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Abstract. In this paper we study the problem of boundary feedback stabilization for the
unstable heat equation

ut(x, t) = uxx(x, t) + a(x)u(x, t).

This equation can be viewed as a model of a heat conducting rod in which not only is the heat
being diffused (mathematically due to the diffusive term uxx) but also the destabilizing heat is
generating (mathematically due to the term au with a > 0). We show that for any given continuously
differentiable function a and any given positive constant λ we can explicitly construct a boundary
feedback control law such that the solution of the equation with the control law converges to zero
exponentially at the rate of λ. This is a continuation of the recent work of Boskovic, Krstic, and
Liu [IEEE Trans. Automat. Control, 46 (2001), pp. 2022–2028] and Balogh and Krstic [European J.
Control, 8 (2002), pp. 165–176].
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1. Introduction. In this paper we continue the study of boundary feedback
control of an unstable heat equation

ut(x, t) = uxx(x, t) + µu(x, t) in (0, 1)× (0,∞).

Hereafter, the subscripts denote the derivatives. This equation can be viewed as a
model of a heat conducting rod in which not only is the heat being diffused (mathe-
matically due to the term uxx) but also the destabilizing heat is generating (mathe-
matically due to the term µu with µ > 0). This feedback control problem was recently
addressed by Boskovic, Krstic, and Liu in [5], and it was shown that the unstable rod
can be exponentially stabilized by a boundary feedback control law if the constant
µ < 3π2/4; that is, the destabilizing heat generation is not very big. More recently,
Balogh and Krstic [3, 4] removed the condition µ < 3π2/4 and replaced µ by an
arbitrarily large function a(x):

ut(x, t) = uxx(x, t) + a(x)u(x, t) in (0, 1)× (0,∞).(1.1)

They used a backstepping method for the finite difference semidiscretized approxima-
tion of the above equation to derive a Dirichlet boundary feedback control law that
makes the closed-loop system stable with an arbitrary prescribed stability margin.
They showed that the integral kernel in the control law is bounded. However, some
problems like the smoothness of the kernel and Neumann boundary control (usually
more difficult than the Dirichlet one) were left open. Using a different method, we
completely solve these problems by solving a partial differential equation of the kernel
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with strange boundary conditions (see (2.1) below). This strange boundary value
problem has stood open since the work of [5] was started in 1998. We also derive
Neumann boundary feedback control laws which seemingly cannot be achieved in
[4]. From the proof of Lemma 2.2 below it can been seen that the feedback law is
constructed explicitly and can be calculated numerically via a scheme of successive
approximation. This makes its implementation possible in real problems.

The problem of boundary feedback control that we address here is not new. Some
of the results on feedback stabilization of parabolic equations include the work of
Amamm [2], Burns and Rubio [6], Burns, Rubio, and King [7], Day [8], Lasiecka and
Triggiani [10, 11, 12, 13], and Triggiani [15]. For a detailed review of these references,
we refer to [4] and [5]. In comparison with the existing literature, the novelty of the
paper is the explicit construction of the feedback laws and the complete solving of the
strange boundary value problem mentioned above.

The paper is organized as follows. Section 2 is devoted to the stabilization of un-
stable Dirichlet boundary value problems and section 3 to the stabilization of unstable
Neumann boundary value problems. We raise an open problem in section 4.

2. Dirichlet boundary conditions. In what follows, we denote byHs(0, 1) the
usual Sobolev space (see, e.g., [1, 14]) for any s ∈ R. For s ≥ 0, Hs

0(0, 1) denotes the
completion of C∞

0 (0, 1) in Hs(0, 1), where C∞
0 (0, 1) denotes the space of all infinitely

differentiable functions on (0, 1) with compact support in (0, 1). We denote by ‖·‖ the
norm of L2(0, 1). Cn[0, 1] denotes the space of all n times continuously differentiable
functions on [0, 1].

It is well known that the Dirichlet boundary value problem{
ut(x, t) = uxx(x, t) + a(x)u(x, t) in (0, 1)× (0,∞),
u(0, t) = u(1, t) = 0 in (0,∞)

is unstable if a is positive and large. To design a boundary feedback law to stabilize
it for any function a ∈ C1[0, 1], we consider the problem




kxx(x, y)− kyy(x, y) = (a(y) + λ)k(x, y), 0 ≤ y ≤ x ≤ 1,
k(x, 0) = 0, 0 ≤ x ≤ 1,
kx(x, x) + ky(x, x) +

d
dx (k(x, x)) = a(x) + λ, 0 ≤ x ≤ 1,

(2.1)

where λ is any constant. From the proof of Lemma 2.4 below we will see why we
want to consider this problem. For the moment, let us assume this problem has a
unique solution k for a ∈ C1[0, 1]. (This will be proved in Lemma 2.2 below.) Using
the solution k, we then obtain Dirichlet boundary feedback law

u(1, t) = −
∫ 1

0

k(1, y)u(y, t)dy in (0,∞)(2.2)

and Neumann boundary feedback law

ux(1, t) = −k(1, 1)u(1, t)−
∫ 1

0

kx(1, y)u(y, t)dy in (0,∞).(2.3)

With one of the boundary feedback laws, the system


ut(x, t) = uxx(x, t) + a(x)u(x, t) in (0, 1)× (0,∞),
u(0, t) = 0 in (0,∞),
u(x, 0) = u0(x) in (0, 1)

(2.4)
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is exponentially stable. In this controlled system, the left-hand end of a rod is insulated
while the temperature or the heat flux at the other end is adjusted according to the
measurement of k-weighted averaged temperature over the whole rod. Physically, if
the destabilizing heat is generating inside the rod, then we cool the right end of the
rod so that it is not overheated. To state this result, we introduce the compatible
conditions for the initial data:

u0(0) = 0, u0(1) = −
∫ 1

0

k(1, y)u0(y)dy,(2.5)

u0(0) = 0, u0
x(1) = −k(1, 1)u0(1)−

∫ 1

0

kx(1, y)u
0(y)dy.(2.6)

Theorem 2.1. Assume that λ > 0 is any positive constant and a ∈ C1[0, 1] is
any function. For arbitrary initial data u0(x) ∈ H1(0, 1) with compatible condition
(2.5) or (2.6), equation (2.4) with either (2.2) or (2.3) has a unique solution that
satisfies

‖u(t)‖H1 ≤ M‖u0‖H1e−λt ∀t > 0,(2.7)

where M is a positive constant independent of u0.
The idea of proving the theorem is to carefully construct a transformation

w(x, t) = u(x, t) +

∫ x

0

k(x, y)u(y, t)dy

to convert the system (2.4) with either (2.2) or (2.3) into the exponentially stable
system 


wt = wxx − λw in (0, 1)× (0,∞),
w(0, t) = w(1, t) = 0 in (0,∞),
w(x, 0) = w0(x) in (0, 1)

(2.8)

or 


wt = wxx − λw in (0, 1)× (0,∞),
w(0, t) = wx(1, t) = 0 in (0,∞),
w(x, 0) = w0(x) in (0, 1),

(2.9)

where w0(x) = u0(x) +
∫ x

0
k(x, y)u0(y)dy. This will be achieved in the following

lemmas.
Lemma 2.2. Suppose that a ∈ C1[0, 1]. Then problem (2.1) has a unique solution

which is twice continuously differentiable in 0 ≤ y ≤ x ≤ 1.
Proof. Using the variable changes

ξ = x+ y, η = x− y

and denoting

G(ξ, η) = k(x, y) = k

(
ξ + η

2
,
ξ − η

2

)
,

problem (2.1) is transformed to


Gξη(ξ, η) =
1
4

(
a
(

ξ−η
2

)
+ λ

)
G(ξ, η), 0 ≤ η ≤ ξ ≤ 2,

G(ξ, ξ) = 0, 0 ≤ ξ ≤ 2,
∂
∂ξ (G(ξ, 0)) =

1
4

(
a
(

ξ
2

)
+ λ

)
, 0 ≤ ξ ≤ 2,

(2.10)
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which is equivalent to the following integral equation:

G(ξ, η) =
1

4

∫ ξ

η

(
a
(τ

2

)
+ λ

)
dτ +

1

4

∫ ξ

η

∫ η

0

(
a

(
τ − s

2

)
+ λ

)
G(τ, s)dsdτ.(2.11)

By the method of successive approximations we can show that this equation has a
unique continuous solution. In fact, set

G0(ξ, η) =
1

4

∫ ξ

η

(
a
(τ

2

)
+ λ

)
dτ,

Gn(ξ, η) =
1

4

∫ ξ

η

∫ η

0

(
a

(
τ − s

2

)
+ λ

)
Gn−1(τ, s)dsdτ

and denote M = sup0≤x≤1 |a (x) + λ|. Then one can readily show that

|G0(ξ, η)| ≤ 1

4
M(ξ − η) ≤ M,

|G1(ξ, η)| ≤ M2ξη,

|G2(ξ, η)| ≤ M3

(2!)2
ξ2η2,

and, by induction,

|Gn(ξ, η)| ≤ Mn+1

(n!)2
ξnηn.

These estimates show that the series

G(ξ, η) =
∞∑

n=0

Gn(ξ, η)

converges absolutely and uniformly in 0 ≤ η ≤ ξ ≤ 2, and then its sum is a continuous
solution of (2.11). Moreover, it follows from (2.11) that G is twice continuously
differentiable because a ∈ C1[0, 1]. Indeed, differentiating (2.11) with respect to ξ
gives

∂G(ξ, η)

∂ξ
=
1

4

(
a

(
ξ

2

)
+ λ

)
+
1

4

∫ η

0

(
a

(
ξ − s

2

)
+ λ

)
G(ξ, s)ds,

which implies that ∂G(ξ,η)
∂ξ is continuous since G(ξ, η) is continuous. By analogy, we

can show that other derivatives of G are continuous.
Remark 2.3. The proof of Lemma 2.2 provides a numeric computation scheme

of successive approximation to compute the kernel function k in our feedback laws
(2.2) and (2.3). This makes the feedback laws (2.2) and (2.3) implementable in real
problems.
Lemma 2.4. Let k(x, y) be the solution of problem (2.1) and define the linear

bounded operator K : Hi(0, 1)→ Hi(0, 1) (i = 0, 1, 2) by

w(x) = (Ku)(x) = u(x) +

∫ x

0

k(x, y)u(y)dy for u ∈ Hi(0, 1).(2.12)

Then
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1. K has a linear bounded inverse K−1 : Hi(0, 1)→ Hi(0, 1) (i = 0, 1, 2), and
2. K converts the system (2.2) and (2.4) and the system (2.3) and (2.4) into
(2.8) and (2.9), respectively.

Proof. To prove that (2.12) has a bounded inverse, we set

v(x) =

∫ x

0

k(x, y)u(y)dy

and then

w(x) = u(x) + v(x).

Hence we have

v(x) =

∫ x

0

k(x, y)[w(y)− v(y)]dy

=

∫ x

0

k(x, y)w(y)dy −
∫ x

0

k(x, y)v(y)dy.

(2.13)

To show that this equation has a unique continuous solution, we set

v0(x) =

∫ x

0

k(x, y)w(y)dy,

vn(x) = −
∫ x

0

k(x, y)vn−1(y)dy

and denote M = sup0≤y≤x≤1 |k(x, y)|. Then

|v0(x)| ≤ M‖w‖,
|v1(x)| ≤ M2‖w‖x,
|v2(x)| ≤ M3‖w‖

2!
x2,

and, by induction,

|vn(x)| ≤ Mn+1‖w‖
n!

xn.

These estimates show that the series

v(x) =

∞∑
n=0

vn(x)

converges absolutely and uniformly in 0 ≤ x ≤ 1 and that its sum is a continuous
solution of (2.13). Moreover, there exists a constant C > 0 such that

‖v‖ ≤ C‖w‖.(2.14)

This implies that there exists a bounded linear operator Φ : L2(0, 1)→ L2(0, 1) such
that

v(x) = (Φw)(x)



1038 WEIJIU LIU

and then

u(x) = w(x)− v(x) = ((I − Φ)w)(x) = (K−1w)(x).(2.15)

It is clear that K−1 : L2(0, 1)→ L2(0, 1) is bounded. To show that K−1 : H1(0, 1)→
H1(0, 1) is bounded, we take the derivative in (2.13) and obtain

vx(x) = k(x, x)w(x) +

∫ x

0

kx(x, y)w(y)dy − k(x, x)v(x)−
∫ x

0

kx(x, y)v(y)dy,

which, combined with (2.14), implies that there exists constant C > 0 such that

‖vx‖ ≤ C‖w‖
and then by (2.15)

‖u‖H1 ≤ ‖w‖H1 + ‖v‖H1 ≤ C‖w‖H1 .

By analogy, we can show that K−1 : H2(0, 1)→ H2(0, 1) is bounded.
To prove that the transformation (2.12) converts the system (2.2) and (2.4) and

the system (2.3) and (2.4) into (2.8) and (2.9), respectively, we compute as follows:

wt(x, t) = ut(x, t) +

∫ x

0

k(x, y)ut(y, t)dy(2.16)

= ut(x, t) +

∫ x

0

k(x, y)[uyy(y, t) + a(y)u(y, t)]dy

= ut(x, t) + k(x, x)ux(x, t)− k(x, 0)ux(0, t)

− ky(x, x)u(x, t) + ky(x, 0)u(0, t)

+

∫ x

0

[kyy(x, y)u(y, t) + k(x, y)a(y)u(y, t)]dy,

wx(x, t) = ux(x, t) + k(x, x)u(x, t) +

∫ x

0

kx(x, y)u(y, t)dy,(2.17)

wxx(x, t) = uxx(x, t) +
d

dx
(k(x, x))u(x, t) + k(x, x)ux(x, t)(2.18)

+ kx(x, x)u(x, t) +

∫ x

0

kxx(x, y)u(y, t)dy.

It then follows from (2.1) and (2.4) that

(2.19)

wt − wxx + λw = ut(x, t) + k(x, x)ux(x, t)− k(x, 0)ux(0, t)

−ky(x, x)u(x, t) + ky(x, 0)u(0, t)

+

∫ x

0

[kyy(x, y)u(y, t) + k(x, y)a(y)u(y, t)]dy

−uxx(x, t)− d

dx
(k(x, x))u(x, t)− k(x, x, t)ux(x, t)

−kx(x, x)u(x, t)−
∫ x

0

kxx(x, y)u(y, t)dy

+λu(x, t) + λ

∫ x

0

k(x, y)u(y, t)dy
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=

(
a(x)− kx(x, x)− ky(x, x)− d

dx
(k(x, x)) + λ

)
u(x, t)

+ky(x, 0)u(0, t)− k(x, 0)ux(0, t)

+

∫ x

0

[kyy(x, y)− kxx(x, y, t) + (a(y) + λ)k(x, y, t)]u(y, t)dy

= 0.

By the boundary condition of (2.4), we deduce that w(0, t) = 0. Using feedback law
(2.2) or (2.3), we obtain

w(1, t) = u(1, t) +

∫ 1

0

k(1, y)u(y, t)dy = 0

or

wx(1, t) = ux(1, t) + k(1, 1)u(1, t) +

∫ 1

0

kx(1, y)u(y, t)dy = 0.

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1. We first note that problem (2.4) with either (2.2) or (2.3)

is well posed since, by Lemma 2.4, they can be transformed to the problem (2.8) or
(2.9) via the isomorphism defined by (2.12), and the problem (2.8) or (2.9) is well
posed (see, e.g., [9, Chap. IV]). Moreover, there exists a positive constant C > 0 such
that

‖u(t)‖H1 ≤ C‖w(t)‖H1 ,

‖w0‖H1 ≤ C‖u0‖H1 .

Therefore, it is sufficient to prove (2.7) for the solution w of (2.8) or (2.9). We do so
only for problem (2.8) since the situation for problem (2.9) is similar.

We define the energy

E(t) =
1

2

∫ 1

0

w(x, t)2dx.

Multiplying the first equation of (2.8) by w and integrating from 0 to 1 by parts we
get

Ė(t) = wxw
∣∣∣1
0
−
∫ 1

0

wx(x, t)
2dx− λ

∫ 1

0

w(x, t)2dx

= −
∫ 1

0

wx(x, t)
2dx− λ

∫ 1

0

w(x, t)2dx

≤ −2λE(t),
which implies

E(t) ≤ E(0)e−2λt for t ≥ 0.

Set

V (t) =

∫ 1

0

wx(x, t)
2dx.
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Multiplying the first equation of (2.8) by wxx and integrating from 0 to 1 by parts we
obtain

V̇ (t) = −2
∫ 1

0

w2
xxdx+ 2λ

∫ 1

0

wwxxdx

= −2
∫ 1

0

w2
xxdx− 2λ

∫ 1

0

w2
xdx

≤ −2λV (t),

which implies that

V (t) ≤ V (0)e−2λt.

This shows that (2.7) holds.

3. Neumann boundary conditions. To stabilize the Neumann boundary
value problem

{
ut(x, t) = uxx(x, t) + a(x)u(x, t) in (0, 1)× (0,∞),
ux(0, t) = ux(1, t) = 0 in (0,∞),

we consider the problem




kxx(x, y)− kyy(x, y) = (a(y) + λ)k(x, y), 0 ≤ y ≤ x ≤ 1,
ky(x, 0) = 0, 0 ≤ x ≤ 1,
kx(x, x) + ky(x, x) +

d
dx (k(x, x)) = a(x) + λ, 0 ≤ x ≤ 1,

k(0, 0) = 0,

(3.1)

where λ is any constant. Using the solution k, we then obtain Dirichlet boundary
feedback law

u(1, t) = −
∫ 1

0

k(1, y)u(y, t)dy in (0,∞)(3.2)

and Neumann boundary feedback law

ux(1, t) = −k(1, 1)u(1, t)−
∫ 1

0

kx(1, y)u(y, t)dy in (0,∞).(3.3)

With one of the boundary feedback laws, the system




ut(x, t) = uxx(x, t) + a(x)u(x, t) in (0, 1)× (0,∞),
ux(0, t) = 0 in (0,∞),
u(x, 0) = u0(x) in (0, 1)

(3.4)

is exponentially stable. To state this result, we introduce the compatible conditions
for the initial data

u0
x(0) = 0, u0(1) = −

∫ 1

0

k(1, y)u0(y)dy,(3.5)

u0
x(0) = 0, u0

x(1) = −k(1, 1)u0(1)−
∫ 1

0

kx(1, y)u
0(y)dy.(3.6)
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Theorem 3.1. Assume that λ > 0 is any positive constant and a ∈ C1[0, 1] is
any function. For arbitrary initial data u0(x) ∈ H1(0, 1) with the compatible condition
(3.5) or (3.6), equation (3.4) with either (3.2) or (3.3) has a unique solution that
satisfies

‖u(t)‖H1 ≤ M‖u0‖H1e−λt,

where M is a positive constant independent of u0.

Proof. The proof is the same as that of Theorem 2.1. The only thing we need to
do is to show that problem (3.1) has a unique solution. This is given in Lemma 3.2
below.

Lemma 3.2. Suppose that a ∈ C1[0, 1]. Then problem (3.1) has a unique solution
which is twice continuously differentiable in 0 ≤ y ≤ x ≤ 1.

Proof. Using the variable changes

ξ = x+ y, η = x− y

and denoting

G(ξ, η) = k(x, y) = k

(
ξ + η

2
,
ξ − η

2

)
,

problem (3.1) is transformed into




Gξη(ξ, η) =
1
4

(
a
(

ξ−η
2

)
+ λ

)
G(ξ, η), 0 ≤ η ≤ ξ ≤ 2,

Gξ(ξ, ξ) = Gη(ξ, ξ), 0 ≤ ξ ≤ 2,
∂
∂ξ (G(ξ, 0)) =

1
4

(
a
(

ξ
2

)
+ λ

)
, 0 ≤ ξ ≤ 2,

G(0, 0) = 0.

(3.7)

Integrating the first equation of (3.7) with respect to η from 0 to ξ gives

Gξ(ξ, ξ) = Gξ(ξ, 0) +
1

4

∫ ξ

0

(
a

(
ξ − s

2

)
+ λ

)
G(ξ, s)ds

=
1

4

(
a

(
ξ

2

)
+ λ

)
+
1

4

∫ ξ

0

(
a

(
ξ − s

2

)
+ λ

)
G(ξ, s)ds.

It then follows from the second equation of (3.7) that

d

dξ
[G(ξ, ξ)] = Gξ(ξ, ξ) +Gη(ξ, ξ)

= 2Gξ(ξ, ξ)

=
1

2

(
a

(
ξ

2

)
+ λ

)
+
1

2

∫ ξ

0

(
a

(
ξ − s

2

)
+ λ

)
G(ξ, s)ds.

Integrating from 0 to ξ and using the fourth equation of (3.7) gives

G(ξ, ξ) =
1

2

∫ ξ

0

(
a
(τ

2

)
+ λ

)
dτ +

1

2

∫ ξ

0

∫ τ

0

(
a

(
τ − s

2

)
+ λ

)
G(τ, s)dsdτ.(3.8)
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Integrating twice the first equation of (3.7) first with respect to η from 0 to η and
second with respect to ξ from η to ξ and using (3.8), we obtain the following integral
equation:

G(ξ, η) =
1

2

∫ η

0

(
a
(τ

2

)
+ λ

)
dτ +

1

2

∫ η

0

∫ τ

0

(
a

(
τ − s

2

)
+ λ

)
G(τ, s)dsdτ

+
1

4

∫ ξ

η

(
a
(τ

2

)
+ λ

)
dτ +

1

4

∫ ξ

η

∫ η

0

(
a

(
τ − s

2

)
+ λ

)
G(τ, s)dsdτ.

(3.9)

As in the proof of Lemma 2.2, by the method of successive approximations we can
show that this equation has a unique continuous solution. Moreover, it follows from
(3.9) that G is twice continuously differentiable because a ∈ C1[0, 1].

Similar to Lemma 2.4, we have the following lemma.
Lemma 3.3. Let k(x, y) be the solution of problem (3.1) and define the linear

bounded operator K : Hi(0, 1)→ Hi(0, 1) (i = 0, 1, 2) by

w(x) = (Ku)(x) = u(x) +

∫ x

0

k(x, y)u(y)dy for u ∈ Hi(0, 1).

Then
1. K has a linear bounded inverse K−1 : Hi(0, 1)→ Hi(0, 1) (i = 0, 1, 2), and
2. K converts the system (3.2) and (3.4) and the system (3.3) and (3.4) into




wt = wxx − λw in (0, 1)× (0,∞),
wx(0, t) = w(1, t) = 0 in (0,∞),
w(x, 0) = w0(x) in (0, 1)

or 


wt = wxx − λw in (0, 1)× (0,∞),
wx(0, t) = wx(1, t) = 0 in (0,∞),
w(x, 0) = w0(x) in (0, 1),

respectively, where w0(x) = u0(x) +
∫ x

0
k(x, y)u0(y)dy.

4. Remarks. An interesting problem is to stabilize the problem

ut(x, t) = uxx(x, t) + a(x, t)u(x, t),

where the function a depends on t. To address the problem, it can been seen from
the computations in (2.16)–(2.19) that we have to consider the problem




kxx(x, y, t)− kyy(x, y, t)− kt(x, y, t) = (a(y, t) + λ)k(x, y, t), 0 ≤ y ≤ x ≤ 1,
ky(x, 0, t) = 0, 0 ≤ x ≤ 1,
kx(x, x, t) + ky(x, x, t) +

∂
∂x (k(x, x, t)) = a(x, t) + λ, 0 ≤ x ≤ 1,

where λ is any constant. But we do not know if this problem has a solution. Once
we can show that this problem has a solution, all the results in sections 2 and 3 hold
immediately.
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