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�e problem of steady boundary layer �ow past a stretching wedge with the velocity ��(�) in a nano�uid and with a parallel free
stream velocity ��(�) is numerically studied. It is assumed that at the stretching surface the temperature � and the nanoparticle
fraction� take the constant values�� and��, respectively.�e ambient values (inviscid �uid) of� and� are denoted by�∞ and�∞,
respectively. �e boundary layer governing partial di
erential equations of mass, momentum, thermal energy, and nanoparticles
recently proposed byKuznetsov andNield (2006, 2009), are reduced to ordinary di
erential equations alongwith the corresponding
boundary conditions. �ese equations are solved numerically using an implicit �nite-di
erence method for some values of the
governing parameters, such as �, �, Pr, Le,��, and��, which are the measure of the pressure gradient, moving parameter, Prandtl
number, Lewis number, the Brownian motion parameter, and the thermophoresis parameter, respectively.

1. Introduction

Historically, the steady laminar �ow past a �xed wedge was
�rst analyzed by Falkner and Skan [1] to illustrate the appli-
cation of Prandtl’s boundary layer theory. With a similarity
transformation, the boundary layer equations are reduced to
an ordinary di
erential equation, which is well known as the
Falkner-Skan equation. �is equation includes nonuniform
�ow, that is, outer �ows which, when evaluated at the wall,
takes the form 	��, where � is the coordinate measured
along the wedge wall and 	 (>0), and 
 are constants. �ere
is a large body of literature on the solutions of Falkner-
Skan equation, see Hartree [2], Stewartson [3], Chen and
Libby [4], Rajagopal et al. [5], Botta et al. [6], Brodie and
Banks [7], Heeg et al. [8], Zaturska and Banks [9], Kuo [10],
Pantokratoras [11], and so forth. Liao [12] has developed
an analytical technique, named homotopy analysis method
(HAM), and presented a uniformly valid analytic solution
of Falkner-Skan equation for the wedge parameter � in the
range −0.19884 ≤ � ≤ 2. �is solution has been extended by
Abbasbandy andHayat [13] by including themagnetic e
ects.
Also, there are some very recently published papers on this

problem by Liu and Chang [14], Fang and Zhang [15], and
Pal and Mondal [16]. A very good list of references on this
problem can be found in the recent papers by Harris et al.
[17–19]. �e �ows predicted by the Falkner-Skan solutions
are naturally assumed to be described adequately by the
boundary layer equations which are parabolic in character.
However, the use of the similarity method of solution cannot
take account of the “initial” condition in general and so
the resulting solutions are assumed to be valid, if at all, in
some asymptotic sense (see Banks [20]). �is is the case
for the Falkner-Skan �ows that has been shown rigorously
by Serrin [21] for 0 ≤ � ≤ 2. However, all these papers
are for the Falkner-Skan boundary layer �ow over a �xed
wedge placed in a moving �uid. In a very interesting paper,
Riley and Weidman [22] and Ishak et al. [23] have studied
multiple solutions of the Falkner-Skan equation for �ow past
a stretching boundary when the external velocity and the
boundary velocity are each proportional to the same power
law of the downstream distance. Boundary layer behavior
over a moving continuous solid surface is an important
type of �ow occurring in several engineering processes. For
example, the thermal processing of sheet-like materials is
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a necessary operation in the production of paper, linoleum,
polymeric sheets, wire drawing, drawing of plastic �lms,
metal spinning, roo�ng shingles, insulating materials, and
�ne-�ber Matts.

�e aim of the present paper is to extend the papers by
Riley andWeidman [22] and Ishak et al. [23] to the case when
the wedge moves in a nano�uid. Enhancement of heat trans-
fer is essential in improving performances and compactness
of electronic devices. Usual cooling agents (water, oil, etc.)
have relatively small thermal conductivities, and therefore
heat transfer is not very e�cient. �us, to augment thermal
characteristics very small size particles (nanoparticles) were
added to �uids forming the so-called nano�uids. �ese
suspensions of nanoparticles in �uids have physical and
chemical properties depending on the concentration and the
shape of particles. It was discovered that a small fraction of
nanoparticles added in a base �uid leads to a large increase
of the �uid thermal conductivity. �e chaotic movement of
the nanoparticles and sleeping between the �ne particles and
�uid generates the thermal dispersion e
ect, and this leads
to an increase in the energy exchange rates in �uid. Based
on the fact that for small size suspended particles (smaller
than 100 nm) nano�uids behavemore like a �uid than a �uid-
solid mixture. Xuan and Roetzel [24] proposed a thermal
dispersionmodel for a single-phase nano�uid. Kuznetsov and
Nield [25] extended the classical boundary layer analysis of
forced convection over a wedge with an attached porous sub-
strate. In another two papers, Nield and Kuznetsov [26–28]
extended the classical Cheng and Minkowycz [29] problem
of boundary layer �ow over a vertical �at plate in a porous
medium saturated by a nano�uid and also the problem
of double-di
usive natural convective boundary layer �ow
in a porous medium saturated by a nano�uid, presenting
similarity solutions. Kuznetsov and Nield [30] extended also
the Pohlhausen-Kuiken-Bejan problem to the case of a binary
nano�uid usingBuongiornomodel and presented a similarity
solution. Also, there are several very good recently published
papers on nano�uids, for example, papers by Narayana and
Sibanda [31] and Kameswaran et al. [32, 33]. However, the
broad range of current and future applications of nano�uids
is discussed in the review article by Woong and Leon
[34], which includes automotive, electronics, biomedical, and
heat transfer applications, besides other applications such
as nano�uid detergent. In a recent review article by Saidur
et al. [35], the authors also presented some applications of
nano�uids in industrial, commercial, residential, and trans-
portation sectors based on the available literatures. Recent
critical reviews of the state-of-the-art of nano�uids research
for heat transfer application were conducted by Mahian et al.
[36] and Behar et al. [37].

In the present paper, the thermal dispersion model is
similar with that proposed by Nield and Kuznetsov [28] and
Kuznetsov and Nield [30]. �e mentioned literature survey
indicates that there is no study on the boundary layer �ow
past a wedge in a nano�uid. It is worth mentioning to this
end that nanotechnology has beenwidely used in the industry
since materials with sizes of nanometers possess unique
physical and chemical properties.
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Figure 1: Schematic diagram of a stretching wedge.

2. Problem Formulation and Basic Equations

We consider the boundary layer �ow past an imperme-
able stretching wedge moving with the velocity ��(�) in a
nano�uid, and the free stream velocity is ��(�), where �
is the coordinate measured along the surface of the wedge
as shown in Figure 1. It should be noted that the case of��(�) > 0 corresponds to a stretching wedge surface and��(�) < 0 corresponds to a contracting wedge surface,
respectively. It is assumed that at the stretching surface, the
temperature � and the nanoparticle fraction � take constant
values �� and ��, respectively. �e ambient values, attained
as � tends to in�nity, of � and � are denoted by �∞ and �∞,
respectively. Under these assumptions, it can be shown that
the steady boundary layer equations of mass, momentum,
thermal energy, and nanoparticles for nano�uids can be
written in Cartesian coordinates � and � as, see Nield and
Kuznetsov [28], and Kuznetsov and Nield [30],
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subject to the boundary conditions

V = 0, � = �� (�) = −��� (�) , � = ��, � = ��
at � = 0,

� = �� (�) , � = �∞, � = �∞ as � �→ ∞.
(5)

Here � and V are velocity components along the axes � and�, respectively, � is the thermal di
usivity, � is the kinematic
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viscosity, �� is the Brownian di
usion coe�cient, �	 is the
thermophoretic di
usion coe�cient and � = (��)
/(��)�
with � being the density, � is volumetric volume expansion
coe�cient, and �
 is the density of the particles.

In order to get similarity solutions of (1)–(5), we assume
that ��(�) and ��(�) have the following form:

�� (�) = 	��, �� (�) = ���, (6)

where 	, �, and 
 (0 ≤ 
 ≤ 1) are positive constants.
�erefore, the constant moving parameter � in (6) is de�ned
as � = �/	, so that � < 0 corresponds to a stretching wedge,� > 0 corresponds to a contracting wedge, and � = 0
corresponds to a �xed wedge, respectively. �us, we look for
a similarity solution of (1)–(4) with the boundary conditions
(5) of the following form:

� = (2����1 + 
)1/2� (!) , # (!) = � − �∞�� − �∞ ,

$ (!) = � − �∞�� − �∞ ,

! = ((1 + 
)��2�� )1/2�,

(7)

where the stream function � is de�ned in the usual way as� = 
�/
� and V = −
�/
�. On substituting (7) into (2)–(4),
we obtain the following ordinary di
erential equations:

���� + ���� + � (1 − ��2) = 0, (8)

1
Pr

#�� + �#� + ��$�#� + ��#�2 = 0, (9)

$�� + Le�$� + ���� #
�� = 0, (10)

subject to the boundary conditions

� (0) = 0, �� (0) = −�, # (0) = 1, $ (0) = 1,
�� (∞) = 1, # (∞) = 0, $ (∞) = 0, (11)

where primes denote di
erentiationwith respect to !, and the
�ve parameters are de�ned by

� = 2

1 + 
, Pr = ]

� ,

Le = �
�� , �� = (��)
�� ($� − $∞)

(��)� � ,

�� = (��)
�	 (�� − �∞)
(��)��∞� .

(12)

Here �, Pr, Le, ��, and �� are the measure of the pressure
gradient, Prandtl number, Lewis number, the Brownian
motion, and the thermophoresis parameters, respectively. It is
important to note that this boundary value problem reduces
to the classical Falkner-Skan’s [1] problem of the boundary
layer �ow of a viscous and incompressible �uid past a �xed
wedge, when �, ��, and �� are all zero in (9) and (10).

Table 1: Comparison of the values of ���(0) for several values of 

when � = 0.

 Yih [38] Yacob et al. [39] White [40] Present results

0 0.4696 0.4696 0.4696 0.4696

1/11 0.6550 0.6550 0.6550 0.6550

1/5 0.8021 0.8021 0.8021 0.8021

1/3 0.9276 0.9276 0.9277 0.9277

1/2 — — 1.0389 1.0389

1 1.2326 1.2326 1.2326

Table 2: Comparison of the values of −#�(0) for various values of

when � = �� = �� = 0.

 Kuo [41] Blasius [42] Present

0 0.8673 0.8673 0.8769

1.0 1.1147 1.1152 1.1279

2.1. Numerical Method. Equations (8)–(10) with boundary
conditions (11) are solved numerically using an implicit
�nite-di
erence scheme known as the Keller-box method, as
described by Cebeci and Bradshaw [43, 44]. In this method,
(8)–(10) are reduced to �rst-order equations, and using
central di
erences, the algebraic equations are obtained.
�ese equations are then linearized by Newton’s method.
�e linear equations are then solved using block-tridiagonal
elimination technique.�e boundary conditions for ! → ∞
are replaced by ��(!max) = 1, #(!max) = 0, $(!max) = 0,
where !max = 12. �e step size is taken as Δ! = 0.001, and
the convergence criteria is set to 10−6.
3. Results and Discussion

Table 1 shows the comparison of the values of ���(0) for
several values of 
 when � = 0 with those reported by [38–
40]. On the other hand, Table 2 compares the values of −#�(0)
obtained from (8) and (9) for 
 = 0 and several values of
Pr when � = �� = �� = 0 with those of [41, 42]. It is seen
from these tables that the results are in very good agreement.
�erefore, we are deeply con�dent that the present numerical
results are correct and very accurate.

�e e
ect of the wedge parameter
 on the dimensionless
velocity is shown in Figure 2(a) for stretching wedge and
in Figure 2(b) for shrinking wedge. It is observed that the
dimensionless velocity at the surface increases/decreases
with stretching/shrinking parameters. �is is just due to
increase/decrease in the stretching/shrinking velocities. In
both cases, the hydrodynamic boundary layer thickness
decreases with increasing wedge parameter 
. �e e
ects
of Prandtl numbers on the dimensionless temperature are
shown in Figures 3(a) and 3(b) for shrinking and stretching
wedge, respectively. �e Prandtl number is de�ned as the
ratio of momentum di
usivity to thermal di
usivity. When
Pr = 1, both momentum and thermal di
usivities are com-
parable, but when Pr > 1, the momentum di
usivity is
greater than thermal di
usivity and the thermal boundary
layer thickness decreases with increasing Prandtl number.
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Figure 2: �e dimensionless velocity pro�les for di
erent values of 
 along (a) shrinking and (b) stretching wedge.
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Figure 3: �e dimensionless temperature pro�les for di
erent values of Pr along (a) shrinking and (b) stretching wedge.

�is can be observed in both cases. �e e
ects of nano�uid
parameters on the dimensionless temperature are illustrated
in Figures 4(a) and 4(b) for two di
erent values of the
wedge parameter. Within the thermal boundary layer, the
dimensionless temperature increases with both Brownian
motion and thermophoresis parameters when the wedge is
shrinking. No appreciable e
ect of nano�uid and wedge

parameters on the thermal boundary layer thickness could be
found.

Figures 5(a) and 5(b) show the variation of the dimen-
sionless nanoparticle volume fraction with Lewis numbers
for di
erent values of wedge parameter when the wedge
is �xed. It can be seen that the thickness of concentration
boundary layer decreases with increasing Lewis number
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Figure 4: E
ect of nano�uid parameters on dimensionless temperature along shrinking wedge for (a) 
 = 1/2 and (b) 
 = 1.
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Figure 5: E
ects of Lewis numbers on dimensionless nanoparticle volume fraction pro�les for di
erent values of
 when the wedge is �xed.

and wedge parameter in both cases. Inside the concentra-
tion boundary layer, the dimensionless nanoparticle volume
fraction is higher for the horizontal �at plate. �e e
ects
of nano�uid parameters on dimensionless nanoparticle

volume fraction are depicted in Figures 6(a) and 6(b) for
shrinking/stretching wedge. In both cases, the concentration
boundary layer thickness decreaseswith increasing Brownian
motion and thermophoresis parameters.
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Figure 6: E
ects of nano�uid parameters on dimensionless nanoparticle volume fraction for (a) shrinking wedge and (b) stretching wedge.

4. Conclusions

Steady boundary layer �ow past a moving wedge in a water-
based nano�uid is studied numerically using an implicit
�nite-di
erence method for several values of the parameters
, �, Pr, Le,��, and��.�is problem reduces to the classical
Falkner-Skan’s [1] problem of the boundary layer �ow of a
viscous (Newtonian) �uid past a �xed wedge, when �, ��,
and �� are all zero. �e e
ects of all these parameters on
the dimensionless velocity, temperature, and nanoparticle
volume fraction are investigated and presented graphically. It
is found that the

(i) dimensionless velocity at the surface increases/
decreases with stretching/shrinking parameters;

(ii) dimensionless temperature increaseswith both Brow-
nian motion and thermophoresis parameters.
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