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Abstract. We establish a uniform boundary Harnack principle for a uniform

domain. As applications we study the HoÈlder continuity of the ratios of positive

harmonic functions, the Martin boundary and the Fatou theorem for a uniform domain.

1. Introduction.

There is an extensive literature on the boundary Harnack principle (ab-

breviated to BHP). BHP is a principle of the following type: Let D be a

domain in R
n with a certain geometric property. Let V be an open set and K

a compact subset of V intersecting qD. Then there is a positive constant

A � A�D;V ;K� such that

u�x�=v�x�

u�y�=v�y�
UA for x; y A K VD;�1:1�

whenever u and v are positive harmonic functions on D with vanishing boundary

values on V V qD.

By the symbol A we denote an absolute positive constant whose value is

unimportant and may change from line to line. If necessary, we use A0;A1; . . . ;

to specify them. We shall say that two positive functions f1 and f2 are

comparable, written f1A f2, if and only if there exists a constant AV 1 such that

Aÿ1 f1 U f2 UAf1. The constant A will be called the constant of comparison.
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Then (1.1) can read

u�x�

v�x�
A

u�y�

v�y�
for x; y A K VD

with constant of comparison depending only on D, V and K. Let dD�x� �

dist�x; qD�. If D is su½ciently smooth, then

u�x�

u�y�
A

dD�x�

dD�y�
for x; y A K VD;

for a positive harmonic function u on D with vanishing boundary values on

V V qD ([23]). Hence (1.1) follows in this case.

BHP for nonsmooth domains is not so easy. For a Lipschitz domain

BHP was obtained independently by Ancona [4], Dahlberg [12] and Wu [24].

Ca¨arelli, Fabes, Mortola and Salsa [10] proved BHP for positive solutions of

elliptic equations in divergence form with nonsmooth coe½cients on a bounded

Lipschitz domain. Jerison and Kenig [17] introduced NTA domains and ex-

tended BHP to NTA domains. Anderson and Schoen [5] proved BHP for a

complete manifold of negative curvature. BanÄuelos, Bass and Burdzy ([9], [7]

and [8]) employed probabilistic techniques and proved BHP for HoÈlder domains.

The signi®cant aspect of the work of BanÄuelos, Bass and Burdzy is that they

proved BHP without any exterior condition. However, BHP of BanÄuelos, Bass

and Burdzy is weaker than the previous BHP. It is not uniform. As was

observed by Jerison and Kenig [17], the uniform BHP is important for further

applications such as the Martin boundary, the HoÈlder continuity of the kernel

functions, H p and BMO spaces.

The main aim of the present paper is to establish a uniform BHP for a

uniform domain. We say that D is a uniform domain if there exist constants A

and A 0 such that each pair of points x1; x2 A D can be joined by a recti®able

curve gHD for which

l�g�UAjx1 ÿ x2j;�1:2�

minfl�g�x1; y��; l�g�x2; y��gUA 0dD�y� for all y A g:�1:3�

Here, l�g� and g�xj; y� denote the length of g and the subarc of g connecting

xj and y, respectively (See [14] and [22]). Roughly speaking, a uniform domain

is a domain satisfying only the interior conditions for an NTA domain (see [17]).

We have

LipschitzSNTAS uniformS John:

By B�x; r� we denote the open ball with center at x and radius r. A simple

example of a uniform domain is the unit ball minus a closed line segment, e.g.
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B�0; 1�nL with L � f�x1; 0; . . . ; 0� : jx1jU 1=2g for nV 3. For another example

see Proposition 1. In fact, a uniform domain enjoys only an interior condition

and so it may admit irregular boundary points. Moreover, a surface ball

qDVB�x; r� may be a polar set. Hence, we always consider a generalized

Dirichlet problem, i.e. boundary values have meaning outside a polar set. For

simplicity, we shall say that a property holds q.e. (quasi everywhere) if it holds

outside a polar set. We show the following uniform BHP.

Theorem 1. Let D be a uniform domain. Then there exists a constant

A0 > 1 depending only on D with the following property: Let x A qD and let

R > 0 be su½ciently small. Suppose u and v are positive harmonic functions on

DVB�x;A0R�, bounded on DVB�x;A0R� and vanishing q.e. on qDVB�x;A0R�.

Then

u�x�

v�x�
A

u�x 0�

v�x 0�
uniformly for x; x 0

A DVB�x;R�

where the constant of comparison depends only on D.

Remark 1. We emphasize that the domains of positive harmonic functions

u and v are localized to DVB�x;A0R�. We use localized Green functions and

represent positive harmonic functions as localized Green potentials. This lo-

calization will be useful for the HoÈlder continuity of the ratio u=v. It enables us

to avoid the deep geometric localization theorem due to Jones [18].

Corollary 1. Let D be a uniform domain. Then the global BHP holds.

That is, for an open set V and a compact subset K of V there is a positive constant

A � A�D;V ;K� with the following property: if u and v are positive harmonic

functions on D, bounded on DVV and vanishing q.e. on qDVV, then (1.1) holds.

Theorem 1 has several applications. With the aid of the classical technique

due to Moser [19, Section 5], we can show the HoÈlder continuity of u=v at the

boundary. In general, by oscE f we denote supE f ÿ infE f , the oscillation of f

over E.

Theorem 2. Let D be a uniform domain. Then there exist A > 0 and e > 0

depending only on D with the following property: Let x A qD and let 0 < r < R be

su½ciently small. Suppose u and v are positive harmonic functions on DV

B�x;A0R�, bounded on DVB�x;A0R� and vanishing q.e. on qDVB�x;A0R�.

Then

osc
DVB�x; r�

u

v
UA

r

R

� �e

osc
DVB�x;R�

u

v
:�1:4�
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This result is rather surprising since the functions u and v themselves are not

continuous on qD if D has an irregular boundary point. Combining Theorem

2 and the known interior HoÈlder continuity, we obtain the following HoÈlder

continuity. See Jerison and Kenig [17, Theorem 7.9]

Corollary 2. Let D be a uniform domain. Then there exist positive

constants A and e depending only on D with the following property: Let V be an

open set and K a compact subset of V intersecting qD. If u and v are positive

harmonic functions on D, bounded on DVV and vanishing q.e. on qDVV, then

osc
DVB�x; r�

u

v
UA

r

R

� �e

osc
DVB�x;R�

u

v
�1:5�

for x A DVK and 0 < rURU dist�K ;V c�. In particular,

u�x�=v�x�

u�y�=v�y�
ÿ 1

�

�

�

�

�

�

�

�

UAjxÿ yje for x; y A DVK :

Moreover, the ratio u=v extends to DVK as a HoÈlder continuous function.

We shall show that the Martin boundary of a bounded uniform domain is

homeomorphic to the Euclidean boundary. In general by GU we denote the

Green function for the Laplacian for an open set U. For simplicity we write G

for the Green function for D.

Theorem 3. Let D be a uniform domain. For each x A qD there exists a

unique minimal Martin boundary point, i.e. the limit

K�x; x� � lim
D C y!x

G�x; y�

G�x0; y�

exists and is a minimal harmonic function on D, where x0 is a ®xed point in D.

Moreover, the Martin kernel K�x; x� is a HoÈlder continuous function of x A qD.

Corollary 3. The Martin boundary of a bounded uniform domain is ho-

meomorphic to its Euclidean boundary. Each boundary point is minimal.

The coincidence of the Martin boundary and the Euclidean boundary was

given by Hunt and Wheeden [16] for a Lipschitz domain and by Jerison and

Kenig [17] for an NTA domain. Our proof of Theorem 3 is di¨erent from those

in [16] and [17]. They regarded the Martin kernel as the limit of the ratio of the

harmonic measures. In the present setting, the harmonic measure of a surface

ball may vanish. Hence we regard a kernel function as the ratio of the Green

functions and we estimate them directly by using BHP. In fact, if D � B�0; 1�nL

for nV 3 as before Theorem 1, then L is polar, so that D and B�0; 1� have the
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same Green function and the same harmonic measure. It is easy to see that the

Martin boundary of D is the union of the unit sphere and L. From the ratios of

the harmonic measure, we cannot retrieve the Martin kernel with pole on L.

So far, we have observed that a uniform domain enjoys the same properties

as an NTA domain, although it satis®es only the interior conditions. However,

the harmonic measure of a uniform domain does not satisfy the doubling

property. The lack of the doubling property of the harmonic measure causes

strange phenomena. As an illustration let us consider the Fatou theorem. This

is just on the border line; the global Fatou theorem holds and yet the local

Fatou theorem does not hold. For x A qD we let Ga�x� � fx A D : jxÿ xj <

�1� a�dD�x�g where a > 0. This is a nontangential approach region to x. We

say that a function u de®ned on D has nontangential limit c at x if for any a,

u�x� restricted Ga�x� converges to c as x ! x. Let oD be the harmonic measure

of D. We have the following global Fatou theorem.

Theorem 4. Let D be a uniform domain. Then every positive harmonic

function u on D has nontangential limits a.e. oD on qD, i.e. there is a set EH qD

with oD�E� � 0 such that u has nontangential limits for x A qDnE.

Let us consider a local Fatou theorem. A truncated nontangential approach

region at x is denoted by G h
a �x� � Ga�x�VB�x; h�. We say that a function u

de®ned on D is nontangentially bounded from below at x A qD if there exist

positive constants a, h and A such that u�x�VÿA for all x A G h
a �x�. Let

F H qD. We say that a function u is nontangentially bounded from below on F

if u is nontangentially bounded from below at every point of F. Jerison and

Kenig [17, Theorem 6.4] proved the following.

Theorem A. Let D be an NTA domain. Assume that u is harmonic in D

and nontangentially bounded from below on F H qD. Then u has nontangential

limits a.e. oD on F.

For a uniform domain such a local Fatou theorem does not necessarily hold.

Proposition 1. There exist a bounded uniform domain D, a countable set

EH qD, and a harmonic function u on D nontangentially bounded on qDnE which

fails to have nontangential limits on qDnE.

Plan. Our proofs are di¨erent from the previous ones, since we assume no

exterior conditions. Traditionally, BHP is proved by the Carleson estimate for

positive harmonic functions vanishing on a portion of the boundary ([11]) and the

comparison of harmonic measures of a `box'; the Fatou theorem is proved by the

maximal function with respect to the harmonic measure. In the present settings,

however, the Carleson estimate for a general harmonic function is not available
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at ®rst (see Remark 2 below); the harmonic measure of the domain does not have

the doubling property, so that the maximal function is irrelevant. Our approach

must be di¨erent. The main ingredients are as follows:

(i) Dominate the harmonic measure of the intersection of the domain and a

ball by the local Green function with pole near the ball (Lemma 2).

(ii) Compare the ratios of the local Green functions with the aid of the

Carleson estimate for the Green function (Lemma 3).

(iii) Represent a harmonic function as a local Green potential and use the

above comparison (Proof of Theorem 1).

(iv) Use the classical Moser technique to obtain the HoÈlder continuity.

Avoid the deep geometric localization due to Jones. (Proof of Theorems 2

and 3).

(v) Invoke the general minimal ®ne limit theorem and compare the minimal

®ne ®lter and nontangential ®lter in order to prove the Fatou theorem (Proof of

Theorem 4).

The most di½cult part is (i), for which we borrow the probabilistic idea of

Bass and Burdzy [9]. The next section will prepare some technical materials for

this part. In fact, Bass and Burdzy employed a deep probabilistic argument for

their BHP. Their deep argument can be avoided by our (ii) and (iii).

Acknowledgment. The author would like to thank Tomohiko Mizutani

and TorbjoÈrn Lundh for careful reading of the manuscript of the paper and

valuable discussions. He also would like to thank Stephen Gardiner for a

suggestion in the exposition of Proposition 1. He is very grateful to the referee

for many useful comments.

2. Preliminaries.

In the previous paper [1] (see [2] for other applications), we introduced the

notion of capacitary width. Let U be an open set with Green function GU .

De®ne the Green capacity CapU�E� for a Borel set EHU by

CapU�E� � supfm�E� : GUmU 1 on U ; m is a Borel measure supported on Eg:

In the usual way CapU�E� extends to a general set EHU .

Definition. Let 0 < h < 1. For U HR
n we de®ne the capacitary width

wh�U� by

wh�U� � inf r > 0 :

CapB�x;2r��B�x; r�nU�

CapB�x;2r��B�x; r��
V h for all x A U

( )

:

Fundamental properties of capacitary widths are given in [1]. For the

completeness we repeat them. We note that the constant h, 0 < h < 1, is not so
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important. In fact, if 0 < h1 < h2 < 1, then

wh1�U�Uwh2�U�UAwh1�U� for any U HR
n
;

where A depends only on the dimension n, h1 and h2 ([1, Proposition 2]).

Hereafter, we ®x h, 0 < h < 1.

In view of the de®nition of a uniform domain, it is easy to see that

wh�fx A D : dD�x� < rg�UAr for small r > 0;�2:1�

whenever D is a uniform domain.

We denote the harmonic measure of E for an open set U by oU�E� or by

o�� ;E;U�. We write C�x; r� and S�x; r� for the closed ball and the sphere of

center at x and radius r, respectively. Harmonic measures and capacitary widths

are related as in the following key lemma. This lemma is implicitly proved in [1,

Proposition 2].

Lemma 1. There is a positive constant A1 depending only on the dimension

with the following property: if U 0q is open, x A U and R > 0, then

o�x;U VS�x;R�;U VB�x;R��U exp 2ÿ A1
R

wh�U�

� �

:�2:2�

Proof. For an arbitrary e > 0 we have r, wh�U�U r < wh�U� � e such that

CapB�y;2r��B�y; r�nU�

CapB�y;2r��B�y; r��
V h for all y A U :�2:3�

For a moment we ®x y A U and let E � B�y; r�nU and GB the Green function for

B�y; 2r�. Let mE be the capacitary measure of E, i.e.

mE is supported on E;

kmEk � CapB�y;2r��E�;

GBmE � 1 q:e: on E:

We claim

GBmE VA2h on C�y; r�;�2:4�

where A2 depends only on the dimension. To this end let n be the capacitary

measure of B�y; r�. Then n is supported on S�y; r� and knk � CapB�y;2r��B�y; r��.

By the Harnack inequality

GB�� ; x�AGB�� ; y� on S�y; 32 r�

uniformly for x A C�y; r�. Hence
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GBmE�z� �

�
E

GB�z; x� dmE �x�AGB�z; y�kmEk;

GBn�z� �

�
S�y; r�

GB�z; x� dn�x�AGB�z; y�knk

uniformly for z A S�y; 3=2r�. Since GBnA1 on S�y; 3=2r�, it follows from (2.3)

that

GBmEA
GBmE
GBn

A
kmEk

knk
�

CapB�y;2r��E�

CapB�y;2r��B�y; r��
V h

on S�y; 3=2r�. By the maximum principle (2.4) follows.

Now let us move on to the proof of (2.2). For simplicity we write W for

o�� ;U VS�x;R�;U VB�x;R��. Without loss of generality we may assume that

R=wh�U� > 2 and let k be the positive integer such that 2kwh�U� < RU

2�k � 1�wh�U�. Take r > wh�U� so close to wh�U� that 2kr < R holds. We

claim

sup
U VC�x;Rÿ2jr�

WU �1ÿ A2h�
j�2:5�

for j � 0; 1; . . . ; k. Since kAR=wh�U�, (2.5) implies (2.2). Thus we have only

to show (2.5). Let us prove (2.5) by induction. Obviously, (2.5) holds for

j � 0. We assume that (2.5) holds for j ÿ 1 and we shall prove (2.5) for jV 1.

In view of the maximum principle, it is su½cient to show that

sup
U VS�x;Rÿ2jr�

WU �1ÿ A2h�
j:�2:6�

Let y A U VS�x;Rÿ 2jr�. Then C�y; 2r�HC�x;Rÿ 2� j ÿ 1�r�, so that (2.5) for

j ÿ 1 implies

WU �1ÿ A2h�
jÿ1 on U VC�y; 2r�:

Since W vanishes q.e. on qU VB�x;R�I qU VB�y; 2r�, it follows from the

maximum principle that

WU �1ÿ A2h�
jÿ1

o�� ;U VS�y; 2r�;U VB�y; 2r�� on U VB�y; 2r�:�2:7�

Let us compare o�� ;U VS�y; 2r�;U VB�y; 2r�� and 1ÿ GBmE , where GBmE is as

in (2.4). Then

o��;U VS�y; 2r�;U VB�y; 2r��U 1ÿ GBmE on U VB�y; 2r�

by the maximum principle. In particular,

o�y;U VS�y; 2r�;U VB�y; 2r��U 1ÿ GBmE�y�U 1ÿ A2h
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by (2.4). Substituting this to (2.7), we obtain W�y�U �1ÿ A2h�
j. Hence (2.6)

and so (2.5) follows. The proof is complete. r

3. Proof of Theorem 1.

The proof of Theorem 1 is based on uniform estimates of the Green

function. Throughout this section we assume that D is a uniform domain and

we let x A qD and R > 0. We shall give uniform estimates independent of x and

R. All constants, implicit and explicit, will be independent of x and R, unless

otherwise speci®ed.

To facilitate the argument we introduce the quasi-hyperbolic metric

kD�x1; x2� de®ned by

kD�x1; x2� � inf
g

�
g

ds

dD�x�
;

where the in®mum is taken over all recti®able arcs g joining x1 to x2 in D. We

observe that the shortest length of a Harnack chain connecting x1 and x2 is

comparable to kD�x1; x2�. Hence, in view of the Harnack inequality, there is a

positive constant A3 depending only on the dimension n such that

exp�ÿA3kD�x1; x2��U
h�x1�

h�x2�
U exp�A3kD�x1; x2��

for every positive harmonic function h.

For a uniform domain the following observation is important: if dD�x1�V

aR, dD�x2�V bR and jx1 ÿ x2jU cR, then kD�x1; x2�UA, where A depends only

on a, b, c and D. Hence h�x1�Ah�x2� for any positive harmonic function h on

D, where the constant of comparison depends only on a, b, c and D. Moreover

observe that there is A4, 0 < A4 < 1 such that

A4RU sup
x ADVS�x;R�

dD�x�UR

for x A qD and R > 0 su½ciently small, say 0 < R < 8R�. Let us take

xR A DVS�x; 4R� with 4A4RU dD�xR�U 4R for 0 < R < 2R�. Then, it is not so

di½cult to see that

kD�x; xR�UA log
10R

dD�x�
for x A DVB�x; 9R�;�3:1�

where A is independent of the choice of xR. In the sequel, estimates will be

independent of the choice of xR.

In view of the de®nition of a uniform domain, we ®nd A5 > 9 depending

only on D such that DVB�x; 9R� is included in a connected component of
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DVB�x;A5R� and

kDVB�x;A5R��x; y�U kD�x; y� � A for x; y A DVB�x; 9R�:�3:2�

For simplicity we let DR � DVB�x; �A5 � 7�R� and D 0
R � DVB�x;A5R�. By GR

and G 0
R we denote the Green functions for DR and D 0

R, respectively. Obviously,

GR VG 0
R on D 0

R �D 0
R. Note that D 0

R needs not be connected and so G 0
R�� ; xR�

may vanish on some component of D 0
R. However, in view of (3.1) and (3.2),

DVB�x; 9R� is included in the component containing xR, and hence G 0
R�� ; xR� > 0

on DVB�x; 9R�.

Let us begin with a comparison of the Green function and the harmonic

measure.

Lemma 2. Let x A qD and 0 < R < 2R�. Then

o��;DVS�x; 2R�;DVB�x; 2R��UARnÿ2G 0
R��; xR�

UARnÿ2GR�� ; xR� on DVB�x;R�;

where A depends only on D.

Proof. It is su½cient to show the ®rst inequality. We follow the idea of

[9]. Since

C�xR; 2
ÿ1dD�xR��HDVC�x; 6R�nB�x; 2R�HD 0

RnB�x; 2R�;

it follows from the maximum principle that

G 0
R�� ; xR�U sup

y AS�xR;2ÿ1dD�xR��

G 0
R�y; xR� on DVB�x; 2R�:

It is easy to see that the right hand side is comparable to R2ÿn. Hence we

can ®nd A6 > 0 depending only on D such that A6R
nÿ2G 0

R�� ; xR� < 1=e on

DVB�x; 2R�. Then

DVB�x; 2R� � 6
jV0

Dj VB�x; 2R�;�3:3�

where

Dj � fx A D : exp�ÿ2 j�1�UA6R
nÿ2G 0

R�x; xR� < exp�ÿ2 j�g:

Let Uj � �6
kVj

Dk�VB�x; 2R�. We claim

wh�Uj�UAR exp ÿ
2 j

l

� �

�3:4�

with some l > 0 depending only on D. Suppose x A Uj. Observe from (3.1)
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and (3.2) that if z A S�xR; 1=2dD�xR��, then

kD 0
R
nfxRg�x; z�U kD 0

R
�x; xR� � AUA 0 log

10R

dD�x�
:

Since G 0
R�z; xR�AR2ÿn for z A S�xR; 1=2dD�xR��, it follows from the Harnack

inequality that

exp�ÿ2 j� > A6R
nÿ2G 0

R�x; xR�

VARnÿ2G 0
R�z; xR� exp�ÿA3kD 0

R
nfxRg�x; z��V

dD�x�

10R

� �l

with l > 0 depending only on D. Hence

dD�x�U 10R exp ÿ
2 j

l

� �

:

This, together with (2.1), yields (3.4).

Now we use an inductive argument. Let R0 � 2R and

Rj � 2ÿ
6

p2

X

j

k�1

1

k2

 !

R

for jV 1. Then Rj # R and

X

y

j�1

exp 2 j�1 ÿ
Rjÿ1 ÿ Rj

AR exp�ÿ2 j=l�

� �

�3:5�

�
X

y

j�1

exp 2 j�1 ÿ
6

Ap2
jÿ2 exp

2 j

l

� �� �

< y:

We emphasize that the value of the series in (3.5) is independent of R. Let

o0 � o�� ;DVS�x; 2R�;DVB�x; 2R�� and

dj �
sup

x ADj VB�x;Rj�

o0�x�

Rnÿ2G 0
R�x; xR�

if Dj VB�x;Rj�0q,

0 if Dj VB�x;Rj� � q.

8

>

<

>

:

In view of (3.3) it is su½cient to show that

sup
jV0

dj UA < y;�3:6�

where A is independent of R.
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Let j > 0. Then the maximum principle yields that

o0�x�Uo�x;Uj VS�x;Rjÿ1�;Uj VB�x;Rjÿ1�� � djÿ1R
nÿ2G 0

R�x; xR��3:7�

for x A Uj VB�x;Rjÿ1�. See Figure 1. If x A B�x;Rj�, then B�x;Rjÿ1 ÿ Rj�V

S�x;Rjÿ1� � q, so that the ®rst term in the right hand side of (3.7) is not greater

than

o�x;Uj VS�x;Rjÿ1 ÿ Rj�;Uj VB�x;Rjÿ1 ÿ Rj��

U exp 2ÿ A1
Rjÿ1 ÿ Rj

wh�Uj�

� �

U exp 2ÿ Ajÿ2 exp
2 j

l

� �� �

by Lemma 1 and (3.4). Moreover, A6R
nÿ2G 0

R�x; xR�V exp�ÿ2 j�1� for x A Dj by

de®nition. Hence (3.7) becomes

o0�x�U exp 2ÿ Ajÿ2 exp
2 j

l

� �� �

� djÿ1R
nÿ2G 0

R�x; xR�

U A6 exp 2� 2 j�1 ÿ Ajÿ2 exp
2 j

l

� �� �

� djÿ1

� �

Rnÿ2G 0
R�x; xR�

for x A Dj VB�x;Rj�. Dividing both sides by Rnÿ2G 0
R�x; xR� and taking the

supremum over x A Dj VB�x;Rj�, we obtain

dj UA6 exp 2� 2 j�1 ÿ Ajÿ2 exp
2 j

l

� �� �

� djÿ1

and hence

Figure 1. Maximum principle over Uj VB�x;Rjÿ1�.
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di UA6

X

y

j�1

exp 2� 2 j�1 ÿ Ajÿ2 exp
2 j

l

� �� �

� d0 < y

by (3.5). By de®nition d0 UA6e
2. Thus (3.6) follows and the lemma is

proved. r

We need an estimate for the Green function which will substitute the

Carleson estimate. We have

GR�x; y�UAR2ÿn uniformly for x A DVB�x; 2R�; y A DVB�x; 9R�nB�x; 3R�;

where A is independent of R, since the diameter of DR is bounded by R up to a

multiplicative constant. It is important to localize the Green function. If we

replace GR by G, then the above inequality holds for nV 3, but not for n � 2 in

general.

Lemma 3. Let x A qD and 0 < R < R�. Then

GR�x; y�

GR�x 0; y�
A

GR�x; y
0�

GR�x 0; y 0�
for x; x 0 A DVB�x;R� and y; y 0 A DVS�x; 6R�

with the constant of comparison depending only on D.

Proof. Let us take x� A DVS�x;R� and y� A DVS�x; 6R� such that

A4RU dD�x
��UR and 6A4RU dD�y

��U 6R. It is su½cient to show

GR�x; y�A
GR�x

�; y�

GR�x�; y��
GR�x; y

���3:8�

for x A DVB�x;R� and y A DVS�x; 6R�.

First we show that the left hand side of (3.8) is not less than the right hand

side of (3.8) up to a multiplicative constant. To this end we ®x y A DVS�x; 6R�

and observe that

(i) u�x� � GR�x; y� is a positive harmonic function on DRnfyg with

vanishing q.e. on qDR;

(ii) v�x� � �GR�x
�; y��=�GR�x

�; y���GR�x; y
�� is a positive harmonic func-

tion on DRnfy
�g with vanishing q.e. on qDR.

Since y� A DVS�x; 6R� and 6A4RU dD�y
��U 6R, it follows that

B�y�; 3A4R�HDVB�x; 9R�nB�x; 3R�.

Let us prove uVAv on S�y�;A4R�. Take z A S�y�;A4R�. Then

kDRnfy �g�z; x
��UA, so that

�3:9� v�z� �
GR�x

�; y�

GR�x�; y��
GR�z; y

��A
GR�x

�; y�

GR�x�; y��
GR�x

�; y�� � GR�x
�; y�UAR2ÿn:
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If y A B�y�; 2A4R�, then u�z� � GR�z; y�VAR2ÿn, so that u�z�VAv�z�. If

y A DnB�y�; 2A4R�, then

kDRnfyg�z; x
��U kDR

�z; x�� � AU kD�z; x
�� � A 0

UA 00
;

so that

v�z�AGR�x
�
; y�AGR�z; y� � u�z�

by (3.9). Hence we have uVAv on S�y�;A4R� in any case. By the maximum

principle uVAv on DRnB�y
�;A4R�IDVB�x;R�. Thus the left hand side of

(3.8) is not less than the right hand side of (3.8) up to a multiplicative constant.

See Figure 2.

For the opposite estimate of (3.8) we make use of Lemma 2. It is clear

that GR�x; z�UAR2ÿn
AGR�x

�; y�� for x A DVC�x; 2R� and z A DVB�x; 9R�n

B�x; 3R�. Regarding GR�x; z� as a harmonic function of x, we obtain from the

maximum principle that

GR�� ; z�UAGR�x
�
; y��o�� ;DVS�x; 2R�;DVB�x; 2R�� on DVB�x; 2R�:

We obtain from Lemma 2 and the Harnack inequality that

GR�x; z�UAGR�x
�
; y��Rnÿ2GR�x; xR�UAGR�x; y

���3:10�

for x A DVB�x;R� and z A DVB�x; 9R�nB�x; 3R�. Here we have used the

comparison GR�x
�; y��AR2ÿn and GR�x; xR�AGR�x; y

��. Now ®x x A DV

B�x;R� and y A DVS�x; 6R�. If dD�y�V 2ÿ1A4R, then GR�x; y�AGR�x; y
�� and

GR�x
�; y�AGR�x

�; y�� by the Harnack inequality, so that (3.8) follows. Hence,

we may assume that dD�y� < 2ÿ1A4R. Then we ®nd a point x 0
A qD such that

Figure 2. kDRnf y �g�z; x
��UA for z A S�y�;A4R�.
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jx 0 ÿ yj < 2ÿ1A4R. Observe that y A DVB�x 0; 2ÿ1A4R�HDVB�x 0;R�; 5R <

6Rÿ 2ÿ1A4RU jxÿ x 0jU 6R� 2ÿ1A4R < 7R and B�x 0; 2R�HB�x; 9R�nB�x; 3R�.

Hence (3.10) implies GR�x; z�UAGR�x; y
�� for z A DVB�x 0; 2R�, so that

GR�x; y�UAGR�x; y
��o�y;DVS�x 0; 2R�;DVB�x 0; 2R��:

Let us invoke Lemma 2 with replacing x by x 0. Since jxÿ x 0jU 7R, it

follows that DVB�x 0;A5R�HDVB�x; �A5 � 7�R� � DR. Hence

o�y;DVS�x 0; 2R�;DVB�x 0; 2R��UARnÿ2GDVB�x 0;A5R��y; x
0
R�

UARnÿ2GR�y; x
0
R� � ARnÿ2GR�x

0
R; y�

with x 0
R A DVS�x 0; 4R� such that 4A4RU dD�x

0
R�U 4R. Here we have used the

symmetry of the Green function. Hence

GR�x; y�UAGR�x; y
��Rnÿ2GR�x

0
R; y�:

Observe that jx 0
R ÿ yjV dD�x

0
R� ÿ dD�y�V 4A4Rÿ 1=2A4R � 7=2A4R and jx�ÿ yj

V dD�x
�� ÿ dD�y�VA4Rÿ 1=2A4R � 1=2A4R, so that kDRnfyg�x

0
R; x

��UA.

Hence GR�x
0
R; y�AGR�x

�; y� by the Harnack inequality. See Figure 3. Since

GR�x
�; y��AR2ÿn, it follows that

GR�x; y�UA
GR�x

�; y�

GR�x�; y��
GR�x; y

��

Thus the opposite estimate of (3.8) is proved. The proof is complete. r

In order to prove Theorem 1, we represent u and v as regularized reduced

functions and then as Green potentials. In general let E be a subset of DR and

Figure 3. The case dD�y� < 2ÿ1A4R.
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let u be a positive superharmonic function on DR. Let FE
u be the family of all

positive superharmonic functions v on DR such that vV u on E and let

RE
u �x� � inffv�x� : v A FE

u g:

The lower regularization R̂E
u of RE

u is called the regularized reduced function of

u to E relative to DR. It is known that R̂E
u � u q.e. on E and that R̂E

u is

superharmonic on DR and harmonic on DRnE. For these account we refer to

Helms [15, Chapters 7 and 8]. Here, we emphasize that the global positivity and

superharmonicity of u over DR is essential. If u were positive and superharmonic

only on a neighborhood of E, then the class FE
u could be empty.

Proof of Theorem 1. We prove the theorem with A0 � A5 � 7. Since u is

a positive harmonic function on DR, it follows that R̂
DVS�x;6R�
u is a superharmonic

function on DR such that R̂DVS�x;6R�
u � u q.e. on DVS�x; 6R� and harmonic on

DRnS�x; 6R�. Moreover, R̂DVS�x;6R�
u � 0 q.e. on qDR by assumption. Hence

u � R̂DVS�x;6R�
u on DVB�x; 6R� by the maximum principle; and R̂DVS�x;6R�

u is a

Green potential of a measure m supported on DVS�x; 6R�, i.e.

u�x� �

�
DVS�x;6R�

GR�x; y� dm�y� for x A DVB�x; 6R�:

Let x; x 0 A DVB�x;R� and y; y 0 A DVS�x; 6R�. Then

GR�x; y�A
GR�x; y

0�

GR�x 0
; y 0�

GR�x
0
; y�

by Lemma 3. Hence

u�x�A
GR�x; y

0�

GR�x 0
; y 0�

�
DVS�x;6R�

GR�x
0
; y� dm�y� �

GR�x; y
0�

GR�x 0
; y 0�

u�x 0�:

Therefore,

u�x�

u�x 0�
A

GR�x; y
0�

GR�x 0
; y 0�

uniformly for y 0 A DVS�x; 6R�:

Similarly,

v�x�

v�x 0�
A

GR�x; y
0�

GR�x 0
; y 0�

:

Hence the theorem follows. r

Remark 2. The following Carleson estimate holds: If u is a positive

harmonic function on DVB�x;A0R�, bounded on DVB�x;A0R� and vanishing
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q.e. on qDVB�x;A0R�, then

u�x�UAu�xR� for x A DVB�x;R�;�3:11�

where A > 0 depends only on D. In fact, let v � GDVB�x;3A0R��� ; x
�
R� with

x�
R A DVS�x; 2A0R� and 2A0A4RU dD�x

�
R�U 2A0R. Then v is a positive

harmonic function on DVB�x;A0R�, bounded on DVB�x;A0R� and vanishing

q.e. on qDVB�x;A0R�. Moreover, vUAR2ÿn UAv�xR� on DVB�x;R�. Hence

Theorem 1 yields

u�x�

u�xR�
UA

v�x�

v�xR�
UA for x A DVB�x;R�:

This proves the Carleson estimate (3.11).

The Carleson estimate for the half space was proved by Carleson [11] by the

ingenious use of the exterior condition. The same proof applies to an NTA

domain. The Carleson estimate was an important step of the proof of BHP for

an NTA domain ([17]). For a uniform domain, however, Carleson's trick is not

applicable because of the lack of the exterior condition. In the present setting,

the Carleson estimate is not a tool for BHP, but one of the results of BHP.

Proof of Corollary 1. By the compactness argument we can ®nd a small

R > 0 and ®nitely many boundary points x1; . . . ; xk A qD such that

K V fx A D : dD�x�UR=2gH 6
k

j�1

DVB�xj ;R�;

DVB�xj;A0R�HDVV :

Fix xj A DVB�xj;R�. Then Theorem 1 implies

u�x�

v�x�
A

u�xj�

v�xj�
for x A DVB�xj;R�:

The usual Harnack principle yields

u�x1�

v�x1�
A � � �A

u�xk�

v�xk�
A

u

v
on fx A K : dD�x�VR=2g:

Hence

u�x�

v�x�
A

u�y�

v�y�
for x; y A K VD:

The corollary is proved. r
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Remark 3. By a similar method we can show a (nonuniform) BHP for

more wild domains, such as HoÈlder domains and John domains. Thus we have

an analytic alternative proof of the results of BanÄuelos, Bass and Burdzy ([9], [7]

and [8]). Balogh and Volberg [6] introduced a uniformly John domain, a

domain intermediate between a John domain and a uniform domain. They

proved a BHP for a planar uniformly John domain with uniformly perfect

boundary. Their BHP is uniform with respect to the internal metric. We can

show such a BHP for a uniformly John domain without uniform perfectness of

the boundary. This result will be treated elsewhere.

4. Proof of Theorems 2 and 3.

By Theorem 1 and the classical technique due to Moser [19, Section 5], we

can show the HoÈlder continuity of u=v at the boundary. Let

M�r� � sup
DVB�x; r�

u

v
; m�r� � inf

DVB�x; r�

u

v
:

Then oscDVB�x;r� u=v � M�r� ÿm�r�. Theorem 1 reads

1U
M�r�

m�r�
UA7;

where A7 > 1 depends only on D.

Proof of Theorem 2. We have already seen in Theorem 1 that m�r� and

M�r� are positive and ®nite. Observe that M�r�vÿ u and uÿm�r�v are positive

bounded harmonic functions on DVB�x; r� with vanishing q.e. on qDVB�x; r�.

Hence Theorem 1 applied to these functions and v yields

sup
DVB�x; r 0�

M�r�vÿ u

v
UA7 inf

DVB�x;r 0�

M�r�vÿ u

v
;

sup
DVB�x; r 0�

uÿm�r�v

v
UA7 inf

DVB�x; r 0�

uÿm�r�v

v
;

where r
0 � r=A0. Hence

M�r� ÿm�r 0�UA7�M�r� ÿM�r 0��;

M�r 0� ÿm�r�UA7�m�r 0� ÿm�r��:

Adding the inequalities, we obtain

osc
DVB�x; r 0�

u

v
� M�r 0� ÿm�r 0�U

A7 ÿ 1

A7 � 1
�M�r� ÿm�r�� �

A7 ÿ 1

A7 � 1
osc

DVB�x; r�

u

v
:
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This shows (1.4) with

e � log
A7 � 1

A7 ÿ 1

� ��

logA0:

The theorem is proved. r

Remark 4. Dividing the both sides of (1.4) by m�r�, we obtain

M�r�

m�r�
ÿ 1UA

r

R

� �e
m�R�

m�r�

M�R�

m�R�
ÿ 1

� �

UA
r

R

� �e
M�R�

m�R�
ÿ 1

� �

:

Since

sup
x;x 0 ADVB�x; r�

u�x�

v�x�

�

u�x 0�

v�x 0�
�

M�r�

m�r�
;

it follows that

sup
x;x 0 ADVB�x;r�

u�x�

v�x�

�

u�x 0�

v�x 0�
ÿ 1UA

r

R

� �e

sup
x;x 0 ADVB�x;R�

u�x�

v�x�

�

u�x 0�

v�x 0�
ÿ 1

 !

:

This is a multiplicative form of HoÈlder continuity.

Proof of Corollary 2. Let x A D. The following interior HoÈlder con-

tinuity is known:

osc
DVB�x; r�

u

v
UA

r

R

� �e

osc
DVB�x;R�

u

v
for 0 < rURU dD�x�;

where A and e depend only on the dimension. In particular,

osc
DVB�x;r�

u

v
UA

r

dD�x�

� �e

osc
DVB�x; dD�x��

u

v
for 0 < rU dD�x�:�4:1�

We may assume that e is the same as in Theorem 2, if necessary e making

smaller. The following two cases remain: dD�x�U rURU dist�K ;V c� and

rU dD�x�URU dist�K;V c�.

Case 1. dD�x�U rURU dist�K ;V c�. If rAR, then (1.5) is obvious.

Hence we may assume that rUR 0=4 with R 0 � R=A0. By de®nition there is

x A qD with jxÿ xjU dD�x�. Observe that

B�x; r�HB�x; 2r�HB�x;R 0=2�HB�x;A0R
0=2�HB�x;R�HV :

Hence, Theorem 2 yields
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osc
DVB�x; r�

u

v
U osc

DVB�x;2r�

u

v
UA

r

R 0=2

� �e

osc
DVB�x;R 0=2�

u

v
UA

r

R

� �e

osc
DVB�x;R�

u

v
:

Thus (1.5) follows.

Case 2. rU dD�x�URU dist�K ;V c�. We obtain from Case 1 with

r � dD�x� that

osc
DVB�x; dD�x��

u

v
UA

dD�x�

R

� �e

osc
DVB�x;R�

u

v
:

This, together with (4.1), yields (1.5).

In the same way as in Remark 4 we obtain the multiplicative form of HoÈlder

continuity, which readily implies the second required inequality in the corollary.

The remaining is obvious. The corollary is proved. r

Let Hx be the family of all positive harmonic functions h on D vanishing

q.e. on qD, bounded on DnB�x; r� for each r > 0 and taking value h�x0� � 1. A

function h in Hx is called a kernel function at x normalized at x0.

Lemma 4. There is a constant AV 1 depending only on D such that

Aÿ1
U

u

v
UA for u; v A Hx:

Proof. Let u; v A Hx and let r > 0. Then u and v be bounded on

DVB�x 0; 2ÿ1r� for x 0
A qDVS�x; r�. Hence Theorem 1 yields

u�x�

v�x�
A

u�x 0�

v�x 0�
for x; x 0 A DVB�x 0; 2ÿ1r=A0�;

where A0 is as in Theorem 1. This, together with the Harnack inequality, shows

that

u�x�

v�x�
A

u�x 0�

v�x 0�
for x; x 0 A DVS�x; r�;�4:2�

where the constant of comparison is independent of r. Fix x 0 A DVS�x; r� for a

moment. By the maximum principle we have

u�x�

v�x�
A

u�x 0�

v�x 0�
for x A DnB�x; r�:

In particular,

Aÿ1 � Aÿ1 u�x0�

v�x0�
U

u�x 0�

v�x 0�
UA:
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Hence (4.2) becomes

u�x�

v�x�
A1 for x A DnB�x; r�:

Since r > 0 is arbitrary small and the constant of comparison is independent of r,

the lemma follows. r

Proof of Theorem 3. Lemma 4 actually shows that Hx is a singleton.

This is proved by Ancona [4, Lemma 6.2]. For the reader's convenience we give

a short proof below. Let

c � sup
u; v AHx

x AD

u�x�

v�x�
:

Then 1U c < y by Lemma 4. It is su½cient to show that c � 1. Suppose to

the contrary c > 1. Take arbitrary u, v A Hx. Then v1 � �cvÿ u�=�cÿ 1� A Hx,

so that uU cv1 � c�cvÿ u�=�cÿ 1�, whence �2cÿ 1�uU c2v on D. This would

imply

c � sup
u; v AHx

x AD

u�x�

v�x�
U

c2

2cÿ 1
< c;

a contradiction. Thus c � 1 and Hx is a singleton. Moreover, the function

u A Hx is minimal. For if h is a positive harmonic function not greater than u,

then h=h�x0� A Hx, so that h � h�x0�u.

Let K�x; y� � G�x; y�=G�x0; y� for x A D and y A Dnfx0g. The Martin

kernel is given as the limit of K�x; y� when y tends to a boundary point. If

y ! x A qD, then some subsequence of fK�� ; y�g converges to a positive har-

monic function in Hx. However, since Hx is a singleton, it follows that all

sequences fK�� ; y�g must converge to the same positive harmonic function, the

Martin kernel K�� ; x� at x. Therefore K�x; �� extends continuously to Dnfx0g.

The kernel function K�� ; x� should be minimal. This shows the ®rst part of the

theorem.

Let us show the HoÈlder continuity of the kernel function. Take x 0
A qD and

let

~M�r� � sup
DnB�x; r�

K�� ; x 0�

K�� ; x�
� sup

DVS�x; r�

K�� ; x 0�

K�� ; x�
;

~m�r� � inf
DnB�x; r�

K�� ; x 0�

K�� ; x�
� inf

DVS�x; r�

K�� ; x 0�

K�� ; x�
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for rV 2jxÿ x 0j. In the same way as in the proof of Lemma 4 we can show that

1U
~M�r�

~m�r�
UA;

where A > 1 depends only on D. Then the same argument as in the proof of

Theorem 2 shows that

osc
DnB�x;R�

K�� ; x 0�

K�� ; x�
� ~M�R� ÿ ~m�R�UA

r

R

� �e

� ~M�r� ÿ ~m�r�� � A
r

R

� �e

osc
DnB�x; r�

K�� ; x 0�

K�� ; x�

for R > r. Also we have a multiplicative form of HoÈlder continuity,

sup
x;x 0 ADnB�x;R�

K�x; x 0�

K�x; x�

�

K�x 0; x 0�

K�x 0; x�
ÿ 1UA

r

R

� �e

sup
x;x 0 ADnB�x; r�

K�x; x 0�

K�x; x�

�

K�x 0; x 0�

K�x 0; x�
ÿ 1

 !

:

Letting r � 2jxÿ x 0j, we obtain that

osc
DnB�x;R�

K�� ; x 0�

K�� ; x�
UA

jxÿ x 0j

R

� �e

;

sup
x;x 0 ADnB�x;R�

K�x; x 0�

K�x; x�

�

K�x 0; x 0�

K�x 0; x�
ÿ 1UA

jxÿ x 0j

R

� �e

for RV 2jxÿ x 0j. Moreover, letting x
0 � x0 and observing K�x0; x

0�=K�x0; x�

� 1, we obtain

K�x; x 0�

K�x; x�
ÿ 1

�

�

�

�

�

�

�

�

UA
jxÿ x 0j

R

� �e

for x A DnB�x;R� with RV 2jxÿ x 0j. This is the form of HoÈlder continuity

given by Jerison and Kenig [17, Theorem 7.1]. The theorem is proved. r

5. Proof of Theorem 4.

Jerison and Kenig [17] proved the Fatou theorem for an NTA domain by

using the maximal function argument. Since the harmonic measure of a uniform

domain need not satisfy the doubling property, the maximal function argument

is not applicable in our case. Instead we shall invoke the minimal ®ne limit

theorem and compare the minimal ®ne ®lter and nontangential ®lter. Without

loss of generality we may assume that D is bounded. Then the Martin boundary

of D is the Euclidean boundary qD and every boundary point is minimal

(Corollary 3). For every nonnegative harmonic function h on D there is a

unique measure mh on qD such that h � Kmh �
�

qD
K�� ; x� dmh�x�. In this section

a regularized reduced function R̂
E

u
is taken with respect to D. For simplicity we
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write Kx � K�� ; x�. A set EHD is said to be minimally thin at x A qD if the

regularized reduced function R̂E
Kx

is a Green potential. Our proof of Theorem 4 is

based on the minimal ®ne limit theorem (see [3, II, Appendix], [13] and [20]).

Theorem B. Let h � Kmh and H � KmH be positive harmonic functions on

D. Then, H=h has minimal ®ne limit dmH=dmh for mh almost every boundary point

x. That is, there is a set E minimally thin at x such that

lim
x!x

x ADnE

H�x�

h�x�
�

dmH
dmh

�x�:

Theorem 4 will follow from Theorem B and the following lemma. Let

x A qD. We say that fxjg is a nontangential sequence converging to x if there is

a > 0 such that xj A Ga�x� for all large j. For 0 < a < 1 we consider the union

B � 6y

j�1
B�xj ; adD�xj��. This is a nontangential B-set introduced by Hunt and

Wheeden [16].

Lemma 5. Let B � 6y

j�1
B�xj ; adD�xj�� be a nontangential B-set at x A qD as

above. Then B is not minimally thin at x.

Proof. The proof is similar to [16]. However, we avoid the harmonic

measure of D, since it does not satisfy the doubling property. Without loss of

generality we may assume that BHDVB�x;R� and x0 A DnB�x;AR� for small

R > 0 and su½ciently large A > 0. Let a < a 0 < a 00 < 1. By the Harnack

inequality KxAKx�xj� on B�xj; adD�xj�� with constant of comparison independent

of j. Hence the regularized reduced function of Kx to B�xj; adD�xj�� with

respect to B�xj; a
00dD�xj�� is comparable to Kx�xj� on S�xj; a

0dD�xj�� and so

is R̂
B�xj ;adD�xj��
Kx

. Therefore, the Harnack inequality and the boundary Harnack

principle (Theorem 1) yield

R̂
B�xj ;adD�xj��
Kx

AKx on DVS�x; �1� a�jxj ÿ xj�;

since R̂
B�xj ;adD�xj��
Kx

is a positive harmonic function on DnC�xj; adD�xj�� vanishing

q.e. on qD. By the maximum principle

Aÿ1 � Aÿ1Kx�x0�U R̂
B�xj ;adD�xj��
Kx

�x0�UA:�5:1�

Now let Bk � 6y

j�k
B�xj; adD�xj�� and hk � R̂Bk

Kx
. Then hk�x0�V

R̂
B�xk ;adD�xk��
Kx

�x0�VA > 0 by (5.1). Hence hk reduces to a positive harmonic

function h on D with h�x0�VA. Observe that h=h�x0� is a kernel function at x.

Hence h=h�x0� � Kx by the proof of Theorem 3. It is known the balayage

operation is idempotent ([13, Section VI.3 (h)]), so that

R̂B

hk
� R̂B

R̂
Bk
Kx

� R̂Bk

Kx
� hk:
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Letting k ! y, we obtain R̂B

h � h and hence R̂B

Kx
� Kx. Thus B is not

minimally thin at x. r

Proof of Theorem 4. Observe that the harmonic measure oD of D is given

by dox
D�x� � Kx�x� dm1�x�, where m1 is the representing measure of the constant

function 1. Hence oD and m1 are mutually absolutely continuous. It follows

from Theorem B that u has minimal ®ne limit at x A qD a.e. oD. Take such

x A qD. Let us prove that u has nontangential limit at x. If u failed to have

nontangential limit at x, then there would exist nontangential sequences fxjg

and fx 0
jg converging to x such that lim supj!y u�xj� < lim inf j!y u�x 0

j �. By the

Harnack inequality

lim sup
x!x
x AB

u�x� < lim inf
x!x
x AB 0

u�x�;

where B � 6y

j�1
B�xj; adD�xj�� and B

0 � 6y

j�1
B�x 0

j ; adD�x
0
j �� with su½ciently

small a > 0. Lemma 5 says that B and B
0 are not minimally thin at x. This

would imply that u fails to have minimal ®ne limit at x, a contradiction. r

Remark 5. The above proof says that if h � Kmh and H � KmH are

positive harmonic functions on D, then, H=h has nontangential limit dmH=dmh for

mh almost every boundary point.

Proof of Proposition 1. The construction of D and E is easy. Consider

the unit ball B�0; 1� with Whitney decomposition 6y

j�1
Qj (see [21, Chapter VI]).

Let yj be the center of Qj and let D � B�0; 1�n6y

j�1
fyjg and E � 6y

j�1
fyjg. We

can easily observe that D is a uniform domain. In fact, suppose x1; x2 A D. If

these points lie in the same Whitney cube, then it is easy to ®nd a curve g

connecting x1 and x2 satisfying (1.2) and (1.3). If these points lie in two di¨erent

Whitney cubes, say Q1 and Q2, then the boundaries of Q1 and Q2 can be joined

by a curve g satisfying (1.2) and (1.3); and then each xj can be connected with the

boundary of Qj with an appropriate curve. See Figure 4.

Now let us construct a harmonic function u on D. By di¨erentiating the

fundamental harmonic function j � 2ÿ n times, we obtain a harmonic func-

tion Hj�x� on R
nnf0g homogeneous of degree ÿj for jV nÿ 1. Let rj be

the distance from yj to the boundary of Qj and let Mj�b� � supS�0;brj�jHj�x�j

for 0 < b < 1=2. By the maximum principle jHj�xÿ yj�jUMj�b� for

x A R
nnC�yj ; brj�. Let

u�x� �
Xy

j�nÿ1

Hj�xÿ yj�

j2Mj�b�
:
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Then u is a harmonic function on D such that

ju�x�jU
Xy

j�nÿ1

jHj�xÿ yj�j

j2Mj�b�
U

Xy

j�1

1

j2
< y on Dn6

y

j�1

C�yj; brj�:�5:2�

Let a � bÿ1 ÿ 2 > 0. If x A Ga�x� for x A S�0; 1�, then

rj < jyj ÿ xjU jxÿ yjj � jxÿ xj < jxÿ yjj � �1� a�dD�x�

U �2� a�jxÿ yjj � bÿ1jxÿ yjj;

whence x B C�yj; brj�. Hence (5.2) means that u is nontangentially bounded on

S�0; 1� � qDnE. Obviously, 6y

j�1
fyjg is of harmonic measure 0. Hence u is

nontangentially bounded a.e. oD on qD. On the other hand we have

sup
S�yi ;bri=2�

jHi�xÿ yi�j

Mi�b�
�

Mi�b=2�

Mi�b�
� 2 i:

Hence

sup
S�yi ;bri=2�

ju�x�jV
2 i

i2
ÿ
X

j0 i

1

j2
! y

as i ! y. For every x A S�0; 1� we ®nd a subsequence fyjig nontangentially

converging to x with respect to B�0; 1�. Then 6
i
S�yji ; brji=2� is nontangential

Figure 4. D � B�0; 1�n6y

j�1
fyjg and Ga�x�.
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at x with respect to D. Hence u fails to have nontangential limit at every

x A S�0; 1� � qDnE. The proposition follows. r

Remark 6. Let 0 < rj < rj=2 be su½ciently small. Then

B�0; 1�n6y

j�1
C�yj; rj� is a bounded regular uniform domain for which the local

Fatou theorem does not hold.
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Note added in proof. After the submission of the ®nal form of the paper, the

author was aware that F. Ferrari, (J. Fourier Anal. Appl. 4 (1998), 447±461)

gave an analytic proof of a boundary Harnack principle for a HoÈlder domain.

His result is not scale invariant.
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