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An analysis is carried out to obtain the similarity solution of the steady boundary layer flow and
heat transfer of a second grade through a horizontal cylinder. The governing partial differential
equations along with the boundary conditions are reduced to dimensionless form by using the
boundary layer approximation and applying suitable similarity transformation. The resulting
nonlinear coupled system of ordinary differential equations subject to the appropriate boundary
conditions is solved by homotopy analysis method (HAM). The effects of the physical parameters
on the flow and heat transfer characteristics of the model are presented. The behavior of skin
friction coefficient and Nusselt numbers is studied for different parameters.

1. Introduction

Due to wide range of applications in coating of wires and polymer fiber spinning, the
concept of heat convection in the cylinders has been a field of interest for many theoretical
and experimental researchers. Buchlin [1] examined the natural and forced convective heat
transfer along vertical slender cylinder and also the case of two cylinders. In his analysis,
obtained results indicated that the convective heat transfer has a strong dependence on the
curvature of the cylinder and its misalignment with the main flow. The natural convection
flow from an isothermal circular cylinder of viscous fluid having temperature-dependent
viscosity has been tackled by Molla et al. [2]. The problem of mixed convection boundary
layer flow over a vertical circular cylinder with prescribed surface heat flux has been studied
by Bachok and Ishak [3]. They focused on the suction/injection effects on the flow field and
the heat transfer rate at the surface by considering the free stream velocity and the surface
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heat flux to be linear functions of the distance from the leading edge. Further, Heckel et al.
[4] have examined the problem of mixed convective flow of a viscous fluid along a vertical
slender cylinder with variable surface temperature. They assumed the temperature to be
varying arbitrarily with the axial coordinate. Later on Na [5] has investigated the effect
of wall conduction on the heat transfer of the natural convection over a vertical slender
hollow circular cylinder. Recently Ahmed et al. [6] have numerically examined the problem
of laminar free convection boundary layer flow over horizontal cylinders of elliptic cross-
section having constant surface heat flux for both the blunt (major axis of the cylinder is in
the horizontal direction) and slender (major axis of the cylinder is in the vertical direction)
orientations. They showed that the local skin friction coefficient is an increasing function
of the ratio of the length of the major axis to that of the minor axis of the elliptic cylinder.
Moreover, the combined heat and mass transfer along a vertical moving cylinder with a
free stream for uniform wall temperature and heat flux was countered by Takhar et al.
[7]. Later on, in his paper Cheng [8] studied the natural convection heat transfer problem
through a horizontal elliptical cylinder in a Newtonian fluid with constant heat flux and
temperature-dependent internal heat generation. He concluded that an increase in the aspect
ratio decreases (increases) the average surface temperature of the elliptical cylinder with
blunt (slender) orientation and that the average surface temperature of the elliptical cylinder
with slender orientation is less than that due to the blunt orientation.

The works cited above are all carried out for Newtonian fluids; however, some
literature concerning non-Newtonian fluids is also available. In a very recent paper Chang
[9] has presented the numerical treatment of the flow and heat transfer characteristics
of forced convection in a micropolar fluid flow along a vertical slender hollow circular
cylinder with wall conduction and buoyancy effects. The heat transfer to non-Newtonian
flows over a cylinder in cross flow is experimentally studied by Rao [10] for different non-
Newtonian fluids and a comparisonwith the water (viscous fluid) flow is also experimentally
examined. Amoura et al. [11] provided a finite element solution of the Carreau model mixed
convection of non-Newtonian fluids between two coaxial rotating cylinders. Moreover, the
effects of transpiration on the boundary layer flow and heat transfer over a vertical slender
cylinder are addressed by Ishak et al. [12]. Some interesting and important works concerning
boundary layer flow of viscous and non-Newtonian fluids are listed in [13–19]. In the
present work we have examined the boundary layer flow and heat transfer of a second
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grade fluid flow through a horizontal cylinder. The solutions are obtained by implying the
analytical technique homotopy analysis method (HAM). A discussion is provided to study
the influence of the physical parameters on velocity, the skin friction coefficient, and the local
Nusselt number.

2. Formulation

Let us consider the problem of mixed convection boundary layer flow of second grade fluid
along a horizontal circular cylinder having radius a. The temperature at the surface of the
cylinder is assumed to be a constant Tw and the uniform ambient temperature is taken to be
T∞ such that the quantity Tw − T∞ > 0 for the case of assisting flow, while Tw − T∞ < 0, in case
of the opposing flow, respectively. The viscous dissipation effects are also taken into account.
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Under these assumptions the boundary layer equations of motion and heat transfer are

(rw)r + rux = 0,

uux +wur = U
dU

dx
+ ν

(
urr +

1

r
ur

)

+
α1

ρ∞

[
wurrr + uurrx + uxurr − urwrr +

1

r
(wurr + uurx + urux − urwr)

]
,

wTr + uTx = α

(
Trr +

1

r
Tr

)
+

ν

cp
u2
r +

α1

cpρ∞
(wururr + uururx),

(2.1)

where the velocity components along the (x, r) axes are (w,u), ρ is density, ν is the kinematic
viscosity, p is pressure, and U is the free stream velocity and is defined as U = U∞(x/l).

The corresponding boundary conditions for the problem are

u(x,a) = 0, u(x,a) −→ U(x) as r −→ ∞,

T(x,a) = Tw(x), T(x,a) −→ T∞ as r −→ ∞.
(2.2)

Introduce the following similarity transformations:

u =
xU∞

l
f ′
(
η
)
, w = −

a

r

(
νU∞

l

)1/2

f
(
η
)
,

θ =
T − T∞
Tw − T∞

, η =
r2 − a2

2a

(
U∞

νl

)1/2

,

(2.3)

where the characteristic temperature ΔT is calculated from the relations Tw − T∞ = (x/l)2ΔT .
With the help of transformations (2.3), (2.1) take the form

(
1 + 2γη

)
f ′′′ + 2γf ′′ + 1 + ff ′′

− f ′2 + 4γβ
(
f ′f ′′

− ff ′′′
)

+ β
(
1 + 2γη

) (
f ′′2 + 2f ′f ′′′

− ff iv
)
= 0,

(
1 + 2γη

)
θ′′ + 2γθ′ + Pr

(
fθ′

− f ′θ
)
− PrEc βγ ff ′′2

+ Pr Ec
(
1 + 2γη

)[
f ′′2

− βff ′′f ′′′ + βf ′f ′′2
]
= 0,

(2.4)

in which γ = (νl/U∞a
2)

1/2
is the curvature parameter, β = α1U∞/ρ∞νl is the dimensionless

viscoelastic parameter, Pr = µ/α is the Prandtl number, Ec = U2
∞/cpΔT is the Eckert number.

The boundary conditions in nondimensional form are defined as

f(0) = b, f ′(0) = 0, f ′
−→ 1, as η −→ ∞,

θ(0) = 1, θ −→ 0, as η −→ ∞,
(2.5)
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where b is any constant. The dimensionless coefficient of skin friction and the Nusselt number
are defined as

1

2
cf Re

1/2 = f ′′(0),
Nu

Re1/2
= −θ′(0), (2.6)

where Re = U∞x/ν is the local Reynolds number.

3. Solution of the Problem

The solution of the present problem is obtained by using the powerful analytical technique
homotopy analysis method (HAM). In the present case we seek the initial guesses to be [20–
33]

f0
(
η
)
= b − 1 + η + e−η, θ0

(
η
)
= e−η. (3.1)
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Table 1: Behavior of shear stress at the surface for different values of the involved parameters.

b\γ
f ′′(0)

0.5 1.0 1.5 2.0 2.5 3.0

β = 0

−1 0.9918 1.1942 1.3729 1.5325 1.6763 1.8067

0 1.4886 1.7244 1.7954 1.9378 2.0656 2.1810

1 2.0397 2.1751 2.2982 2.4099 2.5116 2.6044

2 2.7332 2.8029 2.8746 2.9448 3.0119 3.0752

β = 0.2

−1 0.8626 0.9205 0.95554 0.9794 0.9958 1.0081

0 1.5946 1.9137 2.0439 2.2662 2.4626 2.6302

1 4.2201 5.1146 6.8718 9.1792 11.8742 14.465

2 8.4914 11.7713 15.6358 24.547 29.4885 38.1896

β = 0.4

−1 0.7798 0.7935 0.7970 0.80716 0.80754 0.8077

0 1.5822 1.8917 2.0213 2.2349 2.4119 2.6165

1 4.5183 6.7654 8.7508 12.368 16.0122 24.2009

2 9.0899 14.1113 19.8594 28.5561 35.0772 46.7566

The corresponding auxiliary linear operators are

Lf =
d3

dη3
+

d2

dη2
, Lθ =

d2

dη2
+

d

dη
, (3.2)

satisfying

Lf

[
c1 + c2η + c3e

−η] = 0, Lθ

[
c4 + c5e

−η] = 0, (3.3)

where ci (i = 1, . . . , 5) are arbitrary constants. The zeroth-order deformation equations are

(
1 − q

)
Lf

[
f̂
(
η; q

)
− f0

(
η
)]

= qHfℏ1Nf

[
f̂
(
η; q

)]
,

(
1 − q

)
Lθ

[
θ̂
(
η; q

)
− θ0

(
η
)]

= qHθℏ2Nθ

[
θ̂
(
η; q

)]
,

(3.4)
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where the auxiliary convergence parameters Hf and Hθ both are taken to be e−η and

Nf

[
f̂
(
η; q

)]
=
(
1 + 2γη

)
f̂ ′′′ + 2γf̂ ′′ + 1 + f̂ f̂ ′′

− f̂
′2

+ β
(
1 + 2γη

)(
f̂ ′′2 + 2f̂ ′f̂ ′′′

− f̂ f̂ iv
)
,

Nθ

[
θ̂
(
η; q

)]
=
(
1 + 2γη

)
θ̂′′ + 2γ θ̂′ + Pr

(
f̂ θ̂′

− f̂ ′θ̂
)
− PrEc βγ f̂ f̂ ′′2

+ Pr Ec
(
1 + 2γη

)[
f̂ ′′2

− βf̂f̂ ′′f̂ ′′′ + βf̂ ′f̂ ′′2
]
.

(3.5)

The appropriate boundary conditions for the zeroth order system are

f̂
(
0; q

)
= b0, f̂ ′

(
0; q

)
= 0, f̂ ′

(
η; q

)
−→ 1, as η −→ ∞,

θ̂
(
0; q

)
= 1, θ̂

(
η; q

)
−→ 0, as η −→ ∞.

(3.6)

The mth order deformation is

Lf

[
fm

(
η
)
− χmfm−1

(
η
)]

= ℏ1Rmf

(
η
)
,

Lθ

[
θm

(
η
)
− χmθm−1

(
η
)]

= ℏ2Rmθ

(
η
)
,

fm(0) = 0, f ′
m(0) = 0, fm

(
η
)
−→ 1, as η −→ ∞,

θm(0) = 0, θm
(
η
)
−→ 1, as η −→ ∞,

(3.7)

where

χm =

{
0 m ≤ 1

1 m > 1.
(3.8)

With the help of MATHEMATICA, the solutions of (2.4) can be expressed as

f
(
η
)
= lim

Q→∞
Σ
Q
m=1

[
2k−2∑

n=1

m∑

k=1

am
nke

−2nηηk

]
,

θ
(
η
)
= lim

Q→∞
Σ
Q
m=1

[
2k−2∑

n=1

m∑

k=1

cmnke
−2nηηk

] (3.9)

in which the constants am
nk

and cm
nk

can be computed through any mathematics software, and
here we have shown and discussed the complete results through graphs.
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4. Results and Discussion

In this section, we have discussed the analytical solutions of the highly nonlinear equations
(2.4) subject to boundary conditions (2.5). The analytical solutions has been calculated with
the help of homotopy analysis method. The solutions are finally presented in the form
of general series. The convergence of these series solutions have been discussed through
plotting the graphs of ℏ-curves (see Figures 1 and 2). It is seen that the admissible values
of h in which our solutions are convergent are −1.4 ≤ ℏ1 ≤ −0.4 and −1.8 ≤ ℏ2 ≤ −0.6. The
variation of velocity profile for pertinent parameters is sketched in Figures 3 to 5. Figure 3
is plotted to see the variation of curvature parameter γ on the nondimensional velocity. It is
observed that with the increase in γ the velocity profile increases; however, the boundary
layer thickness reduces. The maximum velocity is achieved very near to the sheet. The
variation of viscoelastic parameter (second grade) β is given in Figure 4. It is depicted here
that, with the increase in β, velocity increases and the boundary layer reduces. Thus almost
similar effects appear for both γ and β. Almost a similar behavior occurs for the variation of
b (see Figure 5). The nondimensional temperature θ for various values of γ , β, Pr, Ec and b is
displayed in Figures 6 to 10. It is seen that temperature profile increases with the increases of
both γ and β, also the thermal boundary layer reduces with the increase in γ and β (see Figures
6 and 7). It is also observed that when temperature is given near the sheet, the temperature is
maximum. The effects of Prandtle number Pr and Eckert number Ec are displayed in Figures
8 and 9. It is observed that temperature profile decreases with the increase in Pr and increases
with the increase in Ec. The thermal boundary layer reduces for both the case; however, the
behavior of temperature for each case is opposite. The temperature profile decreases as well
as the thermal boundary layer thickness reduces with the increase in b (see Figure 10).

The values of skin friction coefficient cf against γ for different values of Re are plotted
in Figure 11. It is seen that with the increase in Re, cf decreases for all values of γ . In Figure 12
we have sketched cf against β for various values of Re. It is observed that almost similar
effects occur as in case of γ . However, the cf increases with increase in b (see Figure 13). The
local Nusselt number against Pr and Ec for different values of Re is plotted in Figures 14 and
15. In both the figures Nusselt number gives almost similar behavior.

Table 1 is included to check the behavior of boundary derivative (shear rate at the
surface), for different values of curvature parameter γ and the second grade parameter β.
From Table 1 it is observed that increase in γ increases shear rate at the surface.
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