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a b s t r a c t

A two-dimensional (2D) elastic analysis of functionally graded materials (FGMs) is conducted using the

proposed boundary integral based graded element formulation. The graded element model is based on

independent internal and frame field approximations. The elemental stiffness contains element

boundary integrals only and is calculated using the exact expression of the graded material property. In

the construction of the element model, the fundamental solutions of functionally graded plate with

quadratic variation of elastic properties are employed to construct the internal approximation and then

the graded element is constructed, in which the material definition entails naturally graded variation.

Three numerical examples are considered: verification of fundamental solutions, a functionally graded

cantilever beam, and a functionally graded link bar, to assess the performance of the hybrid graded

model and to show the advantages of FGMs over homogeneous materials.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

FGMs are a class of relatively new and promising composite

materials that have optimized material properties by combining

different material components following a predetermined law.

They are heterogeneous composite materials with graded variation

of constituents from onematerial phase to another, which results in

continuously varying material properties. FGMs thus have superior

thermal and mechanical performance to conventional homoge-

neous materials, and have a wide variety of engineering applica-

tions especially for the purpose of removing mismatches of

thermo-mechanical properties between coating and substrate

and reducing stress level in structures.

Because of the importance of FGMs, their thermo-mechanical

behavior has been investigated by many researchers. In the

context of numerical analysis, Reddy presented a finite element

model based on the third-order shear deformation plate theory for

the analysis of functionally graded plates (Reddy, 2000). Carrera

et al. employed the concept of virtual displacements to obtain finite

element solutions of functionally graded plates subjected to trans-

verse mechanical loadings (Carrera et al., 2008). Kim and Paulino

developed a graded finite element model within the framework of

a generalized isoparametric formulation (Kim and Paulino, 2002).

Ching and Yen extended themeshless local Petrov-Galerkin (MLPG)

method for thermo-elastic analysis of FGMs (Ching and Yen, 2005).

Wang and Qin investigated the thermo-elastic and heat conduction

performance of inhomogeneous graded materials using the mixed

meshless method coupled with fundamental solutions of homo-

geneous materials and globally supported radial basis functions

(Wang and Qin, 2008; Wang et al., 2005, 2006). Furthermore, the

enriched finite element method (FEM) adding crack-tip fields to the

element interpolation (Ayhan, 2009), the method of fundamental

solutions (MFS) (Marin and Lesnic, 2007), the meshless local

boundary integral equation (LBIE) method (Sladek et al., 2005), the

boundary element method (BEM) (Sutradhar and Paulino, 2004;

Zhang et al., 2011), the modified smoothed particle hydrody-

namics (MSPH) method (Zhang and Batra, 2007), the element-free

Galerkin method (EFGM) (Dai et al., 2005), and so on, have also

been proposed to conduct temperature, displacement and stress

estimation in FGM-based structures.

As an alternative to the numerical methods mentioned above,

a hybrid finite elementmethodwith fundamental solutions as intra-

element interpolation functions was presented for analyzing heat

conduction problems (Wang and Qin, 2009, 2010a) and elastic

problems (Wang and Qin, 2010b, 2011). This model inherits the

advantages of flexible domain element division in Trefftz-FEM (Qin,

2000) and boundary integrals in BEM (Qin,1993), and due to the use

of fundamental solutions, is referred to as HFS-FEM. In the HFS-FEM,

the intra-element field is approximated by a linear combination of

fundamental solutions in terms of sources (singularities) which are
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placed on an outer pseudo-boundary similar to the real element

boundary. The field variables on the element boundary are inde-

pendently defined by way of conventional shape functions. The

linear equation system of unknowns can be established by the

stationary condition of a modified variational functional.

In this study, a HFS-FEMmodel is developed for solving 2D elastic

problems of FGMs with quadratic variation of material properties.

The model is then used to study the advantages of FGM over

homogeneousmaterials in termsof reducing stress reconstruction. In

the development of the model, a weak formulation of HFS-FEM and

its discrete system of equations are derived for the solution of func-

tionally graded elastic problems and used to construct elaborately

graded elements. In particular, the fundamental solutions corre-

sponding to FGMwith quadratic variation of material properties are

employed to approximate the intra-element fields, so that the gov-

erning equations of the problem of interest are analytically satisfied

within the element. Unlike the graded finite element (Kim and

Paulino, 2002) and the conventional finite element (Ayhan, 2009)

mentioned above, the material definition in the proposed graded

element can retain its natural variation, without any approximation.

The paper is organized as follows. Section 2 gives the corre-

sponding governing equation for functionally graded elastic plate

and its fundamental solution. The FGM considered has a quadratic

variation of material properties. In Section 3, the hybrid finite

element formulations in which the fundamental solutions is taken

as intra-element interpolation functions are derived to produce the

final force-displacement stiffness equations. Numerical results are

presented and analyzed in Section 4. Finally, Section 5 presents

some conclusions.

2. Formulation of the problem

In this section, basic equations and the corresponding funda-

mental solutions for FGMs presented in (Yuan and Yin, 2011) are

briefly reviewed to provide notations and references for the

subsequent sections.

2.1. Basic equations

For a 2D linear elastic problem, the governing equations of force

equilibrium in the absence of body forces are given by

sij;j ¼ 0 (1)

where sij are the components of the Cauchy stress tensor. For plane

problems, all indices range from 1 to 2 and an index followed by

a comma stands for partial differentiation with respect to the

spatial coordinate. The summation convention is implied for

repeated indices.

For the functionally graded materials considered in this study,

the elastic stiffness tensor Cijkl is associated with the spatial variable

x ¼ (x1, x2); that is, Cijkl ¼ Cijkl(x). Therefore, the linear elastic strain-

stress relation is written as

sij ¼ CijklðxÞεkl (2)

The components of stiffness tensor Cijkl must satisfy the usual

symmetric condition

Cijkl ¼ Cklij ¼ Cijlk ¼ Cjikl (3)

Specially, for isotropic inhomogeneous elastic media, the elastic

stiffness tensor Cijkl is written as

CijklðxÞ ¼ lðxÞdijdkl þ mðxÞ
�

dikdjl þ dildjk

�

(4)

where dij is Kronecker’s delta, the Lame elastic parameters l(x) and

m(x) are the functions of spatial coordinate variable x and can be

expressed in terms of elastic modulus E, and Poisson ratio n as

lðxÞ ¼
3� k

k� 1
mðxÞ; mðxÞ ¼

EðxÞ

2ð1þ nÞ
(5)

with k ¼ 3 � 4n for plane strain and k ¼ (3 � n)/(1 þ n) for plane

stress.

Therefore, the constitutive law Eq. (2) can be simplified as

sij ¼ lðxÞdijεkk þ 2mðxÞεij (6)

As well, the infinitesimal strain tensor εij related to the

displacement field is expressed as

εij ¼
1

2

�

ui;j þ uj;i
�

(7)

Substituting Eq. (7) into the constitutive Eq. (6) and then into the

equilibrium Eq. (1) we have

l;iðxÞuj;jðxÞ þ flðxÞ þ mðxÞguj;jiðxÞ þ mðxÞui;jjðxÞ þ m;jðxÞ
�

ui;jðxÞ

þ uj;iðxÞ
�

¼ 0

(8)

If the material is homogeneous, i.e., the Lame parameters are

independent of the spatial variable x, Eq. (8) becomes

flþ mguj;jiðxÞ þ mui;jjðxÞ ¼ 0 (9)

which is the classic NaviereCauchy equation with respect to

displacements.

The boundary conditions have the same form as those of

homogeneous materials:

ui ¼ ui on Gu

ti ¼ ti on Gt
(10)

where ti ¼ sijnj represents the ith component of the boundary

traction, and ni is the ith component of outward normal to the

boundary. Gu and Gt are the boundaries onwhich the displacement

and the traction are prescribed respectively. An overbar denotes

that the variable is specified.

2.2. Fundamental solutions for quadratic variation of elasticity

In this work, the Lame constants l and m are assumed to be

quadratic variation of the spatial variable x, that is

lðxÞ ¼ l0ðcþ bixiÞ
2
; mðxÞ ¼ m0ðcþ bixiÞ

2
(11)

where c, l0 and m0 are the corresponding material constants, bi is

a graded parameter, which has a dimension of m�1. In particular, if

the graded parameter bi is equal to zero, the Lame constants in Eq.

(11) will be reduced to two constants, and then the system of partial

differential Eq (8) will be the standard NaviereCauchy equations for

homogeneous isotropic elastic materials.

According to the work of (Manolis and Shaw, 1996), when the

Poisson ratio n is equal to 0.25 (a rather common value for rock

materials) and the plane strain state is considered, one obtains

l0 ¼ m0 (12)

which can significantly simplify the derivation of fundamental

solutions.

Generally, the free space fundamental displacement solution for

an isotropic inhomogeneous elastic continuum must satisfy the

following equation system
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l;iðxÞuj;jðxÞ þ flðxÞ þ mðxÞguj;jiðxÞ þ mðxÞui;jjðxÞ þ m;jðxÞ
�

ui;jðxÞ

þ uj;iðxÞ
�

þ dðx � xsÞei ¼ 0

(13)

where x is a field point in the infinite plane, xs is a source point at

which the unit force ei along the i-direction is applied, and d(x) is

the Dirac delta function.

To obtain the fundamental displacement solution for the equi-

librium Eq (13) the following transformation is established for the

displacement vector (Yuan and Yin, 2011)

wi ¼ ðcþ bkxkÞui (14)

from which we have

ui;j ¼
wi;j

cþ bkxk
�

wibj

ðcþ bkxkÞ
2

(15)

and then the stress component can be given by

sij ¼ ðcþ blxlÞ
�

l0dijwk;k þ m0
�

wi;j þwj;i

�	

�
�

l0dijwkbk

þ m0
�

wibj þwjbi
�	

(16)

Substituting Eqs. (14) and (11) into Eq. (13), we obtain

2m0wj;ji þ m0wi;jj þ
1

ðcþ bkxkÞ
dðx � xsÞei ¼ 0 (17)

If the concentrated force acts at the origin, using the logarithmic

potential, Yuan and Yin (2011) obtain

w*

li ¼
1

6pm0




� 2dlilnr þ
xixl
r2

�

(18)

where w*

li
denote the generalized displacement solutions at the

field point x along the i-directionwhen a unit point force is applied

at the origin along the l-direction. After this, with the inverse

transformation of Eq. (14), and at the same time moving the point

force from the origin to an arbitrary source point xs, the displace-

ment components can be written as

u*li ¼
c

6pm0ðcþ bkxkÞ
�

cþ bkx
s
k

�




� 2dlilnr þ
rirl
r2

�

(19)

where some useful quantities related to the distance r are

r ¼ ðririÞ
1=2

ri ¼ xi � xsi

r;i ¼
ri
r

r;ir;i ¼ 1
ri;j ¼ dij

(20)

Based on the displacement formulation (19) (Yuan and Yin,

2011), we obtain the strain components by differentiating the

solution (19) with respect to the spatial variable xj

ε
*

lij ¼�
c

12pm0ðcþbkxkÞ
2
�

cþbkx
s
k

�




bj

�

�2dillnrþ
rirl
r2



þbi

�

�2djllnrþ
rjrl

r2

�

þ
c

12pm0ðcþbkxkÞ
�

cþbkx
s
k

�




2dijrl�dilrj�djlri

r2
�
4rirlrj

r4

�

(21)

and then, the stress components are given by

s*lij ¼
c

6p
�

cþ bkx
s
k

�


��

2bllnr �
bkrkrl
r2



� ðcþ bkxkÞ
rl
r2

�

dij

þ bj

�

2dillnr �
rirl
r2



þ bi

�

2djllnr �
rjrl

r2



þ ðcþ bkxkÞ

�

�

2dijrl � dilrj � djlri

r2
�
4rirlrj

r4

�

(22)

It is obvious that the fundamental solutions (19) and (22) can

easily be reduced to the homogeneous fundamental solutions,

when the graded parameters bi ¼ 0(i ¼ 1, 2) and c ¼ 1. For example,

for homogeneous isotropic materials with Poisson ratio n ¼ 0.25,

l ¼ l0 ¼ m ¼ m0, we have

u*li ¼
1

6pm0

�

� 2dillnr þ
rlri
r2

�

(23)

and

s*lij ¼
1

6p

�

rldij � rjdil � ridjl

r2
�
4rirjrl
r4

�

(24)

which are same as the formulations used in BEM for homogeneous

materials.

3. Hybrid finite element formulation

3.1. Hybrid functional and element stiffness equation

The initial concept of the hybrid finite element method features

two independent fields (interior and frame fields) assumed in

a given element. In the present work, the variables ui and ~ui
respectively represent the interior and frame field variables. In the

absence of body forces, the variational functional for any given

element, say element e, used in the present model can be con-

structed as (Wang and Qin, 2010b, 2011)

Pme ¼
1

2

Z

Ue

sijεijdU�

Z

Gte

ti
~uidGþ

Z

Ge

ti

�

~ui � ui

�

dG (25)

where Ue is the domain of element e, Gte and Gue are boundaries,

where the traction and displacement are respectively specified, and

Ge denotes the whole element boundary. The inter-element

boundary is denoted by GIe. Clearly, for the hybrid element shown

in Fig. 1 we have

Ge ¼ GueWGteWGIe (26)

Making use of Gauss theorem, the first-order variational of the

functional can be further written as

dPme ¼ �

Z

Ue

sij;jduidUþ

Z

GIe

tid
~uidGþ

Z

Gte

ðti � tiÞd
~uidG

þ

Z

Ge

dti

�

~ui � ui

�

dG (27)

in which the first integral gives the equilibrium equation sij,j ¼ 0,

and the second integral enforces the reciprocity condition by co-

considering those from neighboring elements. The traction

boundary condition can be enforced by the third integral, and the

final integral enforces equality of ui and ~ui along the elemental

frame boundary Ge.
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In the present hybrid formulation, in order to obtain the

element stiffness equation involving element boundary integrals

only, the element interior displacement field is approximated by

the linear combination of the fundamental solutions at a series of

source points xsm located outside the element domain as

uiðxÞ ¼ clmu
*

liðx; x
s
mÞ ¼ ½Ni�fceg i; l ¼ 1;2; m ¼ 1;2;.;M

(28)

where M is the number of virtual sources outside the element

domain, fceg ¼ ½ c11 c21 / c1M c2M �T is an unknown coeffi-

cient vector (not nodal displacement), and the interpolation matrix

½Ni� ¼
h

u*1iðx; x
s
1Þ u*2iðx; x

s
1Þ / u*1iðx;x

s
MÞ u*2iðx; x

s
MÞ
i

(29)

consists of the fundamental solutions u*
li
ðx;xsÞ at M source points.

It is noted that the constructed displacement field (28) can

analytically satisfy the inhomogeneous elastic governing Eq. (13),

since the fundamental solutions (19) of the problem are used as the

interpolation functions.

Making use of the strain-displacement Eq. (7) and the stress-

strain relationship (2), the corresponding stress and traction

components are expressed as

sijðxÞ ¼ clms
*

lijðx;x
s
mÞ ¼

�

Sij
	

fceg i; j; l ¼ 1;2;

m ¼ 1;2;.;M (30)

and

tiðxÞ ¼ clmt
*

liðx;x
s
mÞ ¼ ½Q i�fceg i; l ¼ 1;2; m ¼ 1;2;.;M

(31)

in which

�

Sij
	

¼
h

s*
1ijðx; x

s
1Þ s*

2ijðx; x
s
1Þ / s*

1ijðx; x
s
MÞ s*

2ijðx; x
s
MÞ
i

(32)

½Q i� ¼
h

t*1iðx; x
s
1Þ t*2iðx; x

s
1Þ / t*1iðx;x

s
MÞ t*2iðx;x

s
MÞ
i

(33)

with the traction kernels being defined by

t*liðx;x
s
1Þ ¼ s*lijðx; x

s
mÞnj (34)

To enforce conformity of the displacement field on the common

interface of any two neighboring elements, frame displacement

fields ~ui are separately assumed on the element boundary as

~uiðxÞ ¼ dlk
~Nliðx; xkÞ ¼

h

~Ni

i

fdeg i; l ¼ 1;2; k ¼ 1;2;.;K

(35)

where ½~Ni� denotes the interpolation vector relating the boundary

displacement to the nodal displacement vector{de}.

To obtain the element stiffness equation and the optional rela-

tionship of unknown coefficient {ce} and {de}, the application of

Gauss theorem to the functional (25) gives

Pme ¼ �
1

2

Z

Ue

sij;juidU �
1

2

Z

Ge

tiuidG�

Z

Gte

ti
~uidGþ

Z

Ge

si
~uidG

(36)

Because the assumed displacement field (28) and stress field

(30) analytically satisfy the governing Eq. (13), we have

Pme ¼ �
1

2

Z

Ge

tiuidG�

Z

Gte

ti
~uidGþ

Z

Ge

ti
~uidG (37)

Substituting Eqs. (28), (31) and (35) into the functional (37)

yields

Pme ¼ �
1

2
fceg

T½He�fceg � fdeg
Tfgeg þ fceg

T½Ge�fdeg (38)

where

½He� ¼

Z

Ge

½Q i�
T½Ni�dG

½Ge� ¼

Z

Ge

½Q i�
T
h

~Ni

i

dG

fgeg ¼

Z

Gte

ti

h

~Ni

iT
dG

(39)

The stationary condition of the functional (38) with respect to

{ce} and {de} yields, respectively, the optional relationship between

{ce} and {de} and the element stiffness equation as

fceg ¼ ½He�
�1½Ge�fdeg (40)

and

½Ke�fdeg ¼ fgeg (41)

with

½Ke� ¼ ½Ge�
T½He�

�1½Ge� (42)

being the element stiffness matrix, which is sparse and symmetric.

3.2. Naturally graded element

From the hybrid formulation described above we can see that

the independence of intra-element displacement fields and

boundary displacements makes it possible to construct arbitrarily

shaped hybrid elements, as the continuity conditions between

elements are required on the element boundary (frame fields) only.

Moreover, because the assumed intra-element displacements

analytically satisfy the inhomogeneous elastic governing Eq. (13)

within the element domain, it is possible to design special large-

scale elements with arbitrary element edges and multiple nodes

Fig. 1. Schematic of the hybrid element.
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along each element edge to reduce the meshing effort for problems

with irregular geometry (Wang and Qin, 2011).

In the present work, a naturally graded element in which the

material definition naturally accords with the specified graded

variation is developed, because the related fundamental solutions

are used for the intra-element displacement and stress approxi-

mations. Fig. 2 displays a general eight-node hybrid element with

four edges and three nodes at each edge. For the specified hybrid

element, the independent interior and frame fields are incorpo-

rated by the functional (38) at element level. In the computational

process, a local coordinate system ð~x1; ~x2Þ with the origin centered

in the element and axis parallel to the global axis is introduced, and

thus the material definition for the specified graded element

should be modified, i.e. if the global coordinate of the centroid of

the element is xc(x1c, x2c), then the relation of the local and global

coordinate systems is written as

xi ¼ xic þ
~xi (43)

The material definitions such as m can then be rewritten within

the element as

m ¼ m0ðcþ bixiÞ
2
¼ m0

�

cþ bixic þ bi
~xi

�2
¼ m0

�

~cþ bi
~xi

�2

(44)

with ~c ¼ cþ bixic.

Further, in the proposed hybrid element, the singularities of the

fundamental solution can be avoided by placing the related source

points on a pseudo-boundary which has a similar shape to the

element physical boundary but is outside the element domain, as

was done in the MFS (Fairweather and Karageorghis, 1998; Wang

and Qin, 2008; Wang et al., 2006; Young et al., 2006). In the

present work, these source points are generated by means of the

relation

xs ¼ xc þ gxb (45)

where xs and xb are, respectively, the source point and boundary

node, and xc denotes the element centroid, as shown in Fig. 2. The

dimensionless parameter g has the function of adjusting the

distance between the pseudo-boundary and the physical element

boundary. Small value of gmeans that the pseudo-boundary closes

to the element boundary very much. For this case, the near

singularity of fundamental solutions may have a negative effect to

the numerical accuracy. Conversely, if the parameter g is too large,

or the pseudo-boundary is far from the element boundary, source

points usually have larger values and thus the numerical round-off

error caused by large magnitude difference between unknown ce

and de also leads to the decrease of numerical accuracy. According

to the authors’ previous works, the parameter g can be chosen in

the range 3 < g < 10 to achieve stable and reliable results (Wang

and Qin, 2009, 2010a,b, 2011). Here, the value of g is chosen to be 5.

4. Results and discussion

Based on the formulation described in Section 3, computer code

was written in Matlab to perform deformation and stress analysis

of 2D functionally graded plates under mechanical loads. For the

sake of simplification, only unidirectional variation of an elastic

parameter is considered in this work, i.e. if we set the graded

parameter b1 to be zero and simultaneously let c ¼ 1, then the

remaining parameter b2 can be evaluated by considering the elastic

moduli of the constituent phases of the functionally graded

medium. For example, if phase 1 and phase 2 have respectively

elastic modules E1 and E2 (see Fig. 3), we have

EðaÞ ¼ 2:5m0ðcþ b2aÞ
2
¼ E1

EðbÞ ¼ 2:5m0ðcþ b2bÞ
2
¼ E2

(46)

which leads to

b2 ¼
c
�

ffiffiffiffiffi

E1
p

�
ffiffiffiffiffi

E2
p

�

a
ffiffiffiffiffi

E2
p

� b
ffiffiffiffiffi

E1
p ; m0 ¼

E1

2:5ðcþ b2aÞ
2

(47)

To assess the performance and applicability of the proposed

element model, three examples are considered in this section,

namely a functionally graded circular plate, a cantilever beam, and

a link bar. The results obtained from the proposed element

formulation are compared with the available analytical solutions or

numerical solutions from the commercial software ABAQUS using

a refined finite mesh. In ABAQUS there is no specified material

module for the direct analysis of functionally graded plate. To

achieve results with acceptable accuracy the functionally graded

medium to be analyzed is usually divided into a number of layers,

each layer having a different material definition, with constant

elastic parameters which are taken from the value at the element

centroid (see Fig. 4). As a result, a step-like material property is

assumed (see the vertical dashed lines in Fig. 4). Theoretically,

when the number of material layers increases to infinity, the real

quadratic curve of material property (see the solid curved line in

Fig. 4) can be accurately represented.

4.1. Verification of the proposed hybrid formulation

To verify the proposed approach, an example of a circular plate

is considered. The circular plate is in the state of plane strain and its

radius is R ¼ 10 m (see Fig. 5). The outer boundary of the circle is

assumed to be fixed by constraining the two displacement

Fig. 2. Eight-node hybrid graded element. Fig. 3. Sketch of unidirectional variation of elastic parameter.
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components. If a concentrated force P2 ¼ �10,000 N is applied at

the center of the circle, the theoretical solutions of displacement

are given by (Yuan and Yin, 2011) as

u1 ¼
1

cþ bkxk

P2
6pm0

�

x1x2
r2

�
x1x2
R2



u2 ¼
1

cþ bkxk

P2
6pm0

 

� 2ln
r

R
þ
x22
r2

þ
x21 � R2

R2

! (48)

from which we obtain the corresponding stress solutions as

In the analysis, the material parameters are assumed as

follows:c ¼ 1, b1 ¼ 0, b2 ¼ 0.1 m�1 and m0 ¼ 2 � 107 Pa. In total 900

hybrid elements with 2471 nodes, as shown in Fig. 6, are used to

model the circle domain. Fig. 7 shows the vertical displacement

along the axis x2 ¼ 0 (perpendicular to the gradation direction).

Fig. 8 displays the vertical displacement along the axis x1¼0 (in the

gradation direction). Good agreement between the theoretical

solution and the numerical results from the HFS-FEM is observed. It

can also be found that when the material property varies with x2

Fig. 5. A circle subjected to a centered concentrated force.

Fig. 6. Element mesh used in the present hybrid finite element model.

Fig. 4. Schematic of material definition in ABAQUS.
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Fig. 7. Variation of displacement u2 along the axis x2 ¼ 0.
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only, the displacement component u2 along the horizontal axis

x2 ¼ 0 is symmetric about x2-axis, and it is no longer symmetric

along the gradation direction. At the same time, it can be seen from

Fig. 8 that at any point x2 (x2 > 0), the amplitude of u2 is smaller

than that at its mirror point (�x2). The reason is that the graded

variation of material property toward the positive direction of x2
causes the material in region x2 > 0 to be stiffer than that in region

x2 < 0.

The distributions of stress component s11 along two coordinate

axes are respectively illustrated in Fig. 9 and 10. Due to the singu-

larity of stress at the origin point of the rectangular coordinate

system, there is a significant difference between the theoretical

solution and the numerical results from the HFS-FEM in the

neighborhood of the origin. However, the results from proposed

model agree well with the theoretical results for the points

jx2j > 0:2. Thus the present hybrid finite model is verified. Besides,

numerical results and analytical solutions at selected points are

tabulated in Table 1 for more clear comparison.

Finally, the contours of the displacement field in the circle

domain are plotted in Fig. 11 and 12. We can see that the

Fig. 8. Variation of displacement u2 along the gradation direction x1 ¼ 0.

Fig. 9. Variation of stress component s11 along the axis x2 ¼ 0.

Fig. 10. Variation of stress component s11 along the gradation direction x1 ¼ 0.

Table 1

Numerical results and analytical results at selected points in example 1.

Location u2 (mm) s11 (Pa)

HFS-FEM EXACT HFS-FEM EXACT

(0, 2.0000) �7.1146E-2 �7.1153E-2 �1.0470E2 �1.0935E2

(0, 1.0618) �1.0754E-1 �1.0755E-1 �2.9183E2 �2.9605E2

(0,0.1939) �2.0517E-1 �2.0519E-1 �2.5877E3 �2.3670E3

(0,e2.0000) �1.0671E-1 �1.0673E-1 3.5594E2 3.5751E2

(0, �1.0618) �1.3309E-1 �1.3311E-1 6.6809E2 6.6943E2

(0, �0.1939) �2.1327E-1 �2.1331E-1 3.3685E3 3.0977E3

(2.0000, 0) �5.9903E-2 �5.9919E-2 1.1992E2 1.1984E2

(1.0618, 0) �9.2732E-2 �9.2748E-2 1.8609E2 1.8550E2

(0.1939, 0) �1.8263E-1 �1.8266E-1 3.6221E2 3.6531E2

(e2.0000, 0) �5.9903E-2 �5.9919E-2 1.1992E2 1.1984E2

(e1.0618, 0) �9.2732E-2 �9.2748E-2 1.8503E2 1.8550E2

(e0.1939,0) �1.8263E-1 �1.8266E-1 3.6166E2 3.6531E2

Fig. 11. Distribution of displacement u1 over the circle.
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distribution of displacement u1 shows same symmetric and

nonsymmetric properties as that of displacement u2, due to the

variation in the gradation of material property with respect to x2.

4.2. Functionally graded beam

In this examplewe consider an elastic cantilever beam as shown

in Fig. 13, made of a two-phase functionally graded composite. The

corresponding material elastic modules are respectively

E1 ¼ 427 GPa and E2 ¼ 70 GPa. Provided that the elastic parameters

are assumed to vary quadratically through the thickness, according

to Eq. (47) the graded parameters can be determined by

m0 ¼ 28 GPa; b2 ¼ 0:49 mm�1

such that the upper and lower surfaces of the beam are fully

enriched with two constituent phases.

In the analysis with the proposed formulation, under the

assumption of plane strain deformation, the beam is modeled with

8 and 12 hybrid elements respectively. For the purpose of

comparison, ABAQUS is used to generate the corresponding

numerical results. In the analysis with ABAQUS the beam is divided

into 12 and 20 layers along the graded direction, and in each

element a constant Young’s modulus taken at the element centroid

is employed. Fig. 14 shows the two typical types of mesh configu-

ration used in the present HFS-FEM and ABAQUS.

The displacement distributions in the upper and right surfaces

of the functionally graded beam are displayed in Figs. 15 and 16

respectively, in which 2 � 4 elements are used. Good agreement

is observed between the results from the present HFS-FEM using 8

graded elements and those from ABAQUS with 12 � 25 conven-

tional quadratic quadrilateral elements. The results of two typical

homogeneous beams (one with E1 ¼ 427 GPa and the other with

E2 ¼ 70 GPa) are also presented in the two figures to illustrate the

advantage of FGMs over conventional homogeneous materials. In

general, the results of a homogeneous beam can be regarded as the

upper and lower limits of deformation of a functionally graded

beam. Further, we can see from Fig. 15 that there is a common

deformation center (u1 ¼ 0) for the two homogeneous beams, and

the location of the deformation center is the geometric center of the

cross-section. However, the graded effect of FGM can move that

location up (see Fig. 15). This is because in the FMG beam under

consideration the upper half of the beam has greater stiffness than

the lower half.

To investigate the stress distribution due to the graded effect of

FGM, the normal stress component s11 over the middle cross-

section (x1 ¼ 5) is evaluated and the corresponding results are

displayed in Fig. 17. It is evident from Fig. 17 that the results from

Fig. 12. Distribution of displacement u2 over the circle.

Fig. 13. Functionally graded beam under uniform pressure.

Fig. 14. Element meshes used in the present HFS-FEM and ABAQUS.

Fig. 15. Horizontal displacement over the right surface of the functionally graded

beam.
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the refined mesh of both the present HFS-FEM and ABAQUS are

not obviously different from those obtained with the coarse mesh,

because of the relatively small stress gradation over the middle

cross-section at x1 ¼ 5. In contrast, over the cross-section at the

fixed end the stresses change dramatically. In this case, mesh

refinement does produce better numerical accuracy. For example,

at the mid-point of the cross-section at the fixed end, the ABAQUS

with 20 material layer definitions gives s11 ¼ �96.57 MPa,

whereas, the present hybrid model with coarse mesh (2 � 4

elements) and refined mesh (3 � 6 elements) respectively gives

s11 ¼ �106.4 MPa and �97.02 MPa. It is obvious that many fewer

elements are used in the present HFS-FEM than in ABAQUS. The

proposed HFS-FEM is therefore more efficient than the standard

FEM and is easy to implement in the analysis of functionally

graded structures, as the final stiffness matrix is also symmetric

and sparse. Results from ABAQUS with different meshes are also

displayed in Fig. 17, fromwhich we observe that the stresses at the

upper and lower surfaces become more similar to those from the

present HFS-FEM as the number of material layers increases. Thus

the correctness of the present hybrid model is again demonstrated,

and it is evident that one can use a relatively coarse mesh to

produce numerical results with acceptable accuracy. A similar

conclusion on the HFS-FEM was derived in authors’ previous

works by use of proper fundamental solutions (Wang and Qin,

2009, 2010a,b, 2011).

To illustrate the advantages of FGM over conventional homo-

geneous materials, the normal stress distribution over the cross-

section at the mid-point (x1 ¼ 5) of the beam is presented and

compared with those of homogeneousmaterials. It can be observed

from Fig. 18 that the graded variation of material properties can

significantly change the stress distribution. In contrast to the

almost linear distribution of stress s11 for homogeneous materials,

the FGM under consideration produces an obvious nonlinear stress

feature over the cross-section of beam, and simultaneously the

value of axis normal stress decreases on the lower surface and

increases on the upper surface. This demonstrates that FGMs can be

designed to adapt to practical requirements.

Finally, the contour plots of the vertical displacement and axis

normal stress in the solution domain are given in Fig. 19 to show

their global distribution. From Fig.19, it can be seen that the vertical

displacement shows slight nonlinearity and the axis normal stress

shows more complex variation in the region near the clamped end

of the beam.

4.3. Functionally graded link bar

To further assess the performance of the proposed hybrid

formulation, we nowconsider the isotropic functionally graded link

bar illustrated in Fig. 20. The bar has unit thickness and is subjected

to 10 MPa axial tension load at the right end. The basic FGM

constituents are titaniummonoboride (TiB) and commercially pure

titanium (CP Ti) whose elastic properties are

ETiB ¼ 375 GPa; ETi ¼ 107 GPa

from which we have

m0 ¼ 42:8 GPa; b2 ¼ 0:12458 mm�1

For the sake of simplicity and comparison, we, consider first

a homogeneous material, which is obtained simply by setting

b2 ¼ 0. Due to the symmetry with respect to the x1-axis (see

Fig. 16. Vertical displacement over the upper surface of the functionally graded beam.

Fig. 17. Stress variation along the line x1 ¼ 5. Fig. 18. Comparison of stress variation between homogeneous and graded materials.
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Fig. 20a), only the upper half of the link bar is modeled (see

Fig. 20b). The element mesh used (146 elements and 515 nodes) is

shown in Fig. 21. The stresses s11 along two circular rims centered

at (21,0) and (29.75,7) are calculated and the corresponding results

are plotted in Fig. 22 and 23. In these two figures, the numerical

results obtained using ABAQUS are also presented for the purpose

of comparison. In the calculation with ABAQUS, both the coarse

mesh shown in Fig. 21, which is also used in the present HFS-FEM,

and a refined mesh including 276 elements and 933 nodes are

employed to assess the numerical accuracy of the proposed

method. It can be seen that the present method achieves better

numerical accuracy than ABAQUS when the same element mesh as

shown in Fig. 21 is used. Simultaneously, we observe that there is

stress concentration on the two circular-arc boundaries. The stress

concentration factors (SCFs) are respectively 2.884 and 2.132, which

will be used to investigate the graded effect of FGM.

Subsequently, the effect of graded material properties on stress

distribution and the corresponding SCFs are investigated by

comparing the results of a FGM link bar with those of a homoge-

neous link bar. With the mesh division displayed in Fig. 21, the axial

stress variations on the boundaries of the circles centered at (21, 0)

and (29.75, 7) are displayed in Fig. 24 and 25, respectively. The

results are obtained using the element mesh displayed in Fig. 21.

For the circle centered at (21, 0), we note from Fig. 24 that the stress

in FGM is smaller than that in the homogeneous material near the

area around the point (21.392, 3.478) at which the maximum stress

Fig. 19. Contour maps of displacement and stress of the beam.

Fig. 20. FGM link bar (a) geometry and boundary condition (b) symmetric computing

model.

Fig. 21. Element mesh used in the present HFS-FEM.

Fig. 22. The stress s11 along the rim of the circle centered at (21,0) for the case of

homogeneous material.

Fig. 23. The stress s11 along the rim of the circle centered at (29.75,7) for the case of

homogeneous material.
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is 24.22 MPa. The point corresponds to the rotational angle 83.57�

measured anticlockwise (see Fig. 22). It is found from Fig. 24 that

the SCF in the FGM link bar is 2.422, which is smaller than that in

the homogeneous link bar (SCF ¼ 2.884). For the circle centered at

(29.75, 7), the maximum stress (26.43 MPa) occurs at the point

(28.971, 3.588) which corresponds to the rotational angle �102.86�

measured anticlockwise (see Fig. 23). The corresponding SCF is

2.643, which is larger than that of the homogeneous material

(SCF ¼ 2.132). In contrast to the maximum stress in the homoge-

neous link bar which occurs at (21, 0), the maximum stress in the

FGM link bar occurs at the circle rim centered at (29.75, 7) and it is

smaller than that in the homogeneous link bar (28.84 MPa). Similar

results have been found in exponentially graded link bars (Ching

and Yen, 2005; Kim and Paulino, 2002). This is reasonable

because the elastic module with quadratic variation is similar to

that with exponential variation (see Fig. 26). Finally, the stress

concentration factors for the cases of FGM and homogeneous

materials are listed in Table 2 to show clearly the effect of graded

parameter.

5. Conclusions

In this work, we present HFS-FEM models for analyzing 2D

functionally graded solids under mechanical loads. In the HFS-FEM

model, the fundamental solution of graded materials is used to

interpolate the intra-element displacement and stress fields, and

the shape functions used in conventional FEM are employed to

approximate the frame fields defined on the element boundary

only. The linkage of these two fields is forced by the weak hybrid

functional constructed in this work. The proposed graded hybrid

element is then used for displacement and stress analysis of FGMs.

The material definition at element level is permitted to keep its

natural variation over the element (quadratic variation in this

work). Results obtained from the proposed finite element formu-

lation are compared with those obtained from analytical methods

or ABAQUS and good agreement between them is observed. It is

clear that the deformation and stress fields of functionally graded

solids differ substantially from those of their homogeneous coun-

terparts. The computed results indicate that graded elastic prop-

erties can be tailored to lower deflection, redistribute stress fields

and minimize stress concentration. The present hybrid model is

shown to be capable of capturing these features of FGMs and to be

more efficient and accurate than classical commercial FE codes in

the analysis of functionally graded structures.
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