz j Jx 7l or
where the quantity &, is a constant modified the vorticity equations can be formu-
lated as a nonhomogeneous parabolic diffusion equations, as follows

L=k

82w i OWnp;
Ll b = ™ or
J

with the following corresponding integral representation written in a time incre-
ment form for a time step AT = 7p — 751

TF
¢ (&) wpi (§,7F) +/ip// Wm d’rd]f‘ —/ap// 8——u*d dr’ (28)
TF—1 TR

+ by =0, @7

+/b/piu;dﬂ—k/wm,p_lu;)p_p
Q Q

where uj; is the parabolic diffusion fundamental solution. Assuming constant vari-
ation of all field variables within the individual time increment, the time integrals
in eq. (28) are evaluated analytically

TR
Uy = kp / urdr, 29)
TF—~1

enabling us to rewrite eq. (28) in final integral form

&upi

oU*
c (&) wpi (faTF)+Awpi—(#dF:A =

1 *
+—/ bpiU;dQ+/Wpi,F——lup,F—l'
Kp JO Q

The eq. (30) represents the vorticity kinetics of Navier-Stokes fluid and granular
solid flow mixture in integral form. The domain integral of the nonhomogeneous

Uzdl (30)
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nonlinear contribution by,

€2y

includes the transport, source and exchange effects of vorticity.

The corresponding integral representation of the mixture flow kinematics gover-
ned by parabolic equations (24) can be obtained following the same basic idea that
each component of the velocity vectors vp; satisfies nonhomogeneous parabolic
equation. Therefore again linear parabolic diffusion operator, eq. (26), is employed
(xp — ap). The following relation is written

32 Upi va

ol b = oy o

+ bpz =0, (32)

rendering the singular boundary integral formulation for the velocity vectors vp;
in a time increment form for a time step A7 = 7p — 7p_1

@%@m+%// % mw—%// WWMwm

+/ bpiu;d9+/vpi,F—1u;,F~l'
Q Q

Using the same idea as in eq. (29) final integral statement of two-phase two-
component kinematics is formed

8vm»

8U;df~ Uxdr 34
@) v (7r)+ [ ougar = [ Sy 64

+i me*dQ + / Vpi, P—1Up f_1-
Qp

Linear transport phenomena in eq. (34) is completely represented with the bound-
ary integrals only. The domain integral of the nonhomogeneous nonlinear contribu-
tion by, is represented by vortical and by additional on volume fraction dependent
contribution of fluid and granular solid flow

Ow k 3@
by ; L Ly .35
pi = ik 0x; sz (35)
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8 Conclusion

Numerical scheme for the computation of two-phase two-component Navier-Sto-
kes fluid-granular solid flows based on mixture theory is presented. Fundamental
assumption of the theory is that, at any instant of time, every point in space is
occupied by one particle from each constituent, in a homogenized sense. Special
emphasis is given to development of velocity-vorticity formulation of governing
equations to achieve closed set of PDE. The proposed model do not fail to reduce to
the appropriate single phase model in two extreme limits. By taking the curl opera-
tor of the momentum equations computational scheme is partitioned in kinematics
and kinetics. The advantages of this approach lie with the numerical separation of
kinematic and kinetic aspects of the Navier-Stokes fluid flow and granular solid
flow from the pressure computation. Numerical technique applied is boundary ele-
ment method. Integral representations for conservation field functions are based
on parabolic diffusion fundamental solution. The presented numerical scheme is
prepared for implementation in numerical code BEEAS-BEMFLOW.
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