
Boundary Labeling: Models and Efficient
Algorithms for Rectangular Maps�

Michael A. Bekos1, Michael Kaufmann2,
Antonios Symvonis1, and Alexander Wolff3

1 National Technical University of Athens, Dept. of Mathematics,
Athens, Greece

{mikebekos,symvonis}@math.ntua.gr
2 University of Tübingen, Institute for Informatics, Sand 13,

72076 Tübingen, Germany
mk@informatik.uni-tuebingen.de

3 Faculty of Informatics, Karlsruhe University, P.O. Box 6980,
76128 Karlsruhe, Germany

http://i11www.ira.uka.de/people/awolff

Abstract. In this paper, we present boundary labeling, a new approach
for labeling point sets with large labels. We first place disjoint labels
around an axis-parallel rectangle that contains the points. Then we con-
nect each label to its point such that no two connections intersect. Such
an approach is common e.g. in technical drawings and medical atlases,
but so far the problem has not been studied in the literature. The new
problem is interesting in that it is a mixture of a label-placement and a
graph-drawing problem.

1 Introduction

Label placement is one of the key tasks in the process of information visualiza-
tion. In diagrams, maps, technical or graph drawings, features like points, lines,
and polygons must be labeled to convey information. The interest in algorithms
that automate this task has increased with the advance in type-setting technol-
ogy and the amount of information to be visualized. Due to the computational
complexity of the label-placement problem, which is NP-hard in general [5], car-
tographers, graph drawers, and computational geometers have suggested numer-
ous approaches, such as expert systems, zero-one integer programming, approx-
imation algorithms, simulated annealing, and force-driven algorithms to name
only a few. An extensive bibliography about label placement can be found at [14].
The ACM Computational Geometry Impact Task Force report [3] denotes label
placement as an important research area.

In this paper, we deal with labeling dense point sets with large labels. This is
common e.g. in medical atlases where certain features of a drawing or photo are
explained by blocks of text that are arranged around the drawing. Our model
� This work has partially been supported by the DFG grants Ka 512/8-2 and

WO 758/4-1, by the German-Greek cooperation program GRC 01/048 and the
EPEAEK program Pythagoras 89181(28).

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 49–59, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

50 Michael A. Bekos et al.

is as follows: we assume that we are given a set P = {p1, . . . , pn} of points and
an axis-parallel rectangle R that contains P . Each point, or site, pi is associated
with an axis-parallel rectangular open label. The labels have to be placed and
connected to their corresponding sites by polygonal lines, so-called leaders, such
that (a) no two labels intersect, (b) no two leaders intersect, and (c) the labels
lie outside R but touch R. We investigate various constraints concerning the
location of the labels and the type of leaders. More specifically we either allow
to attach labels to one, two or all four sides of R, and we either use straight-
line or rectilinear leaders. We propose efficient algorithms that find some non-
intersecting leader-label placement, but we also consider two natural objectives:
minimize the total length of the leaders and, if leaders are not straight lines,
minimize the total number of bends over all leaders.

These new problems are combinations of label-placement and graph-drawing
problems. Due to the complexity of either step there are still very few pub-
lications that combine graph drawing and label placement. Klau and Mutzel
[11] have coined the term “graph labeling” for this discipline and have given a
mixed-integer program for computing orthogonal graph layouts with node labels.

Leaders have so far only been used by Zoraster [15], Freeman et al. [6], and
Fekete and Plaisant [4]. Zoraster [15] uses simulated annealing to label points
and lines in seismic survey maps, while Freeman et al. [6] use an iterative raster-
based method to determine positions for area labels in soil survey maps. Fekete
and Plaisant [4] extend the infotip paradigm to cope with labeling dense point
sets interactively. They draw a circle of fixed radius around the current cursor
position, the so-called focus circle, and label only the sites that fall into the
circle. Labels are left-aligned and placed in two stacks to the left and the right
of the circle. To connect sites to their labels, Fekete and Plaisant use non-crossing
leaders that consist of two or three line segments: one segment goes radially from
the site to its projection on the focus circle and one or two axis-aligned segments
go from there to the corresponding label.

Iturriaga and Lubiw [10] give an O(n4)-time decision algorithm for attaching
elastic labels to n points on the perimeter of a rectangle. An elastic label models
a block of text of fixed area, but varying width and height. Iturriaga and Lubiw
place their labels inside the rectangle. Iturriaga [9] also briefly investigates the
inverse problem, where elastic labels must be attached to the sites outside the
given rectangle R. She presents an algorithm that finds a label placement that
uses the minimum-width strip around R. If n sites are given in order around R,
her algorithm takes O(n) time.

This paper is structured as follows. In Section 2 we model and define our
problem. In Section 3 we are concerned with rectilinear leaders. We investi-
gate algorithms for non-intersecting leader-label placement, for leader-bend and
leader-length minimization. In Section 4 we consider straight-line leaders. For
the one-side and the four-side case, we compute legal leader-label placements
and we minimize (with a slower algorithm) the total leader length. We have
implemented some of our algorithms. In Section 5 we give an example layout. A
full version of this paper with more examples and proofs is available at [2].

Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps 51

2 Defining and Modeling the Problem

We consider the following problem. Given an axis-parallel rectangle R=[lR, rR]×
[bR, tR] of width W = rR − lR and height H = tR − bR, and a set P ⊂ R of n
points pi = (xi, yi), each associated with an axis-parallel rectangular open label
li of width wi and height hi, our task is to find a legal or an optimal leader-label
placement. Our criteria for a legal leader-label placement are the following:

1. Labels have to be disjoint.
2. Labels have to lie outside R but touch the boundary of R.
3. Leader ci connects point pi with label li for 1 ≤ i ≤ n.
4. Intersections of leaders with other leaders, points or labels are not allowed.
5. The ports where leaders touch labels may be prescribed (the center of a label

edge, say) or may be arbitrary.

In this paper we present algorithms that compute legal leader-label placements
for various types of leaders defined below, but we also approach optimal place-
ments according to the following two objective functions:

– short leaders (minimum total length) and
– simple leader layout (minimum number of bends).

These criteria have been adopted from the area of graph drawing since leaders
do not play a significant role in the label-placement literature. We will evaluate
the two criteria under two models for drawing leaders. In the first model we
require that each leader is rectilinear, i.e. a connected sequence of orthogonal
line segments. In the second model each leader is drawn straight-line. Clearly,
minimizing the number of bends does not make sense for straight-line leaders.

A rectilinear leader consists of a sequence of axis-parallel segments that con-
nects a site with its label. These segments are either parallel (p) or orthogonal
(o) to the side of the bounding rectangle R to which the label is attached. This
notation yields a classification scheme for rectilinear leaders: let a type be an
alternating string over the alphabet {p, o}. Then a leader of type t = t1 . . . tk
consists of an x- and y-monotone connected sequence (e1, . . . , ek) of segments
from site to label, where each segment ei has the direction that the letter ti pre-
scribes. In this paper we focus on leaders of the types opo and po, see Figures 1
and 2, respectively. We consider type-o leaders to be of type opo and of type po
as well. We refer to straight-line leaders as type-s leaders.

In this paper we assume that input points are in general position, i.e. no
three points lie on a line and no two points have the same x- or y-coordinate.

We start with a negative result. Assume that not all label heights are equal,
that labels must be attached either to the right or left side of the rectangle R, and
that the heights sum up to twice the height of R. Clearly the task of assigning
the labels to the two sides corresponds to the well-known problem Partition,
which is weakly NP-complete [7]. Due to this observation we first make some
simplifying assumptions like uniform labels and then generalize our algorithms
by adding more requirements.

52 Michael A. Bekos et al.

3 Rectilinear Leaders

In this section we investigate different ways of drawing rectilinear leaders. We pre-
sent algorithms for legal leader-label placement, leader-bend and leader-length
minimization. We consider attaching labels to one, two, and four sides of the
rectangle R and connecting sites to their labels with leaders of type opo and po,
see Figures 1 and 2, respectively.

3.1 Leader-Bend Minimization

One-Side Labeling with Type-opo Leaders. We first consider the problem
of attaching labels to one, say the right, side of the rectangle R. We assume
that the sum of the label heights is at most the height of R and that the sites
are sorted according to non-decreasing y-coordinate. If we use a slightly wider
rectangle R′ and leaders of type opo, then we can attach labels to the right side
of R′ and place non-crossing leaders in R′ as follows. We first stack the labels on
top of each other such that the lower left corner of l1 is incident to the lower right
corner of R′. Then we connect each site pi by a horizontal segment yi × [xi, rR]
to the right side of R. Finally we use the gap between the right sides of R and
R′ to lay out the remaining parts of the leaders from the right side of R to the,
say, midpoints of the left label edges, see Figure 1. This can be done with at
most two bends per leader and without any crossing, since the vertical orders
of sites and labels are identical and since we assume that no two sites have the
same y-coordinate. Thus a legal one-side type-opo leader-label placement can be
computed in O(n log n) time.

Clearly this approach is not optimal in terms of the total number of leader
bends. Given the restriction to leaders of type opo and the trick with the extra
space at the right side of R, routing the leaders is easy, and the remaining
problem is a one-dimensional label-placement problem. There has been work
on similar problems where labels are not restricted to a constant number of
positions, but can slide. Our problem is new in that labels do not necessarily
have to contain the point they label, but even if they do not (and thus contribute
to the objective function in a negative way), they must be placed within an
interval whose length is restricted (by the height of R).

Theorem 1. A legal one-side type-opo leader-label placement with the minimum
number of bends can be computed in O(n2) time and space.

Proof. We use dynamic programming with a table T of size n × (n + 1). For
k ≤ i the entry T [i, k] will contain the minimum y-coordinate that is needed
to accommodate the first i labels such that at least k of them use horizontal
leaders. If it is impossible to connect k out of the first i labels with horizontal
leaders, we set T [i, k] to ∞. As usual, the table entries are computed bottom-up.

To compute a new entry T [i, k], observe that there are only three interesting
positions of the label li: (a) directly on top of li−1 using a horizontal leader,
(b) directly on top of li−1 using a 2-bend leader, and (c) such that the top edge
of li lies on the horizontal line through the i-th site. These cases and the case
T [i, k] = ∞ can be distinguished in constant time. Thus T can be computed

Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps 53

p1

p2

p3
p4

R′R

Fig. 1. Type-opo leaders.

p1
p2

p3

p4R

Fig. 2. Type-po leaders.

R

v1 v2

v3v4

s1

s2

s3

s4

A1

A2

A3

A4

Fig. 3. Partition into
monotone regions.

in O(n2) time. Given T , the number of horizontal leaders is the largest k that
fulfills T [n, k] ≤ tR. By using an extra table of the same size as T , label and
leader positions of an optimal solution can be computed as well. ��
3.2 Legal Leader-Label Placement

Four-Side Labeling with Type-opo Leaders. Our approach for attaching
labels to all sides of the rectangle R is very simple. We partition R into four
disjoint regions such that the algorithms from the previous subsection can be
applied to each region separately. Points that lie on boundaries of our partition
in the interior of R can be connected to a side of R via both incident regions.
Thus we ignore the problem of how to distribute these boundaries.

We have two requirements for a region A in the partition of R: (a) A must
be adjacent to a specific side sA of R and (b) each point in A must see the point
with the same x- or y-coordinate on sA. Requirement (b) is a consequence of
using type-opo leaders. If we manage to find a partition of R into four regions
such that each region A contains the side sA of R and A is monotone in the
direction of sA then obviously both requirements are fulfilled.

To avoid an NP-hard partition problem as discussed in Section 2 we assume
that we know how many labels have to be attached to which side of R. To simplify
the presentation, we assume uniform square labels. Let n1, . . . , n4 be the number
of labels that have to be attached to the respective sides and let n = n1+· · ·+n4.
We want to partition R into four regions A1, . . . , A4 as described above, such
that |Ai ∩ P | = ni for i = 1, . . . , 4. We do this by rotating rays around the
rectangle corners until these conditions are fulfilled, see Figure 3.

The rotations can be implemented by sorting the sites according to the angles
they enclose with the horizontal or vertical lines through the appropriate corners
of R. Using the O(n log n)-time algorithm of the previous subsection we have the
following result:

Lemma 1. Given a rectangle R of sufficient size, a set P ⊂ R of n points in
general position, square uniform labels, one per point, and numbers n1, . . . , n4

that express how many labels are to be attached to which side of R, there is an
O(n log n)-time algorithm that attaches the labels to R and connects them to the
corresponding points with non-intersecting type-opo leaders.

One-Side Labeling with Type-po Leaders. In this subsection we describe
how to compute a legal labeling with leaders of type-po, see Figure 2. We restrict
ourselves to attaching labels to one side s of R. W.l.o.g., we assume that s is

54 Michael A. Bekos et al.

the right vertical side of R, and that the sites p1, . . . , pn are sorted according to
increasing y-coordinate. We consider uniform labels. Since we do not attempt to
minimize the number of bends, we simply stack labels to the right of s in the
same vertical order as the corresponding sites.

Our algorithm is very simple: we go through the sites from bottom to top.
Assume we have already placed non-intersecting leaders for the first i − 1 sites.
Then we connect pi to li by a leader ci of type po, i.e. by a vertical segment
(possibly of length zero) followed by a horizontal segment. Clearly ci can be
routed such that ci does not contain any sites except pi. Now we go through the
sites p1, . . . , pi−1 from right to left and test their leaders for intersection with ci.
Let pj be the rightmost site pj whose leader cj intersects ci. Then we reroute
as in Figure 4: we connect pj to li and pi to lj . We observe that the new leader
c′j of pj does not intersect any other leader and that the new leader c′i of pi can
only intersect leaders of sites to the left of pj . For placing the leader of pi we
have to reroute at most i − 1 times, and after this process of rerouting no two
leaders intersect any more. Thus we have:

Theorem 2. A legal one-side type-po leader-label placement can be computed in
O(n2) time given uniform labels.

3.3 Leader-Length Minimization

In the remainder of this section we focus on obtaining label placements of min-
imum total leader length. We attach labels to the left and the right side of the
rectangle R, and we treat uniform and non-uniform labels.

Type-opo Leaders and Uniform Labels. Labels are placed on opposite
sides of the rectangle, say sleft and sright, n/2 labels on each side. The labels
are assumed to be uniform in the sense that they all are of identical height. The
n/2 labels are of maximum height, covering the full length of the side of the
rectangle they reside, and hence their position at each side is determined. We
are given points p1, . . . , pn that have to be connected with leaders to labels on
sleft and sright so that the total leader length is minimized.

We consider type-opo leaders. Here we ignore the subproblem of routing. This
can be done as for the one-side label placement in Section 3.1. Again we assume
the existence of a slightly wider rectangle R′. The i-th point p which is assigned
to sleft is connected to the i-th label of sleft with a type-opo leader. Since the
location of each label is determined (and fixed) the length of the leader to the
i-th label of sleft is defined. Call it Left[p, i]. We define Right[p, i] analogously.

Theorem 3. Given a rectangle R with n/2 uniform labels of maximum height
on its left and on its right side, and a set P ⊂ R of n points in general position,
there is an O(n2)-time algorithm that connects all points to their labels with
non-intersecting type-opo leaders such that the total leader length is minimum.

Proof. To compute a label placement of minimum total leader length, we use
a dynamic programming algorithm. We assume that n is even. The case that
n is odd is slightly more involved, see [2]. The algorithm constructs a table

Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps 55

T [0 : n/2, 0 : n/2]. Entry T [l, r] contains the minimum total leader length for
the l + r lowest points where l of them have labels on sleft and r on sright. It is
easy to prove by induction that T [l, r] satisfies the following recurrence relation
for l, r ≤ n/2:

T [0, 0] = 0 (1)
T [0, r] = T [0, r − 1] + Right[pr, r] (2)
T [l, 0] = T [l − 1, 0] + Left[pl, l] (3)
T [l, r] = min{ T [l, r − 1] + Right[pl+r, r], T [l − 1, r] + Left[pl+r, l] } (4)

Having computed table T , entry T [n/2, n/2] corresponds to a label placement
of minimum total leader length. The actual placement can be easily recovered
by maintaining an additional table. The running time is obvious. ��
Type-po Leaders and Uniform Labels. Our next result also deals with
two-side placement of uniform labels.

Theorem 4. Given a rectangle R with n/2 uniform labels of maximum height
on each of its left and right side, and a set P ⊂ R of n points in general position,
there is an O(n2)-time algorithm that attaches each point to a label with non-
intersecting type-po leaders such that the total leader length is minimum.

Proof. We use the dynamic-programming algorithm of Theorem 3 for the case
of type-opo leaders to get the label placement. It runs in O(n2) time. Observe
that connecting a site to its label (at a fixed port) with a type-opo or a type-po
leader requires the same leader length, namely, the Manhattan distance of site
and port. So after obtaining the label placement (for type-opo leaders) we use
type-po leaders routed in the way described in Section 3.2. Possible crossings of
leaders to the same side are resolved as in Section 3.2 without changing the total
length, while crossings of leaders that go to opposites sides cannot occur. This
is due to the fact that swapping labels between a pair of points with crossing
leaders would result in a solution with smaller total leader length.

Four-Side Labeling with Type-opo Leaders. We give a polynomial-time
algorithm which finds type-opo leaders of minimum total length when the labels
can be placed on all four sides of the boundary of the rectangle. We only assume
that the labels have uniform size, the positions of the labels are disjoint, and the
label ports are predefined. We have the following planarity result:

Lemma 2. For any one-side solution of type-opo leaders with crossings there
exists a crossing-free one-side solution of type-opo leaders which does not have
a larger total leader length.

Now we can use Vaidya’s algorithm [13] for minimum-cost bipartite matching
for points in the plane under the Manhattan metric. It runs in O(n2 log3 n) time
and finds a matching between sites and ports that minimizes the total Manhattan
distance of the matched pairs.

Theorem 5. A crossing-free four-side solution of type-opo leaders with mini-
mum total length can be computed in polynomial time.

56 Michael A. Bekos et al.

Proof. Assume now that the solution of the minimum-weight matching implies
a crossing between two leaders. Clearly this crossing is between two segments
inside of the rectangle. Replacing the crossing by an appropriate “knock-knee”
[12] gives two leaders which might not be of type-opo. Rerouting the leaders in
type-opo shape does not increase the leader lengths, and applying Lemma 2 to
each of the two affected sides of the rectangle will provide a new solution of
type-opo with at most the same total leader length. An argument similar to that
used for the crossing resolution for type-po leaders shows that the process of
crossing resolution terminates in polynomial time. ��
Type-opo Leaders and Non-uniform Labels. We focus on two-side label
placement of type-opo leaders. We are given n points pi = (xi, yi), i = 1, 2, . . . , n,
each associated with a label li of height hi which can be placed on either the left
side (sleft) or the right side (sright) of rectangle R. Observe that the height of
rectangle R must be large enough to accommodate the labels. In the event that
the height of rectangle R is equal to half the sum of the label heights, managing to
place the labels accounts to solving the partition problem. So, we cannot expect
an algorithm that runs in polynomial time only to the number of points. Instead
we get an algorithm that runs in polynomial time to the height of rectangle R,
which can be considered to be the equivalent of the pseudo-polynomial solution
to the partition problem.

Here we again ignore the routing of the type-opo leaders and assume the
existence of a slightly wider rectangle R′.

Theorem 6. Given a rectangle R of height H, a set P ⊂ R of n points in
general position where point pi is associated with label li of height hi, there is
an O(nH2)-time algorithm that places the labels to the sides of the rectangle and
attaches the corresponding points with non-intersecting type-opo leaders such that
the total leader length is minimum.

Proof. We say that label l is placed at height h if its bottom edge has y-coordinate
h. Assume that the i-th point pi is connected to sleft and its label li is placed
at height y then the length of the edge from pi to li leftward is defined. Call it
Left[pi, y]. Similarly, we define Right[pi, y].

We denote by T [i, yL, yR] the total length of the type-opo leaders of the i
lowest points, where the left side of the rectangle is occupied up to yL and the
right side is occupied up to yR. By TL[i, yL, yR] we denote the total leader length
for the case where the i-th point has its label on the left side, the left side of the
rectangle is occupied up to yL (including label li) and the right side is occupied
up to yR. Similarly we define TR[i, yL, yR]. Then, by induction we can show that
the following recurrence relations hold (we omit the boundary conditions):

T [i, yL, yR] = min{TL[i, yL, yR], TR[i, yL, yR]} (5)
TL[i, yL + hi, yR] = T [i − 1, yL, yR] + Left[pi, yL] (6)
TR[i, yL, yR + hi] = T [i − 1, yL, yR] + Right[pi, yR] (7)

Based on them, we can compute table T by dynamic programming. After this
computation, the minimum table entry of the form T [n, a, b], where 0 < a, b ≤ H ,

Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps 57

gives the minimum total leader length. We can recover the label placement which
realizes the computed total leader length by maintaining an additional table with
dimensions equal to those of T . The dynamic programming algorithm will use
O(nH2) time and space. ��

4 Straight-Line Leaders

In this section we investigate straight-line or type-s leaders, i.e. we allow skewed
lines but forbid bends. We first give a simple algorithm that computes a legal
one-side labeling. Then we show how this algorithm can be improved either in
terms of runtime or in terms of total leader length. Finally we sketch how it can
be applied to four-side labeling.

One-Side Labeling. We adopt the scenario of Section 3.1. Let R be the bound-
ing rectangle. We want to attach labels to the right side of R. We assume that
labels are uniform and that their heights add up to the height of R. We also
assume that the port mi where the leader is connected to its label li is fixed, say
mi is in the middle of the left label edge. Thus the only task is to assign ports
to points such that no two leaders intersect.

Let M = {m1, . . . , mn} be the ports sorted by y-coordinate from bottom to
top. For i = 1, . . . , n we assign to mi the first unlabeled point p ∈ P that is hit
by a ray ri that emanates from mi and is rotated around mi in clockwise order.
Initially ri is pointing vertically downwards. The proof of correctness is trivial.

Clearly the algorithm can be implemented in O(n2) time, but we can do
better. Let CH be the convex hull of P ∪M . Note that CH has an edge between
the lowest port m1 and the first point p reached by the rotating ray r1. This
edge is the first leader. Removing p and m1 from CH yields the next leader and
so on. Using a semi-dynamic convex-hull data structure [8] yields a total running
time of O(n log n). This algorithm is correct since it mimics the slow one.

To compute an assignment that is minimum in terms of total leader length
we proceed as described just before Theorem 5, except now we use Euclidean
minimum-cost bipartite matching for the sets of sites and ports. This takes
O(n2+δ) time [1], where δ > 0 can be chosen arbitrarily small. For type-s leaders
length minimization automatically ensures planarity. Thus we have:
Theorem 7. A legal one-side type-s leader-label placement can be computed in
O(n log n) time. Minimizing total leader length takes O(n2+δ) time for any δ > 0.

Four-Side Labeling. In this subsection, we partition the rectangle into convex
polygons, such that the sites in each polygon can be connected to the labels on
the boundary of the polygon using the one-side routing algorithm of the previous
subsection. We assume uniform labels. Note that the only assumption we used
about the relative position of sets P and M of sites and ports, respectively, was
that M is contained in an edge of the convex hull of P ∪ M . To make the one-
side routing algorithm work, the convex polygons must be chosen such that they
contain exactly as many sites as there are labels on their boundary. We construct
in O(n log n) time eight polygons with this property by rotating �, moving �top

and �bot, and rotating �1 to �4 as indicated in Figure 5.

58 Michael A. Bekos et al.

reroute(i, j)

pi pj

li

lj lj

li

pj
pi

ci

cj c′i

c′j

R
��top

�bot

�1 �2

�3
�4

Fig. 4. Rerouting of crossing leaders. Fig. 5. Partition for straight-line leaders.

As in the one-side case Euclidean minimum-cost bipartite matching yields a
placement of minimum total leader-length. Thus we conclude:

Theorem 8. A legal four-side type-s leader-label placement can be computed in
O(n log n) time. Minimizing total leader length takes O(n2+δ) time for any δ > 0.

5 Examples

We have implemented some of the presented algorithms, but due to space con-
straints we can give only one example here. Figure 6 depicts a relatively small
medical map of a skeleton. The original labels and leaders are on the right side
of the drawing. We have mirrored the sites at the vertical line through the spine
and have applied our algorithm for type-opo leaders such that labels were placed
to the left of the drawing. For more examples, see [2].

References

1. P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels
in 3-dimensional arrangements and its applications. In Proc. 11th ACM Symp.
Comp. Geom. (SoCG’95), pages 39–50, 1995.

2. M. A. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff. Boundary labeling: Models
and efficient algorithms for rectangular maps. Technical Report 2004-15, Fakultät
für Informatik, Universität Karlsruhe, 2004. Available at
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=/ira/2004/15.

3. B. Chazelle and 36 co-authors. The computational geometry impact task force
report. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in
Discrete and Computational Geometry, vol. 223, pp. 407–463. AMS, 1999.

4. J.-D. Fekete and C. Plaisant. Excentric labeling: Dynamic neighborhood label-
ing for data visualization. In Proc. Conference on Human Factors in Computer
Systems (CHI’99), pages 512–519, 1999. ACM New York.

5. M. Formann and F. Wagner. A packing problem with applications to lettering of
maps. In Proc. 7th ACM Symp. Comp. Geom. (SoCG’91), pages 281–288, 1991.

6. H. Freeman, S. Marrinan, and H. Chitalia. Automated labeling of soil survey maps.
In Proc. ASPRS-ACSM Annual Convention, Baltimore, vol. 1, pp. 51–59, 1996.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

8. J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm.
BIT, 32:249–267, 1992.

9. C. Iturriaga. Map Labeling Problems. PhD thesis, University of Waterloo, 1999.
10. C. Iturriaga and A. Lubiw. Elastic labels around the perimeter of a map. Journal

of Algorithms, 47(1):14–39, 2003.

Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps 59

Fig. 6. A medical map with original labels and leaders (left) as well as labels and
type-opo leaders computed by our algorithm (right). Drawing from
http://www.vobs.at/bio/a-phys/pdf/a-skelett-a.jpg.

11. G. W. Klau and P. Mutzel. Automatic layout and labelling of state diagrams. In
W. Jäger and H.-J. Krebs, editors, Mathematics – Key Technology for the Future,
pages 584–608. Springer-Verlag, Berlin, 2003.

12. T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. B. G. Teub-
ner, 1990.

13. P. M. Vaidya. Geometry helps in matching. SIAM J. Comput., 18:1201–1225,
1989.

14. A. Wolff and T. Strijk. The Map-Labeling Bibliography.
http://i11www.ira.uka.de/map-labeling/bibliography/, 1996.

15. S. Zoraster. Practical results using simulated annealing for point feature label
placement. Cartography and GIS, 24(4):228–238, 1997.

	1 Introduction
	2 Defining and Modeling the Problem
	3 Rectilinear Leaders
	3.1 Leader-Bend Minimization
	3.2 Legal Leader-Label Placement
	3.3 Leader-Length Minimization

	4 Straight-Line Leaders
	5 Examples
	References

