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Abstract

A new one-domain dual reciprocity boundary integral method technique for
solving one-phase continuum formulation of the convective-diffusive energy
equation as appears when treating energy transport in solid-liquid phase
change systems is described. Laplace equation fundamental solution weight-
ing, straight line geometry and constant field shape functions on the bound-
ary, Crank-Nicolson time discretization and thin plate splines for transform-
ing the domain integrals into a finite series of boundary integrals are em-
ployed. Iterations over the timestep are based on the Voller-Swaminathan
scheme, upgraded to cope with the convective term. The technique could be
applied to a wide range of solid-liquid phase change problems where finite
volume or finite element solvers have been almost exclusively used in the
past.

1. Introduction

Various aspects of science and technology are related to the prediction of
transport phenomena in solid-liquid phase change systems. The discipline
was established by Lame, Clapeyron, Neumann and Stefan in the last cen-
tury (Sarler [1]). Boundary integral methods have been extensively used
in solving a wide range of melting and solidification problems (Sarler et
al.[2]). Nowadays, the majority (Sarler [3]) of the solid-liquid phase change
models for describing macroscopic transport phenomena rely on one-phase
continuum formulation (Bennon et al.[4], Ni et al.[5]). However, the solution
procedures for solving such problems have been almost exclusively confined
to established finite volume or finite element techniques. The exception is
presented in our previous works where the boundary integral formulation of
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the coupled mass, momentum, energy and species transfer problem has been
deduced (Sarler et al.[6]). The formulation of convective-diffusive problems
by using weighting with the fundamental solution of Laplace and Fourier
equations has been presented in (Sarler et al.[7]) and solved by the dual
reciprocity method for diffusive (Sarler et al.[8]) and convective-diffusive
(Sarler et al.[9]) constant density phase-change problems based on Kirch-
hoff variable formulation and heuristic global interpolation functions.

In this work the physics of the problem is made more general, allowing
for variation of all material properties, the solution procedure is changed
to the Kirchhoff variable-Liquid volume fraction formulation, and optimum
thin plate spline global interpolation functions are used. The principal aim
of this paper is to elaborate the new, relatively involved formulation of the
problem, leaving the already performed extensive checking of the technique
to be presented in one of our next papers.

2. Governing Equations

Consider a connected fixed domain H with boundary F occupied by a phase
change material described with the temperature dependent density pp, spe-
cific heat at constant pressure Cpp and the thermal conductivity kp of the
solid p — s and the liquid p = c phase, and the specific latent heat of the
solid-liquid phase change HM- The one-phase continuum formulation of the
energy transport for the assumed system is

f\
( fs Ps hs + fc pc he ) + V • ( is Ps hs Vj + fc PC he V^ )

(1)

Function fp denotes the temperature dependent volume fraction, hp the
specific enthalpy, Vp the known velocity, and ~Fp the heat flux of phase p.
Since only two phases are present in the system, fs + fc — 1- Due to the
local thermal equilibrium between the phases, the phase temperatures are
equal and represented by T. The phase change takes place between solidus
TS and liquidus temperature TC- Mean phase change temperature TM and
phase change interval TCS are

TM = \TS + \TC, TCS = TC-TS. (2)

Pure substances are modelled by a suitable narrow phase change interval
with TM in this case standing for melting temperature. Constitutive equa-
tions for the two heat fluxes are based on the Fourier relation

(3)
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and the enthalpy-temperature relationships are constituted as

0 + /tA<, (4)

with Tref representing the enthalpy reference temperature. The governing
equation could be rewritten in the following latent heat source term form

Poc — + $/.V̂  + $T-VT + 0/^ + 0o = V.(/cVr)-po^^. (5)
Q/L

Specific heat c and thermal conductivity k of the continuum are defined as

Po c = /s ̂  +-̂  ̂  "̂̂  ̂  ̂ +/f p/: Cpf, A; = /̂  /ĉ +//: ̂, (6)

the enthalpy difference h^s and the representative density PQ of the system
are

Po ̂  = /% 6f - P^ ̂, ^ = - ̂(7}w) 4- - pr(T̂ ). (7)

Calculation of the divergence in the convective term gives

^ (8)

where

^^ = Pr /̂ z: V • V/: - p^ Aj V • V<;, 0° = p^ ̂  V • V^. (9)

We seek the solution of the governing equation for thermal field at final time
t = to + At, where to represents initial time and At the positive time incre-
ment. The solution is constructed by the initial and boundary conditions
that follow. The initial temperature T(p, to) at point with position vector
p and time to is defined through the known function TO

= ̂ o; penur. (10)

The boundary T is divided into not necessarily connected parts T^
andT* '

with Dirichlet, Neumann, and Robin type boundary conditions respectively.
These boundary conditions are at point p and time to < t < to + At defined
through known functions Tp, Fp, and %r

= Tr; P G F , (12)

(p,t) = _^; pe^ (13)

dT ay
— (P,,) = -f (T-TP); per- (14)
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where the heat transfer coefficient % and other known functions are allowed
to depend arbitrarily on the thermal field. The outward pointing normal
on F is denoted by np(p). Equation (5) is rewritten by introducing the
Kirchhoff variable

defined with representative thermal conductivity

k» = \ks(TM) + \kc(TM], (16)

and with the Kirchhoff variable reference temperature T-J-. Knowledge of
the inverse Kirchhoff function T = T(T) is assumed as well. The governing
equation is accordingly reformulated as

Po6o^T+$/.V/f + y$T'VT +

(17)
and initial and boundary conditions as

T(p,to) = T(To); pen,

T(p,t) = T(Tr); p e r",

Tr); pe^. (18)

The transformed equation (17) with transformed initial and boundary con-
ditions (18) is solved for

dT
— (p,fo + AZ); pEl^, T(p,fo + AZ); pEMuMur*, (19)

giving the required thermal field through the inverse Kirchhoff function.

3. Discretization

3.1 Time discretization

Time discretization is performed with Crank-Nicolson time differencing

\ fco (V2-P+' + V^-P) - PO ̂ s ̂(/̂  - fi), (20)
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where indexes j, j+i/2 and j+i represent values at t$, t$ + |A£ and ̂  + A^
respectively. Since liquid volume fraction and other material properties de-
pend on temperature, iterations over the timestep are inherently required in
order to find the solution. These iterations are stopped when the maximum
absolute value of the enthalpy difference between two successive iterations
in each of the gridpoints does not exceed some predetermined value. Updat-
ing of the liquid volume fraction is of the utmost importance and various
schemes have been used in the past. We adopt the general source-based
scheme (Voller et al.[10]) which is believed to be the most effective choice.
It is applied to the integral equation concept and the Kirchhoff variable
concept and extended to a convective term in this work. The liquid volume
fraction at iteration level m+i is approximated with the Kirchhoff variable
at iteration level m+i (Voller-Swaminathan einsatz)

r+'T - Tr/r ) )• (21)

Thermal conductivity and the derivative in the upper equation are evaluated
as

and 7"(™/f̂ ) stands for T(T(™/̂ )). By inserting the liquid volume frac-
tion expansion (21) in equation (20) at iteration level m+i, the final time-
discretized form of equation (17) is obtained.

3.2 Space Discretization

Space discretization is made by weighting the time-discretized equation (17)
over domain d by the fundamental solution of the Laplace equation T*. The
following integral types are subsequently obtained (f stands for arbitrary
scalar and Q for arbitrary vector valued function respectively)

r*(p; s) dfi, Ia= f 0(p) - VJF(p) T*(p; s) cKl. (23)
J$l

Let us focus on two dimensional situations, e.g.

T*(p;s) = ̂ log^; r' = (p-s).(p_s), (24)

with the simplest boundary discretization; boundary geometry is approxi-
mated by Nr straight line segments, and spatial variation of the fields on each
of the boundary segments is represented by constant interpolation functions
with gridpoints coinciding with the geometrical centers of the straight line
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segments. Spatial variation of the fields in 61 is represented by the global
interpolation functions of the form (Einstein summation convention is used
in this text)

(25)

Selection of thin plate splines (Golberg et al.[ll]) for ?/;% gives an optimal
approximating property. The two-dimensional form of these splines is

r£ = (p-pn)-(p-pn), Px = P'ix, Py = p-iy, (26)

where i% and iy represent the Cartesian base vectors. ^ coefficients are
calculated by constructing a system of N+3 algebraic equations

*C = ̂. (27)

The vectors are c = (q,ft, • • • ,̂ +3)* and T = (F\,Fi, ••• ,J^v, 0,0,0)*.
The first u=i,2,-,w rows of matrix $ are of the form (̂ i, ^2, • • • , ipvN+z), and
the last three rows v=N+i,N+z,N+3 are of the form (4>iv, ̂2v, • • • > ipNv, 0, 0, 0),
where the notation has been shortened to Tn = ̂ "(Pn), ̂nu = û(pn)- The
first Np points p^ coincide with the boundary gridpoints and the last Afo
points are arbitrarily distributed over the domain Q (N=NP+NQ). <;% coeffi-
cients follow by inverting the system (27)

C = *"̂ . (28)

The first integral type could be straightforwardly calculated by using Green's
second identity

where &=i,2,-Nr and i,i=i,2,-N. Index i stands for s/ = p/. Matrix elements
Gik and HM are defined as follows

/ / * <9T*
77 dr, %= / — L^r, (29)

'& r̂t onp

where F^ represents the &-th boundary segment, and cf is equal to

c; = ̂ ; s/GT, c; = l; SfE^. (30)

The second and third integral identities are calculated by defining (Partridge
et al.[12]) the harmonic functions ^

V̂ «(p) = ̂(p). (31)
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The corresponding functions ̂  for the thin plate splines (26) are

1 „ , 1 4 ? _ 1 3 7 1

(32)
Consequently, the second and third integral types can be written in a com-
pact dual reciprocity form ( &=i,2,-.,7Vr, i,/,o=i,2,-,Ar, u,v=i,2,-,w+3)

(33)

3.3 Final discretized expression

After weighting the time discretized governing equation by the fundamental
solution of the Laplace equation and calculating the boundary and domain
integrals as described, the following discretized form is structured

m 77 j+l \ m+l'T-J+l , m̂ j+1 m+1 ̂  'i^ 7\ + r

+ -D, + "D,z, (34)

where the coefficients F^ TC, and DC arise from the discretized convective
term and the coefficients F, T and D from all other discretized terms of
equation (17). The explicit forms of the coefficients in equation (34) are

(35)

(36)

(37)

(38)

_ miJ+12 / m rj + 1 tj
Po n-csi ~\:( Jet ~ Jci

- mtj+l/2m/^o9/£^ 1 , J + I.N
-A) Ar^ (). ( ̂ '
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+i _ ! [\T/. m-i^/^o^ V . y, mi — 2 [^ lu ̂ uo \ i ̂ TJ V Voy *v

7-H

J+l/2
\l/, ty-l™('̂ .3>̂

2

™D , - -•L̂ cl — lu
j + l

y, ^-1/mrj + l , rji _ m / O C \ -r/mfj4-l\\
^ (Kov ̂ vi ̂  J Ci ̂  J Li \ ̂ ̂  ) . / V J Ci ) )

Ci
rj _^/^o4fr\^ ^ j+l,X
J Ci \ i yyiy . 'V J Ci ) )'

The divergence of the velocity fields Vp in the convective term coefficients
(&/ and 0° is calculated as

m ,jf-l T/ i
^ " "" "̂'

Rearrangement of the matrix elements (34) with respect to the boundary
conditions gives a system of algebraic equations for solving the unknowns
™̂ 7̂  or ™^^ on the boundary and ™+i7^ in the domain.

4. Liquid volume fraction updating strategy

After calculation of the Kirchhoff variable at time j+i and iteration m+i,
the liquid volume fraction has to be updated. We distinguish two different
cases, the first one with liquid volume fraction in the phase-change inter-
val 0 <™ /£"*"* < 1 and the second one with liquid volume fraction outside
the phase change interval ™ /£*"* — 1, or ™ /£"*"* = 0. In the first case,
the liquid volume fraction is updated directly from equation (21). In the

second case, the derivative ™^p equals zero and melting or solidification
processes can not be started when using the above-mentioned formula. A
suitable updating strategy for such cases is derived as follows. The time dis-
cretized expression (20) for evaluation of the Kirchhoff variable at iteration
level m+i is written in the following simplified form

P/i" - f'c ), (44)
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where the coefficient ™A stands for ™A = po ̂ ô (§)̂ ^ ^, and the term
™B for all other terms not explicitly represented in equation (44). At con-
vergence, the following expression should be valid

m+l A Tfm+l fJ + l\ _ m+1 p f. m+lL.7 + 1/2 *• /m+1 rJ + l fj \ (xr\
A I ( Jc ) — & - Po ^cs ~£~l\ Jc ~ Jc)' 140J

In equation (45), the Kirchhoff variable is expanded as

'"" ( ™-"/r - "7i" ) (46)

and equation (45) is subtracted from equation (44), assuming ™+*B ~ ™B,
and ™+M % ™A. This gives the second updating formula

zJ+l/2 L.
, m ^

(47)
Material properties c and k and the derivative are calculated in the same
sense as described in equation (22). Note that thermal conductivity is calcu-
lated at times j+i/2 and j+i. Since expressions (21,47) could give physically
impossible liquid volume fractions (less than 0 or greater than 1), each
updating is corrected (Voller et al.[10]) by the over/undershoot formula

™+Vf^ > 1 : set ™+i/^-i = 1, ™+i/;+i < o : set ™+i/^ = 0. (48)

5. Conclusions

The principal advantage of the described procedure is the ease of coping
with geometrically complicated situations, ease of implementation of differ-
ent boundary condition types, same order of temperature and heat flux ap-
proximation at the boundary, accuracy, and simple mesh structure. All inte-
grations involved are carried out on the boundary-only basis. The method is
extremly robust since no heuristic parameters are required to update the liq-
uid volume fraction or over/under relax a broad spectra of realistic (Sarler
[to appear]) temperature dependent material properties during computa-
tions. The main disadvantage of the method remains the resulting large
asymmetrical algebraic system of equations and relatively involved calcula-
tion of the domain integrals (particularly the 1$ integral) by the finite set
of boundary integrals, since the domain gridpoints are inherently required
in solving the described class of highly non-linear problems.
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