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ABSTRACT 
Extracting object boundaries in thermal images is a challenging 
task because of the amorphous nature of the images and the lack 
of sharp boundaries. Classical edge-based segmentation methods 
have the drawback of not connecting edge segments to form a 
distinct and meaningful boundary. Many level set approaches, 
which can deal with changes of topology and the presence of 
corners, have been developed to extract object boundaries. 
Previous researchers have used image gradient, edge strength, 
area minimization and region intensity to define the speed 
function. Our approach uses edge direction and magnitude, 
called an edge map, as the main component of the speed 
function. The edge map points toward the nearest boundary; its 
magnitude represents the total gradient energy in the half plane. 
The experimental results are significantly superior to those 
obtained using edge magnitude alone. 

Categories and Subject Descriptors 
I. 4.6 [Image Processing and Computer Vision]: Segmentation 
– edge and feature detection, pixel classification, region 
partitioning. 

Keywords 
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1.  INTRODUCTION 
Thermal images are used in many fields, including surveillance, 
medical diagnostics, fire fighting and non-destructive testing. A 
number of factors must be considered when analyzing thermal 
images: the color map, the base temperature and the range of 
temperature.  One distinction between the visual image and the 
thermal image is the color map. The thermal image camera 
records the differences in the radiation intensity of objects and 
maps them in the form of a particular color map. The colors are 
simply a visual aid to show the temperature differences in each 
image. In general, it is incorrect to assume that a particular color 
means warmer or cooler. A thermal image is basically an index 

image with a special color map. Finding object contours in 
thermal images is a challenging task because of the amorphous 
nature of the image and its lack of shape boundaries. As far as 
we know, very few approaches have been developed using the 
object boundary to process thermal images.  
 
In this paper, we propose a level set approach to extract 
interesting object boundaries in thermal images. A review by 
Suri, et al., [12] lists four kinds of speed functions used in the 
general level set methods: image gradient, edge strength, area 
minimization and curvature. However, no paper mentions the 
edge/gradient direction. 
 
 Our approach is based on the direction and magnitude of the 
edges of the given image. Unlike visual images, object 
boundaries in thermal images may be broken or may vary 
significantly when we transform thermal images into intensity 
images. Edge detection approaches are not suitable for 
segmenting thermal images [2]. They will detect edges that are 
not part of an object’s boundary or miss parts of a boundary 
when the intensity contrast is weak. In general, additional effort 
is needed to connect the incomplete edges into a distinct and 
meaningful object boundary. 
 
Several search approaches have been proposed to extract object 
boundaries in images using closed curves. Roughly speaking, 
there are two types of boundary search approaches. One uses a 
closed contour represented by a parameterized curve. The 
problem of finding the desirable contour is posed as an energy 
minimization problem. The classical Euler-Lagrange formulation 
of the active contour is called ‘snake’ [7]. This kind of method 
relies on an initial guess of the boundary, image features and 
parameters. Moreover, it suffers from the change of topology and 
the presence of corners. To overcome these problems, the level 
set approach has been proposed [10]. The guiding principle of 
level set methods is to describe a closed curve in r 2R  as the 

zero level set of a higher dimension function ),ty,x(Φ in 3R . 
Instead of propagating the curve r  directly, we consider the 
evolution of function ),,( tyxΦ  with a speed function F and 
extract the zero level set of points to obtain the boundary curve. 
Since level set methods represent the curve in an implicit form, 
they greatly simplify the management of the contour evolution, 
especially for handling topological changes. Most of the 
challenges in level set methods result from the need to construct 
an adequate model for the speed function.  
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We propose a segmentation method using a level set to extract 
objects in thermal images. The edge map is employed instead of 
the gradient flow. The curve speed function can be adjusted 
based on the edge map direction as well as the gradient 
magnitude. Other researchers have used only gradient 
magnitudes, whereas we use both magnitude and direction. Our 
method requires only three or four initial points chosen randomly 
inside or around the interesting object.  
 
2.  BACKGROUND 
We consider the generation of a family of contours. Let an initial 
curve  undergo deformation in a Euclidean plane. 

denotes the family of curves generated by the 

propagation of  in the outward normal direction

0r
), ty,(xr

0r N
r

with the 
speed F. We ignore the tangential velocity because it does not 
influence the geometry of the deformation, but only its 
parameterization. The curve velocity r  is denoted by ),,( tyxt
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According to the level set method, we can express the closed 
curve  in an implicit form as  )(tr
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yielding the movement equation of curves,  
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The above motion equation (3) is a partial differential equation 
in one higher dimension than the original problem. Given the 
initial value, it can be solved by means of difference operators in 
a fixed grid via 
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where n is the iterative time, h is the grid step,  is the time 

step, is the speed value of pixel (i, j) , Φ  is the level 
value of pixel (i, j) at time n and 
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This implementation allows the function Φ to automatically 
follow topological changes and corners during evolution. The 
speed function F plays a key role in the level set method. When 
F is positive, the curve expands; when F is negative, the curve 

shrinks. Speed models can be generally classified as edge-based 
[3, 4, 8], region-based [5, 6, 9] or hybrid [13, 11]. 
 
In an edge-based model, 
 
      ,  (5) pIGkaF |1|/)( ∗∇++= σε

where  is the curvature of the curve, ,k a ε and are constants 

and  | is the edge gradient using a Gaussian filter 
. Since the stop criterion is the magnitude of the gradient, the 

speed slows down at strong edges. The drawback of this model is 
that it only detects objects with edges defined by strong 
gradients.  F is never small enough to stop the curve evolution in 
a noisy image and the curve may extend beyond the boundary. 

p
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In a region-based model, 
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where  is the curvature of the curve, k ε is a constant, is 

the intensity of pixel (i, j) , and and  are the 
intensity distribution parameters for the inside and outside 
regions, respectively. The problem with this method is that we 
have to estimate the intensity distribution of the region; however, 
the distribution model may degrade in a noisy image.  
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Our approach uses the edge direction as well as the gradient 
magnitude. A strong edge can stop the curve evolution by its 
gradient magnitude. A weak edge can halt the curve by its edge 
map direction, which points toward the closest boundary. The 
result of evolution will be a curve that goes through the most 
homogenous region to fit the object boundary. When the speed 
function is small, the evolution process ceases.   
 
3.  LEVEL SET WITH EDGE MAP 
In this section, we first describe how we obtain the edge map and 
then use it as the main component of the speed function in the 
level set method.  

 
3.1 Edge Map 
The motivation for the edge map comes from the fact that the 
magnitude of the intensity gradient cannot restrict the level set 
flow completely and the edge direction will help us localize the 
edge. We introduce a concept, the edge map, to represent the 
gradient magnitude and direction. We explore the isotropic and 
linear characteristics of Gaussian filters to obtain the edge map, 
which accounts for the local edge gradients and their 
neighborhood.  
 
A 2D isotropic Gaussian filter with standard deviation σ is 
applied to the image . The smoothed image is denoted 
by . Further, the gradient images and  

are computed by the first order difference of  along x-
axis and y-axis, respectively. Then, the local edge vector at pixel 
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where gx(s) and gy(s) are the gradients for pixel s along the x-
axis and y-axis, respectively.  
 
r

),( θsE  is the local edge vector along the orientation θ. It gives us 
the local intensity change, which is widely used in edge 
detectors. Our edge map for pixel s is defined by  
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The integration range parameter  is now estimated. Without 
loss of generality, for the pixel , we compute the 
intensity difference with pixel 

'θ
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(
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where σ5=d .  
 
We assume that ),( θsDiff  is usually no less than ),( πθ +sDiff  
when the boundary is a distance d away from the pixel s in the 
direction θ. However it is still not enough to know where the 
boundary is exactly. To quantify the prediction of the boundary, 
an index ),( θsP  is assigned to every pixel with the same offset 
distance, d, from the pixel s by  
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A large index value implies a boundary located in that direction. 
We choose  in order to maximize the integration of 'θ ),( θsP  in 
the corresponding half plane: 
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The edge map  is a vector pointing toward the closest 
boundary pixel with its magnitude representing the total gradient 
energy in the half plane. Figure 1 shows an example of the edge 
map for

)(sM
r

1=σ . Each arrow indicates the magnitude and 
direction of a pixel. The cycle points are the edge pixels obtained 
by the Canny edge detector. As we can see, the direction of the 
edge map points to its nearest boundary as its magnitude varies 
with the distance from the boundary.  

 
3.2 Speed Function  
We define our speed function in the outward normal direction of 
the curve as 
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v
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where c and εare  constants, k is the curvature and )(Mg
v

 is a 

scaling function of the edge map M . Physically, c denotes an 
expansion term, 

v

kε  plays the smoothing role and )(Mg
v

 is a 

stop criterion. The value of  depends on the magnitude of 
the edge map as well as its direction. We give its formula as 
follows. 
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Let θ be the angle between the edge map and the outward 
normal vector N
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The ability to slow down the speed function varies with the 
direction of the edge map. An edge map with a low magnitude 
value in the direction opposite to the outward curve normal 
direction will have a halting ability comparable to that of the 
strong edge map. Thus, the speed function has values close to 
zero near high image gradients or edges. 

 
Figure 1: Edge map for each pixel. 

 
4.  THERMAL IMAGE SEGMENTATION  
The general framework introduced in Section 3 is applied to 
segment thermal images. Our objective is to construct boundary 
elements of the given structure in the image. 
 
We tested thermal images from various applications such as 
medicine, defense and surveillance. We make no assumption 
about the object’s shape, but use only three or four random 
points inside or around the interesting object as the initial points. 
Initial pixels locate the place where the evolution begins and 
provide some gradient information. The use of more initial pixels 
reduces the total segmentation time but has only a small effect 
on the final result.  In all of our experiments, we use the standard 
deviation of the smoothing Gaussian filter, 1=σ ; search 
distance 55 == σd ; grid step ; iteration time step 1=h

1.0=∆t ; term of the speed function, c k1.0k 1−=−ε .  
 

4.1 Examples of Thermal Images 
Segmenting thermal medical images is a means of identifying 
diseased tissues [1]. Once diseased tissue has been segmented, it 
is useful to compare it with the normal tissue to see how it 
changes with pathology. For example, utilization of thermal 
imaging has been an effective method in the evaluation of 
vascular disease. Fig. 2 shows a patient with vascular disease of 
the legs. The increased flow of blood through the vessel 
produces more heat, which is recordable with a thermal imaging 
procedure. Thermal imaging provides clues to the potential of 
developing vascular disease which may lead to stroke or cancer. 
An unsatisfied result is shown in Fig. 2(f) with a general level set 
method proposed by [4]. The speed function without gradient 
directions can not maintain the curve along the object boundary.  
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Fig. 3(a) shows the segmentation of a thermal image of a rat and 
four calibrating emitters. The four circles correspond to four 
emitters (only three are really apparent) at different 
temperatures, and the oblong shape is a live rat. The variability 
in shape adds to the segmentation challenge. The purpose of this 
experiment is to measure the thermal temperature of the rat. Fig. 
3(b) shows the boundaries of a mouse and the four thermal 
emitters. The efficacy of this technique is really phenomenal, 
since using an edge operator on the image yields nowhere near a 
complete contour for the fourth emitter. 
 
Fig. 4(a) shows an image taken from a sensor mounted on a 
helicopter. The result shows an example that our approach 
captures the corners. Fig. 4(b) demonstrates how our approach 
deals with noisy parts in the object. The curve flows around the 
noisy parts, because the curve always looks for the relatively 
homogenous region around its current position. After being 
isolated by the curve, the noisy parts are removed. This process 
implies that the curve ‘knows’ where the noisy parts are during 
its propagation. The result of our method is shown in Fig. 4(d). 
The computed boundary captures the corners faithfully. In 
contrast, snake-based approaches tend to smooth the corners of 
solid objects. The boundary resulting from the snake proposed 
by Kass et.al., [7] is shown in Fig. 4(f), with the initial boundary 
shown in Fig. 4(e). The final boundary produced by the snake 
approach looks too smooth because the first and the second 
derivatives are used as constraints in the classical snake [7]. Two 
more examples on tanks are presented in Fig. 5. 

 
4.2 Approach Comparison 
We emphasize the importance of the gradient direction in the 
speed function. The introduction of the gradient direction as 
defined here, overcomes the disadvantages in the general level 
set methods that are summarized in [12].  

 
a) The speed function may not turn out to be zero in multiple 
objects segmentation.  
Fig.3 (a) shows a thermal image of a rat and four circular 
calibration emitters with very different intensities. The speed 
function of the brighter emitters can easily be reduced to zero 
while the dark emitters with low contrast from the background 
are likely to be missed by the evolving curve under the same 
model parameters. The active contour meets another problem in 
segmenting the rat and emitters, i.e. different shapes. Additional 
care must to be taken to set different model parameters for the rat 
and emitters. In contrast, our proposed method segments all five 
objects using the same parameters. 
 
b) Embedding the object.  
If one object has one or more objects located inside, the general 
level set method and the active contour will not capture all 
objects of interest.   Our proposed curve flows around the noisy 
parts or the embedded objects. After being isolated by the curve, 
the noisy parts or embedded objects are located. This process 
implies that the curve ‘knows’ the noisy parts or embedded 
objects during its propagation. Fig.4(c) shows how the noisy 
parts are located. 
 
c) Gaps in Boundaries.  
Gaps in boundaries are not a problem in the active contour model 
because the smoothing restriction and internal iterate values 

make the contour complete. However, they are a drawback of the 
level set method when applied to noisy images. The contour in 
the level set method is in an implicit form, which may simply 
leak through gaps.  
 
5.  CONCLUSIONS 
In this paper we have presented a level set approach to segment 
thermal images. The edge map is introduced as the main 
component of the speed function. The edge map points toward 
the nearest boundary and its magnitude represents the total 
gradient energy in the half plane. The proposed approach uses 
both the edge direction and the gradient magnitude to overcome 
the problems resulting from weak edges. The results are 
significantly superior than results obtained using edge magnitude 
alone. As shown in our experiments, our approach has several 
desirable features besides those of the general level set method. 
Good boundaries can be extracted from thermal images with 
very few initial pixels inside or around the object; the final result 
is relatively independent of the initial guess; adding more initial 
pixels can reduce the total segmentation time; the parameters we 
set in our experiments can work for thermal images from various 
applications; and the curve ‘knows’ where the noisy parts are.  
 

  
Figure 2(a)  Figure 2(b)  

  
Figure 2(c)  Figure 2(d) 

          
Figure 2(e)     Figure 2(f) 
 

    
Figure 2(g) 

Figure 2: (a) Three initial pixels. (b-d) Evolution of the 
boundary. (e) Final segmentation result. (f) Evolution without 
considering gradient directions. (g) The Canny edges 
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Figure 3(a)  Figure 3(b) 
Figure 3: (a) Segments of a thermal image of a rat and four 
calibrating emitters (only three are visible). (b)  Segments of a 
mouse and emitters. Figure 5(a)  Figure 5(b) 

Figure 5: Two tank images.  
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