
AIP Advances 5, 107203 (2015); https://doi.org/10.1063/1.4932627 5, 107203

© 2015 Author(s).

Boundary layer flow and heat transfer to
Carreau fluid over a nonlinear stretching
sheet
Cite as: AIP Advances 5, 107203 (2015); https://doi.org/10.1063/1.4932627
Submitted: 15 August 2015 • Accepted: 24 September 2015 • Published Online: 05 October 2015

Masood Khan and   Hashim

ARTICLES YOU MAY BE INTERESTED IN

Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and
oscillatory flows using the lattice Boltzmann method
Physics of Fluids 19, 093103 (2007); https://doi.org/10.1063/1.2772250

Rheological Equations from Molecular Network Theories
Transactions of the Society of Rheology 16, 99 (1972); https://doi.org/10.1122/1.549276

Impact of Cattaneo-Christov heat flux in the flow over a stretching sheet with variable
thickness
AIP Advances 5, 087159 (2015); https://doi.org/10.1063/1.4929523

https://images.scitation.org/redirect.spark?MID=176720&plid=1857063&setID=378289&channelID=0&CID=683467&banID=520740869&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=b199dc9a1699d095151e69aa161c89367dfa542f&location=
https://doi.org/10.1063/1.4932627
https://doi.org/10.1063/1.4932627
https://aip.scitation.org/author/Khan%2C+Masood
http://orcid.org/0000-0003-3663-8682
https://aip.scitation.org/author/Hashim
https://doi.org/10.1063/1.4932627
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4932627
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4932627&domain=aip.scitation.org&date_stamp=2015-10-05
https://aip.scitation.org/doi/10.1063/1.2772250
https://aip.scitation.org/doi/10.1063/1.2772250
https://doi.org/10.1063/1.2772250
https://aip.scitation.org/doi/10.1122/1.549276
https://doi.org/10.1122/1.549276
https://aip.scitation.org/doi/10.1063/1.4929523
https://aip.scitation.org/doi/10.1063/1.4929523
https://doi.org/10.1063/1.4929523


AIP ADVANCES 5, 107203 (2015)

Boundary layer flow and heat transfer to Carreau fluid
over a nonlinear stretching sheet

Masood Khan and Hashima

Department of Mathematics, Quaid-i-Azam University, Islamabad 44000, Pakistan

(Received 15 August 2015; accepted 24 September 2015; published online 5 October 2015)

This article studies the Carreau viscosity model (which is a generalized Newtonian
model) and then use it to obtain a formulation for the boundary layer equations of
the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model
over a nonlinear stretching surface is discussed. The Carreau model, adequate for
many non-Newtonian fluids, is used to characterize the behavior of the fluids having
shear thinning properties and fluids with shear thickening properties for numerical
values of the power law exponent n. The modeled boundary layer conservation
equations are converted to non-linear coupled ordinary differential equations by a
suitable transformation. Numerical solution of the resulting equations are obtained by
using the Runge-Kutta Fehlberg method along with shooting technique. This analysis
reveals many important physical aspects of flow and heat transfer. Computations
are performed for different values of the stretching parameter (m), the Weissenberg
number (We) and the Prandtl number (Pr). The obtained results show that for
shear thinning fluid the fluid velocity is depressed by the Weissenberg number
while opposite behavior for the shear thickening fluid is observed. A comparison
with previously published data in limiting cases is performed and they are in
excellent agreement. C 2015 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4932627]

I. INTRODUCTION

For the chemical engineering industry the most important property of fluids is the non-
Newtonian viscosity. The generalized Newtonian fluids are those in which the viscosity changes
with the shear rate i.e. the viscosity of the fluid shows a dependence on the shear rate. The change
in the viscosity by two or three orders of magnitude is feasible for some fluids and this cannot be
ignored when the lubrication problems and polymer processing is considered. Therefore, one of the
basic empirically obtained modifications of the Newton’s law of viscosity is to allow the viscosity to
change with the shear rate. Such variety of fluids is commonly referred to as generalized Newtonian
fluids and explained in Bird et al.1 The simplest generalized Newtonian fluid is the power-law
constitutive relation. The power-law viscosity model has the limitation that it cannot adequately
predict the viscosity for very small or very large shear rates. In view of such limitation of the power
law model, especially for very low and very high shear rates, we consider another viscosity model
from the class of generalized Newtonian fluids, namely Carreau rheological model.2 This model
overcomes the limitations of the power-law model identified above and appears to be gaining wider
acceptance in chemical engineering and technological processes. The Carreau fluid model can well
characterize the rheology of various polymeric solutions, such as 1% methylcellulose tylose in
glycerol solution and 0.3% hydroxyethyl-cellulose Natrosol HHX in glycerol solution3 and pure
poly ethylene oxide.4 These polymers are widely used in capillary electrophoresis to improve the
resolution in the separation of proteins5 and DNAs.6 It determines a specific region where the fluid
viscosity and its shear rate has a linear relationship (on the usual log-log coordinates). Thus, the
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Carreau model predicts a power law region. However, unlike the power-law model, it anticipate a
viscosity which remains finite as the shear rate approaches zero. Due to this reason, the constitutive
equation of the Carreau model is much suitable for free surface flows.

Due to wider applications, the Carreau model has caught the attention of many researchers and
engineers during the last few years. Chhabra and Uhlherr7 and Bush and Phan-Thein8 studied the
flows of the Carreau fluid model around the spheres. Later on, Hsu and Yeh9 investigated the drag
on two coaxial rigid spheres which moving along the axis of a cylinder filled with Carreau fluid.
Uddin et al.10 discussed the squeeze flow of a Carreau fluid during sphere impact. Shadid and Eckert11

presented the flow of a Carreau fluid over a cylinder. Tshehla12 discussed the motion of a Carreau
fluid along an inclined plane with a free surface. Olajuwon13 investigated the MHD flow of Carreau
fluid with convective heat and mass transfer over a vertical porous plat. Griffiths14 discussed the flow
of a generalized Newtonian fluid due to a rotating disk. He investigated that the base flow similarity
solution is still applicable when we consider the Carreau model instead of power-law model.

The problem of boundary layer flow behavior because of a stretching sheet got the attention of
many researchers as it has important bearing on many technological processes. Specifically, flow due
to stretching surface is usually encountered in extrusion process where a melt is stretched into a cool-
ing liquid. Other examples includes glass-fiber, cooling of continuous stripes and crystal growing.
For these cases, the fluid product of our desired properties strictly depend on the stretching rate and
the rate of cooling in the process. mechanical properties of the fluid desired for the outcome of such
a process would mostly depend on the cooling rate and the rate of stretching. Initially, Sakiadis15

study the boundary layer flow behavior for the solid surface which moves with constant speed. After
that, many researchers studied the different aspect of these flows. Crane16 and Gupta and Gupta17

have studied the heat and mass transfer over a stretching sheet with constant surface temperature.
Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid flow
towards a stretching sheet with magnetic field is discussed by N. S. Akbar.18 Nadeem et al.19 inves-
tigated the MHD flow of a Casson fluid over an exponentially shrinking sheet. The boundary layer
flow on an inextensible continuous flat sheet having constant velocity in a non-Newtonian power-law
fluid is examine by Erickson et al.20 using both exact and numerical schemes. Akbar et al.21 discussed
the dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. The
classical problem of two-dimensional flow induced by a non-linearly stretching sheet was described
by Vajravelu.22 Cortell23 modified the problem by taking viscous dissipation effect and variable sur-
face temperature. MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet
is examined by Nadeem et al.24

The objective of present investigation is to discuss the boundary layer flow and heat transfer of
Carreau model over a non-linear stretching surface. We obtained the boundary layer equations for
the velocity field of the Carreau fluid. This model which, in comparison with the Newtonian case
involves three additional dimensionless parameters, allows the characterization of a wide variety of
shear-thinning fluids. The numerical method namely Runge-Kutta shooting method is used to solve
the nonlinear governing problem. The obtained results for both the fluid velocity and its temperature
are presented for different values of parameters entering in the problem. The effects of emerging
parameters, like the Weissenberg number We, the power law index n and the Prandtl number Pr on
the local skin friction and local Nusselt number are presented numerically in tabular form.

II. GOVERNING EQUATIONS

The fundamental equations for the flow of an incompressible fluid are the conservation of mass,
linear momentum and energy. We express these equations in the absence of body forces as follows:

div V = 0, (1)

ρ
dV
dt
= div τ, (2)

ρcp
dT
dt
= τ.L − div q, (3)
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where V represents the velocity field, ρ is the density of the fluid, τ the Cauchy stress tensor, T the
fluid temperature, cp the specific heat, q = −k grad T , the heat flux with k the thermal conductivity
of fluid, L = ∇V and d/dt denotes the total time derivative.

The Cauchy stress tensor for the Carreau rheological model is given by the following equation1

τ = −pI + ηA1, (4)

with

η = η∞ + (η0 − η∞) �1 + (Γγ̇)2�
n−1

2 , (5)

in which p denotes the pressure, I represents the identity tensor, η0 is the zero-shear-rate viscosity,
η∞ the infinite-shear-rate viscosity, Γ a material time constant, and n expresses the power law index
(since it describes the slope of (η − η∞)/(η0 − η∞) in the power law region). The shear rate γ̇ is
expressed as

γ̇ =


1
2


j


j

γ̇ij γ̇ji =


1
2
Π =


1
2

tr
�
A2

1

�
. (6)

Here Π is the second invariant strain rate tensor and

A1 = (grad V) + (grad V)T. (7)

We consider the most practical cases where in η0 >> η∞.25 Hence, η∞ is taken to be zero and
consequently Eq. (4) reduces as

τ = −pI + η0


1 + (Γγ̇)2

n−1
2 A1, (8)

The Carreau-model with fluid index in the range 0 < n < 1 are commonly referred as shear thinning
or pseudoplastic fluids and Carreau fluids with fluid index in the range n > 1 are commonly referred
as shear thickening or dilatant fluids.

For an incompressible two-dimensional flow, the velocity and temperature fields are assumed as

V = [u(x, y), v(x, y), 0], T = T(x, y), (9)

where u and v represents the components of velocity vector along the x− and y − axis.
Making use of Eqs. (7) and (9) into Eq. (6), the rate of strain γ̇ is expressed as:

γ̇ =


4
(
∂u
∂x

)2

+

(
∂u
∂ y
+
∂v

∂x

)2

1/2

. (10)

Using Eq. (9) into Eqs. (1) and (2), keeping in view Eqs. (7), (8) and (10), a straightforward
calculations gives the equations for conservation of mass and linear momentum as follows:

∂u
∂x
+

∂v

∂y
= 0, (11)

ρ

(
u
∂u
∂x
+ v

∂u
∂y

)
= −∂p

∂x
+ η0

(
∂2u
∂x2 +

∂2u
∂ y2

) 
1 + Γ2




4
(
∂u
∂x

)2

+

(
∂u
∂ y
+
∂v

∂x

)2




n−1
2

+2η0
∂u
∂x

∂

∂x


1 + Γ2




4
(
∂u
∂x

)2

+

(
∂u
∂ y
+
∂v

∂x

)2




n−1
2

+η0

(
∂u
∂ y
+
∂v

∂x

)
∂

∂ y


1 + Γ2




4
(
∂u
∂x

)2

+

(
∂u
∂ y
+
∂v

∂x

)2




n−1
2

, (12)
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ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= − ∂p

∂y
+ η0

(
∂2v

∂x2 +
∂2v

∂ y2

) 
1 + Γ2




4
(
∂u
∂x

)2

+

(
∂u
∂ y
+
∂v

∂x

)2




n−1
2

+2η0
∂v

∂ y

∂

∂ y


1 + Γ2




4
(
∂u
∂x

)2

+

(
∂u
∂ y
+
∂v

∂x

)2




n−1
2

+η0

(
∂u
∂ y
+
∂v

∂x

)
∂

∂x


1 + Γ2




4
(
∂u
∂x

)2

+

(
∂u
∂ y
+
∂v

∂x

)2




n−1
2

. (13)

We proceed by putting the above equations into non-dimensional form using the standard approach
by taking L as typical length and U as stretching speed. The dimensionless variables are defined by

(u∗, v∗) =
( u
U
,
v

U

)
, (x∗, y∗) =

( x
L
,
y

L

)
, and p∗ =

p
ρU2 . (14)

Making use of these non-dimensional variables allows us to write the continuity and momentum
transport equations as:

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0, (15)

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= − 1

ρ

∂p∗

∂x∗
+ ε1

(
∂2u∗

∂x∗2
+
∂2u∗

∂ y∗2

) 
1 + ε2




4
(
∂u∗

∂x∗

)2

+

(
∂u∗

∂ y∗
+
∂v∗

∂x∗

)2




n−1
2

+2ε1
∂u∗

∂x∗
∂

∂x∗


1 + ε2




4
(
∂u∗

∂x∗

)2

+

(
∂u∗

∂ y∗
+
∂v∗

∂x∗

)2




n−1
2

+ε1( ∂u∗

∂ y∗
+
∂v∗

∂x∗
) ∂

∂ y∗


1 + ε2




4
(
∂u∗

∂x∗

)2

+

(
∂u∗

∂ y∗
+
∂v

∂x∗

)2




n−1
2

, (16)

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= − 1

ρ

∂p∗

∂y∗
+ ε1

(
∂2v∗

∂x2 +
∂2v∗

∂ y∗2

) 
1 + ε2




4
(
∂u∗

∂x∗

)2

+

(
∂u∗

∂ y∗
+
∂v∗

∂x∗

)2




n−1
2

+2ε1
∂v∗

∂ y∗
∂

∂ y∗


1 + ε2




4
(
∂u∗

∂x∗

)2

+

(
∂u∗

∂ y∗
+
∂v∗

∂x∗

)2




n−1
2

+ε1

(
∂u∗

∂ y∗
+
∂v∗

∂x∗

)
∂

∂x∗


1 + ε2




4
(
∂u∗

∂x∗

)2

+

(
∂u∗

∂ y∗
+
∂v∗

∂x∗

)2




n−1
2

, (17)

where the dimensionless parameters ε1 and ε2 are defined by

ε1 =
η0 /ρ

LU
and ε2 =

Γ2

(L/U)2 . (18)

As we know that in the usual boundary layer approximations, the order of x and u is taken to be 1
while the order of v and y is δ. Furthermore, the dimensionless parameter ε1 and ε2 have the order δ2.

Consequently, using the boundary layer analysis, the above equations in the dimensional form
result in

∂u
∂x
+

∂v

∂y
= 0, (19)

u
∂u
∂x
+ v

∂u
∂y
= − 1

ρ

∂p
∂x
+ ν

∂2u
∂ y2


1 + Γ2

(
∂u
∂ y

)2

n−1
2

+ ν
∂u
∂ y

∂

∂ y


1 + Γ2

(
∂u
∂ y

)2

n−1
2

, (20)

0 = − 1
ρ

∂p
∂y

, (21)

where ν = η0
ρ

is the kinematic viscosity.
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The governing equation (20) can also be written in the form

u
∂u
∂x
+ v

∂u
∂y
= − 1

ρ

∂p
∂x
+ ν

∂2u
∂ y2


1 + Γ2

(
∂u
∂ y

)2

n−1
2

+ ν(n − 1)Γ2 ∂
2u

∂ y2

(
∂u
∂ y

)2
1 + Γ2

(
∂u
∂ y

)2

n−3
2

.

(22)

III. PROBLEM FORMULATION

We consider the problem of an incompressible two-dimensional flow of a generalized non-
Newtonian fluid, namely Carreau fluid, due to a stretching sheet which coincides with the plane y = 0.
It is assumed that the flow being confined to y > 0. The stretching sheet has uniform temperature
Tw with T∞ (Tw > T∞) as the ambient fluid temperature and it is moving with a non-linear velocity
Uw = bxm. The parameters b and m(> 0) are positive real numbers relating to the stretching speed.
The x − coordinate is taken along the moving surface and the y − coordinate is taken normal to it.

Keeping the above assumptions in mind, the governing equations of the problems are

∂u
∂x
+

∂v

∂y
= 0, (23)

u
∂u
∂x
+ v

∂u
∂y
= ν

∂2u
∂ y2


1 + Γ2

(
∂u
∂ y

)2

n−1
2

+ ν(n − 1)Γ2 ∂
2u

∂ y2

(
∂u
∂ y

)2
1 + Γ2

(
∂u
∂ y

)2

n−3
2

, (24)

u
∂T
∂x
+ v

∂T
∂ y
= α

∂2T
∂ y2 , (25)

where α = k
ρcp

, cp is the specific heat and k being the thermal conductivity.
The associated boundary conditions are:

u = Uw(x) = bxm, v = 0 , T = Tw at η = 0, (26)
u → 0, T → T∞ as η → ∞. (27)

The governing momentum and heat transfer equations can be transferred into the coupled ordinary
differential equations by introducing the following suitable transformations:

ψ(x, y) =


2νb
m + 1

x
m+1

2 f (η), θ(η) = T − T∞
Tw − T∞

η = y


b(m + 1)

2ν
x

m−1
2 . (28)

where ψ is the stream function.

TABLE I. A Comparison of the values of − f ′′(0) with n = 1.0, We = 0.0, for different values of m.

m Cortell19 Cortell22 Hamad and Ferdows23 Present study

0.0 - 0.627547 0.6369 0.6275549
0.1 0.705897 - 0.7059245
0.2 - 0.766758 0.7659 0.766837
0.3 0.815696 - 0.815713
0.5 - 0.889477 0.8897 0.889544
0.6 0.918172 - 0.918177
0.75 - 0.953786 0.953957
0.9 0.983242 - 0.983247
1.0 1.0 1.0 1.0043 1.0
1.5 1.061587 1.061587 1.061601
3.0 1.148588 1.148588 1.1481 1.148593
7.0 - 1.216847 1.216851
10.0 1.234875 1.234875 1.2342 1.234875
20.0 - 1.257418 1.2574 1.257424
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TABLE II. A Comparison of the values of −θ′(0) with n = 1.0, We = 0.0, and Pr= 1.0, for different values of m.

m

Cortell22

with Pr= 1.0
Present study
with Pr= 1.0

Cortell22

with Pr= 1.0
Present study
with Pr= 1.0

0.2 0.610262 0.610202 1.607175 1.607130
0.5 0.595277 0.595201 1.586744 1.586759
1.5 0.574537 0.574730 1.557463 1.557519
3.0 0.564472 0.564662 1.542337 1.542719
10.0 0.554960 0.554951 1.528573 1.528502

TABLE III. Numerical values of the local skin friction coefficients −Re
1
2C fx for various values of n, We, and m.

Parameters (fixed values) Parameters −Re
1
2C fx

m = 1.0, We = 3.0, n 0.5 0.749994
1.0 1.0
1.5 1.19396
2.0 1.35565
2.5 1.49594

n = 0.5, We = 3.0 m 1.0 0.749994
2.0 0.988647
3.0 1.17864
4.0 1.34149
5.0 1.48641

n = 0.5, m = 1.0 We 0.5 0.982634
1.0 0.938202
2.0 0.832767
4.0 0.689758
5.0 0.644164

TABLE IV. Numerical values of the local Nusselt number −Re−1/2Nux for various values of n, We, Pr and m.

Parameters (fixed values) Parameters −Re−1/2Nux

m = 1.0,We = 3.0,Pr= 1.0 n 0.5 0.524684
1.0 0.582069
1.5 0.617530
2.0 0.641585
2.5 0.658939

n = 0.5,We = 3.0,Pr= 1.0 m 1.0 0.524684
2.0 0.623890
3.0 0.712031
4.0 0.789697
5.0 0.860536

n = 0.5,m = 1.0,Pr= 1.0 We 0.5 0.578418
1.0 0.569132
2.0 0.545317
4.0 0.508464
5.0 0.496211

n = 0.5,m = 1.0,We = 3.0 Pr 0.5 0.322215
1.0 0.524684
1.5 0.691768
2.0 0.835148
2.5 1.078587



107203-7 M. Khan and Hashim AIP Advances 5, 107203 (2015)

FIG. 1. The velocity profile f ′(η) for several values of the power law index n when We = 3 is fixed.

The momentum and energy equations (24) and (25) are thus transformed to:


1 + nWe2( f ′′)21 +We2( f ′′)2

n−3
2 f ′′′ + f f ′′ −

(
2m

m + 1

)
( f ′)2 = 0, (29)

θ ′′ + Pr f θ ′ = 0, (30)

where prime denotes differentiation with respect to η,We =
(
b3(m+1)Γ2x3m−1

2ν

)1/2
the local

Weissenberg number and Pr = µcp
k

the Prandtl number.
The relevant boundary conditions becomes:

f (0) = 0, f ′(0) = 1, θ(0) = 1, (31)

f ′(∞) → 0, θ(∞) → 0. (32)

It is to be noted that for n = 1 or We = 0 the Carreau fluid transform to Newtonian fluid.
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FIG. 2. The temperature profile θ(η) for several values of the power law index n when Pr= 1 and We = 3 are fixed.

The dimensionless physical quantities of practical concern are the local skin friction coefficient
Cfx and the local Nusselt number Nux, which are given by

Cfx =
τw |y=0

ρU2
w(x)

, Nux = −
x

(Tw − T∞)
(
∂T
∂ y

)
|y=0, (33)

where

τw = η0
∂u
∂y


1 + Γ2

(
∂u
∂ y

)2

n−1
2

. (34)

Thus, using Eq. (34), we obtain

Re1/2Cfx =


m + 1

2
f ′′(0)1 +We2� f ′′(0)�2

n−1
2 , Re−1/2Nux = −


m + 1

2
θ ′(0), (35)

where Re = bxm+1

υ
is the local Reynolds number.
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FIG. 3. The velocity profile f ′(η) for several values of the stretching parameter m when We = 3 is fixed.

IV. NUMERICAL METHOD FOR SOLUTION

Equations (29) and (30) with associated boundary conditions (31) and (32) are solved using the
numerical scheme known as Runge-Kutta Fehlberg method along with shooting technique. In this
method we convert the boundary value problem into IVP as:

w ′1 = w2, w ′2 = w3, w ′3 =

�� 2m
m+1

�
w2

2 − w1w3
�

�
1 + nWe2w2

3

��
1 +We2w2

3

�( n−3
2 ) , (36)

w ′4 = w5, w ′5 = −Prw1w5, (37)

where the prime indicates that the differentiation is carried out with respect to η, w1 = f and w4 = θ.
In accordance with the boundary conditions (31) and (32) we have

w1(0) = 0, w2(0) = 1, w2(∞) = 0, w4(0) = 1, w4(∞) = 0. (38)

To integrate (36), (37) and (38) as an IVP one requires a value for w2(0) , i.e. f ′′(0) and w4(0),
i.e. θ ′(0) but no such value is given at the boundary. The initial guess values for f ′′(0) and θ ′(0) are
chosen and then integrated.



107203-10 M. Khan and Hashim AIP Advances 5, 107203 (2015)

FIG. 4. The temperature profile θ(η) for several values of the stretching parameter m when Pr= 1 and We = 3 are fixed.

The main step in shooting scheme is to select the suitable fixed value of η∞. To estimate η∞,
we start with some initial guess values to pick f ′′(0) and θ ′(0). We repeat the solution procedure for
another large value of η∞, as far as two consecutive values of f ′′(0) and θ ′(0) vary only by specific
significant digit. The closing value of η∞ is considered to be the limit of η∞ for that set of physical
quantities. The value of η∞, may be different for some other set of physical quantities. The obtained
values for f ′ and θ at η = η∞ = 10 (say) are compared with the corresponding boundary conditions
f ′(10) = 0 and θ(10) = 0. The step-size is taken as ∆η = 0.01. We repeat the above procedure until
the obtained results converged within a desired tolerance of 10−5.

V. RESULTS AND DISCUSSION

In order to get the physical insight, numerical computations has been performed using the
method described in the last section for different values of the Weissenberg number (We), the power
law index (n), the stretching parameter (m) and the Prandtl number (Pr). For illustration of these
results, numerical solutions are plotted through tables I to IV and figures 1–7.
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FIG. 5. The velocity profile f ′(η) for several values of the Weissenberg number We when m = 5 is fixed.

In order to check the accuracy of the present results, we have compared our calculated re-

sults with those of Cortell,23 Cortell26 and Hamad27 for the skin friction coefficient


m+1
2 f ′′(0)[1

+We2� f ′′(0)	2]( n−1
2 ) and rate of heat transfer −


m+1

2 θ ′(0) for the power law exponent (n = 1) and
in the absence of the Weissenberg number (We = 0) in the limiting cases. These comparisons are
found to be in excellent agreement as shown in tables I and II. Tables III and IV display the calcu-
lated numerical values for the local skin friction coefficient and the local Nusselt number. Table III
displays that the magnitude of the skin friction increases as the values of n and stretching parameter
m increases. Also we can see from the table that by increasing the values of the Weissenberg
number We, the skin friction reduces. It is seen from Table IV that for fixed values of Pr, We and
m the local Nusselt number increases with an increment in the power law index n. Further the local
Nusselt number shows an increasing behavior for the increasing values of the stretching parameter
m and the Prandtl number Pr. On the other hand, it is also noted from this table that the local Nusselt
number decreases with increase in the Weissenberg number We.

In figures 1 and 2, the physical behavior of the boundary layer near to the surface can be
seen by observing the velocity and temperature profiles respectively. These figures demonstrate how
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FIG. 6. The temperature profile θ(η) for several values of the Weissenberg number We when m = 5 and Pr= 1 are fixed.

the velocity and temperature profiles are effected by the power law index n for both linear and
non-linear stretching’s. The velocity profile f ′(η) (figure 1) represents an increasing behavior for
increasing values of n and temperature profile θ(η) (figure 2) is strongly depressed with increas-
ing power law index n. Further these figures reveal that there is a corresponding increase in the
momentum boundary layer thickness while the thermal boundary layer thickness decreases by
increasing the power law index n.

Figures 3 and 4 depict the velocity and temperature profiles for distinct values of the stretching
parameter m, with varying n. Figure 3 indicates that fluid velocity decreases with the increasing
values of the m for both shear thickening (n > 1) and shear thinning (0 < n < 1) fluids. It is seen
that the large values of the stretching parameter m thins the momentum boundary layer thickness.
From figure 4, it is evident that the influence of the stretching parameter m is to increase the
temperature with its increase and the effects of stretching parameter are more prominent for shear
thinning fluid.

Figures 5 and 6 are plotted to illustrate the effects of the Weissenberg number We on the ve-
locity and temperature graphs. Figure 5 examines that the fluid velocity f ′(η) decreases by uplifting
the Weissenberg number for the shear thinning fluid. On the other hand for shear thickening fluid
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FIG. 7. The temperature profile θ(η) for several values of the Prandtl number Pr when m = 5 and We = 3 are fixed.

the velocity profile f ′(η) increases. Influence of the Weissenberg number on the temperature distri-
bution θ(η) is presented in figure 6 and it is clear that the temperature distribution θ(η) increases by
increasing the Weissenberg number for the case of shear thinning fluid. While it shows the opposite
behavior for the shear thickening fluid.

To see the variation of the Prandtl number on θ(η), figure 7 is plotted for varying values of n.
From these figures we can observe that the dimensionless temperature θ(η) reduces with uplifting
the Prandtl number Pr and the corresponding thermal boundary layer thickness also decreases for
both shear thinning and shear thickening fluids. Physically this is because of the fact that an inflation
in the Pr is responsible for the rise in fluid viscosity, which reduces fluid temperature. Furthermore,
we see that the thermal boundary layer thickness of the shear thinning fluid is larger than the shear
thickening fluid.

VI. CONCLUDING REMARKS

In this study we have obtained the boundary layer equations of motion for a two-dimensional
flow of an incompressible non-Newtonian Carreau fluid. The equations for the Newtonian case
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can be recovered from the derived equations as a limiting cases. The suitable transformation were
employed to reduce the non-linear equations into self-similar ordinary differential equations. The
Runge-Kutta Fehlberg method along with shooting technique was used to solve the problem. The
results were presented graphically and the effects of the various emerging parameters were dis-
cussed. The major findings from the present study are as follows:

• An increase in the momentum boundary layer thickness and a decrease in thermal boundary
layer thickness was observed for the increasing values of the power law index including shear
thinning to shear thickening fluids.

• Role of the increasing values of the stretching parameter was to thin the momentum boundary
layer thickness; however, the opposite trend was noted for thermal boundary layer thickness.

• Increasing the Weissenberg number reduces the magnitude of the fluid velocity for shear
thinning fluid while it arises for the shear thickening fluid.

• The temperature and thermal boundary layer thickness was depressed by increasing the
Prandtl number Pr.

• An increase in Weissenberg number correspond a decrease in the local skin friction coefficient.
• It was observed that the magnitude of the local Nusselt number was decreased by uplifting the

Weissenberg number.
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