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ABSTRACT: Current–topography interactions in the ocean give rise to eddies spanning a wide range of spatial and

temporal scales. The latest modeling efforts indicate that coastal and underwater topography are important generation sites

for submesoscale coherent vortices (SCVs), characterized by horizontal scales of O (0:12 10) km. Using idealized, sub-

mesoscale and bottom boundary layer (BBL)-resolving simulations and adopting an integrated vorticity balance formu-

lation, we quantify precisely the role of BBLs in the vorticity generation process. In particular, we show that vorticity

generation on topographic slopes is attributable primarily to the torque exerted by the vertical divergence of stress at the

bottom.We refer to this as the bottom stress divergence torque (BSDT). BSDT is a fundamentally nonconservative torque

that appears as a source term in the integrated vorticity budget and is to be distinguished from the more familiar bottom

stress curl (BSC). It is closely connected to the bottom pressure torque (BPT) via the horizontal momentum balance at the

bottom and is in fact shown to be the dominant component of BPT in solutions with a well-resolved BBL. This suggests an

interpretation of BPT as the sum of a viscous, vorticity-generating component (BSDT) and an inviscid, ‘‘flow-turning’’

component. Companion simulationswithout bottomdrag illustrate that although vorticity generation can still occur through

the inviscid mechanisms of vortex stretching and tilting, the wake eddies tend to have weaker circulation, be substantially

less energetic, and have smaller spatial scales.
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1. Introduction

An emerging body of evidence from realistic modeling

studies suggests that topographic interactions are a significant

source of vertical vorticity generation in the ocean. Among

regions where this is seen are the Gulf Stream (Gula et al.

2015), California Undercurrent (Molemaker et al. 2015),

Solomon Sea in the southwestern Pacific (Srinivasan et al.

2017), the Gulf of Oman (Vic et al. 2015), and the Alboran Sea

region of the western Mediterranean (Capó et al. 2021). In all

these studies, the vorticity generated on the topographic slopes

evolves, through current separation and shear, centrifugal, or

symmetric instability mechanisms, to form a turbulent wake

populated by submesoscale coherent vortices (SCVs). Oceanic

observations of SCVs with a putative topographic origin

include, the Beaufort Sea anticyclones (D’Asaro 1988), the

eddying wake past the northern end of Palau (MacKinnon

et al. 2019), and most recently, a deep, intense cyclonic SCV

in the Arabian Sea (De Marez et al. 2020). SCVs are dy-

namically important because they can transport mass and

dissolved materials over long distances in the ocean (Armi

and Stommel 1983; Armi and Zenk 1984; McWilliams 1985;

Riser et al. 1986; McCoy et al. 2020) and enhance rates of

diapycnal mixing in the thermocline (Dewar et al. 2015;

Zhang et al. 2019).

The phenomenology underlying vertical vorticity generation

in flow past topography is still being unraveled. D’Asaro (1988)

proposed, on the basis of observations of potential vorticity

(PV) anomalies in the Beaufort Sea SCVs, that frictional tor-

ques which arise during flow–topography interactions have an

important role in the generation process. Molemaker et al.

(2015) provide a geometric argument, subsequently verified in

Srinivasan et al. (2019), to describe how bottom drag acting on

slope currents produces a horizontal shear, i.e., vertical vor-

ticity. Employing the framework of the barotropic vorticity

equation, defined as the curl of the vertically integrated hori-

zontal momentum equations, Molemaker et al. (2015) and

Gula et al. (2015) further show that barotropic vorticity is

generated primarily through the action of the bottom pressure

torque (BPT) (see also Hughes and De Cuevas 2001; Jackson

et al. 2006), with the bottom stress curl not contributing sig-

nificantly in an integral sense. The apparently contradictory

roles of bottom friction andBPT in generating vertical vorticity

over slopes remains to be reconciled and will be examined in

this study.

In developing a mechanistic understanding of vorticity

generation on topographic slopes, we seek to elucidate and

quantify how the bottom stress mediates this process. A pu-

tative role for the bottom stress needs to in turn be reconciled

with the expected occurrence of Ekman arrest on slopes, fol-

lowing boundary stress collapse (MacCready and Rhines

1991). Pursuing an integrated vorticity balance analysis, we

explore the dynamics of vorticity generation in flow past an

elongated ridge using solutions from idealized, fully three-

dimensional ROMS simulations. ROMS is the Regional

Oceanic Modeling System. The model setup is detailed in

section 2. Figure 1 provides a glimpse of the essential dynamics.
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Barotropically forced flow past an elongated ridge leads to

vorticity generation along the slopes, culminating in the

shedding of vertically coherent vortices into the wake. In

section 3, we derive an integral formulation of the vertical

vorticity equation that explicitly connects BPT with bottom

frictional effects, allowing for a quantification of the quasi-

Lagrangian vorticity evolution along barotropic streamlines.

We shall demonstrate in section 4 that while the stress does

weaken substantially on the slopes as the flow evolves down-

stream, significant vorticity generation (e.g., Fig. 1) occurs

during the early flow encounter with the ridge, as a result of the

bottom stress divergence torque (BSDT), a source term in the

integrated vorticity equation.

The central role of BSDT raises questions about previous

studies that have demonstrated vorticity generation without

bottomdrag. Among the earliest such studies are the numerical

experiments of Smolarkiewicz and Rotunno (1989). In their

free-slip simulations of for nonrotating, low-Froude-number

flows past topography, a symmetric pair of vertically oriented

lee vortices was observed to form in the wake. Using asymp-

totic arguments, the authors demonstrated that the vertical

vorticity was created purely through the tilting of baroclinically

generated horizontal vorticity. Since then, lee vortices have

been reported in several other studies of nonrotating flows

employing zero-stress or free-slip bottom boundary conditions

(e.g., Ólafsson and Bougeault 1996; Jagannathan et al. 2019;

Puthan et al. 2020). However, to our knowledge there are no

studies documenting vorticity generation without bottom drag

using ROMS or other realistic ocean models that include the

effect of rotation, nor are there any studies making a quanti-

tative comparison between drag and no-drag solutions. These

questions will be addressed in section 5, both theoretically and

numerically, with a bottom-drag-free ROMS configuration.

2. Model setup

The simulations are performed using ROMS (Shchepetkin

and McWilliams 2005), a split-explicit, terrain-following

(s coordinate) ocean model that solves the primitive, hydro-

static equations of motion, with a nonlinear equation of state

for seawater (Jackett and McDougall 1995).

We consider a ridge of height hm and Gaussian half-width a,

elongated in the flow direction y. Mathematically the ridge

elevation is given by
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where sy represents the extent of the initial encounter region

over which the ridge height changes rapidly. One of the mo-

tivations for considering an elongated ridge is that it allows for

longer downstream development of the cross-slope Ekman

dynamics and is thus well suited for studying the departure

from one-dimensional and doubly periodic models of slope

BBLs and Ekman arrest. The Ekman adjustment problem will

be separately considered in a forthcoming study.

FIG. 1. Snapshots of vertically integrated vorticity, normalized by fhm for barotropically forced flow past an

elongated ridge. The green lines are bathymetry contours at z 5 0.14hm, z 5 0.37hm, and z 5 0.9hm. The geo-

strophically balanced background flow is from south to north. Values of the parameter ĥ are indicated inside each

panel. Note that the panel aspect ratio (height-to-width) is smaller than the true aspect ratio.
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In all our simulations, we set hm 5 400m, the half-width a5

3.5 km, length b5 y2 2 y1 5 144 km, and the encounter length

sy 5 12 km. Note that these choices imply b � a and

sy 5O (a), so that the bathymetry contours are in the shape

of a racetrack with a long straight section. The ridge is centered

in a computational domain that is 240 km long and 90 km wide.

The simulations have a horizontal resolution of 300m and

110 s levels. To resolve BBL dynamics, the ROMS grid is

stretched at the bottom so that the vertical resolution ranges

from 1.1m over the flat bottom to 0.9m at the ridge crest. The

turbulent bottom drag is parameterized using a quadratic

drag law,

t
b
5 r

0
C

d
u
b
jju

b
jj . (2)

In Eq. (2), r0 is a constant reference density, and Cd is the drag

constant given by

C
d
5 [k/log(Dz

b
/z

ob
)]2 (3)

where k5 0.4 is the von Karman constant, Dzb is the thickness

of the bottommost s layer and zob is the roughness length, set

to 1 cm. Vertical mixing in the BBL is parameterized using

KPP (Large et al. 1994; McWilliams et al. 2009). It is pertinent

to note that, in addition to parameterized vertical mixing, both

in the BBL and interior, the third-order upwind-biased scheme

used for computing the nonlinear advective terms additionally

introduces horizontal hyperdiffusive terms (Shchepetkin and

McWilliams 2003, 2005).

The solutions are initialized with a uniform barotropic in-

flow of speed V0 5 0.1m s21, geostrophically balanced by a

zonal gradient in the sea surface elevation, along with a linear

vertical profile of potential temperature u. With the nonlinear

equation of state, this produces an approximately uniform

background stratification N, permitting the definition of a

nondimensional ridge height

ĥ5
Nh

m

fa
, (4)

where f is the Coriolis frequency. Note that ĥ may also be in-

terpreted as a slope Burger number (Brink and Lentz 2010;

Wenegrat and Thomas 2020). For ĥ � 1, Srinivasan et al.

(2019) observed that solutions remained steady and retained

essential features of the inviscid quasigeostrophic flow (Schär

and Davies 1988; Schär 2002), even with a turbulent bottom

drag parameterization. In the same study, values of ĥ larger

than 1 were found to yield eddying solutions. Here one of our

objectives is to understand the process of vertical vorticity

generation on the ridge slopes; our primary interest is the

eddying regime.

The Coriolis frequency f is fixed at a typical midlatitude

value of 73 1025 s21 and ĥ is varied by changing N alone. The

flow variables are held constant at the inflow, with open, ra-

diative conditions (Marchesiello et al. 2001) applied at the

other boundaries. We consider four values of ĥ—1.6, 3.2, 6.4,

and 12.8—for which N ranges from 5 3 1024 s21 to 4 3

1023 s21. In this parameter space ĥ. 1, the dynamics are in-

dependent of the water depth H, provided it is larger than the

ridge height itself (Srinivasan et al. 2019). Here, H is set to

1000m. Two sets of solutions are examined—one with, and the

other, without bottom drag. All the simulations are run for four

months of physical time. Flow variables and momentum di-

agnostics are output twice daily and temporal averaging is

performed over the last two months of the model output so as

to exclude the spinup time.

3. Theoretical formulation

a. An integrated vorticity balance

We develop a vertically integrated vorticity formulation to

analyze the vorticity balances in our solutions. The central

question is, what causes vorticity generation when a current

encounters sloping bathymetry. The hitherto overlooked role

of the bottom stress divergence torque (BSDT), which appears

as one of the boundary terms in this formulation, will be

demonstrated in section 4.

The starting point for our analysis are the 2D horizontal

momentum equations in vorticity form, supplemented by the

continuity equation for mass conservation. In the absence of

external forcing, these are

›u

›t
1 (z1 f )k̂3 u1w

›u

›z
52=

H

�
p

r
0

1
juj2
2

�

1
1

r
0

›t

›z
, (5a)

=
H
� u52

›w

›z
, (5b)

where u is the horizontal velocity vector, =H is the horizontal

gradient operator, zk̂5=H 3 u is the vertical vorticity, ›t/›z is

the vertical stress divergence and other symbols have their usual

meaning. Note that ROMS also has horizontal hyperviscosity

through the third-order upwind biased scheme, but this is a

negligible term in the vorticity balances for our simulations.

After taking the horizontal curl of Eq. (5a), using standard

vector calculus identities and dotting with k̂, we have the vor-

ticity equation

›z

›t
1u � =

H
z1w

›z

›z
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22

�

=
H
w3

›u

›z

�

� k̂
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H
3
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1
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0
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�

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

stress divergence curl

. (6)

As f is constant in our simulations, we neglect the b effect.

To obtain the integrated vorticity equation, vertically integrate

Eq. (6) from z52H1 h(x, y) to z5 h, whereH is the constant

water depth away from the topography and h is the sea surface

elevation,
ðh

2H1h

Dz

Dt
dz5

ðh

2H1h

(z1 f )
›w

›z
dz

2

ðh

2H1h

�

=
H
w3

›u

›z

�

� k̂dz

1

ðh

2H1h
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H
3

�
1

r
0

›t

›z

�

dz . (7)
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Further, in the absence of a surface wind stress and taking

the curl outside the integral, the last term in Eq. (7) can be

rewritten using Leibniz’s rule as

ðh

2H1h

k̂ � =
H
3

�
1

r
0

›t

›z

�

52k̂ �
�
1

r
0
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H
3 t

b

�

2 k̂ �
 

1

r
0

›t

›z

�
�
�
�
b

3=
H
h

!

(8)

where the subscript b denotes ‘‘bottom.’’ Note that the first

term on the RHS is the familiar bottom stress curl (BSC). The

second term 2({›t/›z}jb/r0) 3 =Hh appears as a result of in-

terchanging the curl and integral operators. We refer to this as

the bottom stress divergence torque (BSDT). It is the twisting

force produced due to the vertical divergence of stress in

the direction orthogonal to the topographic gradient =Hh.

Equation (7) now becomes

ðh

2H1h

Dz

Dt
dz5
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. (9)

Here the acronyms VS, VT, and BSC, respectively, stand for

vortex stretching, vortex tilting, and bottom stress curl.

To see how the bottom pressure torque (BPT), defined as

BPT52=
H

�
p
b

r
0

�

3=
H
h , (10)

is connected to BSDT, we apply the horizontal momentum

balance Eq. (5a) at the bottom and take the cross product with

=Hh. This yields the relation
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An interesting limit is that of a no-slip bottom boundary.

Equation (11) then reduces to

1

r
0

›t

›z

�
�
�
�
b

3=
H
h5=

H

�
p
b

r
0

�

3=
H
h , (12)

meaning that BSDT and BPT balance exactly. Note, how-

ever, that Eq. (11) and not Eq. (12) is the appropriate bal-

ance in discretized ocean models such as ROMS which

employ a turbulent bottom stress parameterization, with

Monin–Obukhov similarity theory assumed to apply within

the bottom grid cell.

Equations (11) and (12) underscore the direct relationship

between BPT and BSDT. As we will further see in section 4d,

this resolves the apparently contradictory explanations for

vorticity generation provided here and in previous studies such

as Molemaker et al. (2015) and Gula et al. (2015).

b. Quasi-Lagrangian analysis

We now develop a quasi-Lagrangian technique for ana-

lyzing the integrated vorticity equation, Eq. (9). We call it

quasi-Lagrangian as opposed to Lagrangian to emphasize the

fact that we will be tracking the evolution of source terms on

mean barotropic streamlines and not individual particle

trajectories.

Consider again, the integrated vorticity equation, Eq. (9). To

simplify the algebra, we neglect temporal fluctuations of the

sea surface elevation h. Now, denoting time averages by (�) and
combined depth and time averages by h i, we can write the

time-averaged equation (9) as

ðh

2H1h

=
H
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Note that the time derivative term in Eq. (13) has been drop-

ped. Formally, this approximation is valid in a statistically

steady state, and in the limit of a long time average.

Using Leibniz’s rule to interchange the integral and di-

vergence operators on the LHS of the above equation and

invoking boundary conditions of free surface at the top and

no-normal flow at the bottom, us � =h5 ws and ub � =h5 wb,

respectively, after cancellation of the boundary terms

we have

=
H
� [huziD]5
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, (14)

where D 5 (H 2 h 1 h) is the local water column depth.

We now decompose the advection term into mean and eddy

components, where the eddy component here represents fluc-

tuations from the combined depth and time average.
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H
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/

=
H
�U0

5
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H
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where

U5

ðh

2H1h

u dz (16)

is the time-mean barotropic transport. Equation (15) can be

written in characteristic form as
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where s now denotes the distance along the characteristics,

i.e., barotropic streamlines of the flow. Equation (17) can

then be integrated to determine the evolution of the depth

averaged vorticity hzi and hence also the vertically inte-

grated vorticity v5 hziD along the barotropic stream-

lines as
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In section 4b we will use Eq. (18) to identify which terms are

responsible for vorticity generation as a current encounters

topography and advects along its slopes.

4. Frictional vorticity generation

a. Vertical structure of the solutions

We briefly discuss the vertical flow structure in our solutions

before proceeding to examine the balances in the integrated

vorticity equation. In the remainder of the paper, we refer to

the side where uphill is to the left (right) of the along-slope flow

as the cyclonic (anticyclonic) side, consistent with a Northern

Hemisphere orientation.

Figure 2 displays vertical sections of the mean flow structure

at successive downstream locations starting from the encounter

region, for ĥ5 1:6 and 6.4. For all ĥ, there is an asymmetry in

the along-slope velocity between the cyclonic and anticyclonic

sides, arising due to the effect of background rotation. As the

flow encounters the ridge, isopycnals deflect upslope (down-

slope) on the cyclonic (anticyclonic) side in response to Ekman

induced upwelling (downwelling) (e.g., Garrett et al. 1993;

Brink and Lentz 2010).

At ĥ5 1:6, we note the presence of a circulation around the

ridge, characterized by an accelerated flow along the straight

section of the ridge on the anticyclonic side that is compen-

sated by deceleration above the cyclonic slope. This is

FIG. 2. Vertical sections of normalized, time-mean along-slope velocity y/V0 overlain by isopycnals at successive downstream locations:

(top) ĥ5 1:6 and (bottom) ĥ5 6:4.
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reminiscent of quasigeostrophic dynamics (e.g., Fig. 2 of

Srinivasan et al. 2019), in which squashing of vortex tubes leads

to the formation of an anticyclone on top of the obstacle.While

quasigeostrophic solutions for most obstacle shapes are for-

mally valid only up to some critical value of ĥ, 1 (Schär 2002),

residual circulations can persist for higher ĥ, as the ĥ5 1:6 case

in Fig. 2 shows. At ĥ5 6:4, the circulation becomes much

weaker and the vertical shear on the cyclonic side increases, as

evidenced by the emergence of a baroclinic jet above the up-

slope Ekman flow. The concomitant loss of vertical coherence

in the vorticity structure is visible in Fig. 3 below.

Figure 3 depicts the along-slope evolution of vorticity. The

topographic interaction produces strong vertical vorticity

[jzj/f 5O (1)] adjacent to the slope on either side of the

ridge. As the flow evolves downstream (y/a 5 17, 34), vertical

alignment of the vorticity occurs and a distinct columnar structure

emerges. This is more pronounced on the cyclonic side and at

ĥ5 1:6 and 3.4 (not shown). The genesis of topographically gen-

erated SCVs is a result of the eventual separation of these co-

lumnar vortices from the slopes. Note that the vortices become

increasingly decorrelated vertically at ĥ5 6:4.Aswewill see, after

the separation of the current from the slopes (y/a5 51), advection

of eddy vorticity, encapsulated by the term EA in Eq. (9), causes

the time-mean vorticity to decrease.

b. The role of the BBL in topographic vorticity generation

The advantage of the integrated vorticity formulation in

Eq. (9) is that BSC and BSDT expressly illuminate the role of

the bottom stress in the vorticity generation process. These

terms represent nonconservative, viscous torques. By contrast,

BPT, as it appears in the barotropic vorticity equation, can be

difficult to interpret in ocean models, which rely on turbulent

BBL parameterizations rather than an explicitly enforced no-

slip condition.

The one-dimensional theory of boundary currents (MacCready

and Rhines 1991) predicts a slow temporal evolution toward

bottom stress collapse and hence boundary layer shutdown on

slopes. However, on realistic topography, Ekman adjustment

is a primarily downstream rather than temporally evolving

process. Moreover, flow separation and secondary instabilities

will alter the leading-order cross-slope momentum balance

and a departure from the steady state one-dimensional pre-

diction is to be expected. Indeed, while the bottom stress

(Fig. 4) on the higher reaches of the ridge exhibits substantial

weakening downstream with increasing ĥ, it is far from a state

of collapse at the lower slopes. BBL mediated vorticity gen-

eration occurs during the early Ekman adjustment process over

the encounter region, as exemplified in Fig. 3. This is consistent

with findings in Benthuysen and Thomas (2012) andRuan et al.

(2019) that the Ekman adjustment process is itself a means of

generating vorticity.

For finiteN, the BBL height hbbl on a flat bottom follows the

empirical scaling hbbl ;u*/
ffiffiffiffiffiffi

Nf
p

(McWilliams et al. 2009),

where u*5
ffiffiffiffiffiffiffiffiffiffiffi
tb/r0

p
is the friction velocity. In Fig. 5 we show the

time-mean hbbl as a function of the cross-slope coordinate x at

two downstream locations, one in the encounter region and the

other roughly halfway along the ridge. The BBL height hbbl as

defined here is the depth over which active shear-driven

FIG. 3. Vertical sections of normalized, time-mean vertical vorticity z/f overlain by isopycnals at successive downstream locations: (top)

ĥ5 1:6 and (bottom) ĥ5 6:4.
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entrainment and mixing occur. It is computed in ROMS using

KPP, which parameterizes the effects of stratified Ekman layer

turbulence. Note that hbbl is different from the mixed layer

depth which is the quantity of interest in the Ekman adjust-

ment problem. The dimensional hbbl have been normalized by

3u*/
ffiffiffiffiffiffi

Nf
p

(Srinivasan et al. 2019), where u* is taken as the

average value of the friction velocity over the flat bottom, away

from the ridge. For all ĥ, hbbl in the encounter region (y/a5 10)

is larger on the anticyclonic side—a consequence of the along-

slope flow being faster there. Downwelling on the anticyclonic

side transports heavier fluid under lighter fluid, making the

flow convectively unstable. Parameterized vertical mixing in

ROMS then leads to the formation of a bottom mixed layer

which continues to deepen moving downstream.

The dominant tendency terms in the vertical vorticity

equation, Eq. (6) are displayed in Fig. 6. The stress divergence

curl within the BBL initiates vorticity generation during the

early encounter, with advective processes being a secondary

source in the flow interior. Vortex stretching occurs in response

to Ekman upwelling and downwelling in the BBL. Further

aloft, the oscillatory structure of VS 1 VT is due to vertical

internal wave modes that are launched when the flow en-

counters the ridge. Assuming rotational effects are small, the

vertical wavelength of these waves is proportional to V0/N

(e.g., Baines 1998). Hence for fixed V0, it scales inversely with

ĥ. Finally, vertical vorticity is also created through tilting of

horizontally oriented vortex tubes. In section 5, we will further

illustrate using simulations and asymptotic arguments how

stretching and tilting effects can generate vorticity even in the

absence of bottom drag.

With a view to quantifying precisely how drag against the

ocean bottom injects vertical vorticity into the flow, we now

FIG. 4. Normalized, time-averaged boundary stress. Values of the parameter ĥ are indicated inside each panel.

FIG. 5. The time-mean BBL height hbbl normalized by 3u*/
ffiffiffiffiffiffi

Nf
p

at two different locations—one in the encounter region (y/a5 10) and

the other further downstream (y/a5 34). Values of the parameter ĥ are indicated inside each panel. Note that u* here is taken to be the

average friction velocity over the flat bottom, away from the ridge, for the respective ĥ cases. The dimensional hbbl are smaller for larger ĥ.
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examine the integrated vorticity balances in our solutions.

Using the momentum diagnostics directly from ROMS, the

various source terms in the integrated vorticity equation, Eq. (9)

are computed to the level of ROMS accuracy. Snapshots and

time averages of the vertically integrated vorticity are displayed

in Figs. 1 and 7 respectively. Also displayed in Fig. 7 are the

streamlines of the mean barotropic transport. The rotation-

induced asymmetry is clearly visible in the streamline patterns.

In a Lagrangian reference frame, water columns on the cy-

clonic (anticyclonic) side acquire positive (negative) vorticity

as they advect downstream along mean transport streamlines.

As the flow separates from the slopes, vorticity generation is

followed by rapid merger events where smaller like-signed

vortices roll up to form larger ones (Srinivasan et al. (2019))

that eventually separate further downstream as submesoscale

coherent vortices. The prominent small-scale structures seen

on the anticyclonic side are manifestations of hybrid

centrifugal/symmetric instability of the flow (e.g., Wenegrat

and Thomas 2020). This aspect of the solutions will be further

explored in a follow up study.

In Fig. 8 we plot each of the tendency terms of the integrated

vorticity equation as they appear on the RHS of Eq. (9).

Interestingly, the BSC is of minor importance, and further, is a

sink rather than a source of vorticity on both sides of the ridge,

regardless of the value of ĥ. Instead, much of the vorticity in-

jection occurs around the early encounter region through the

action of BSDT. On the cyclonic side, the net effect of vortex

stretching and tilting (denoted VSVT) as a sink of vorticity is

evident: however, Fig. 8 is somewhat inconclusive with respect

to its role on the anticyclonic side.

To gain further insight into the interplay of BSDT and

VSVT as a water column advects along a topographic slope, we

take recourse to the quasi-Lagrangian technique described in

section 3b. Partial cumulative integrals of the source terms of v

[as they appear on the RHS of Eq. (18)] are computed along

mean transport streamlines (depicted in Fig. 7). The streamlines

are chosen to pass through the hotspots of BSDT and VSVT in

the encounter region (Fig. 8) and advect downstream along the

straight section of the ridge. Averaging over several such

streamlines, as depicted in Fig. 7, separately on each of the cy-

clonic and anticyclonic sides, Fig. 9 shows that along the cyclonic

slope, BSDT continuously injects vorticity into the flow, while

VSVTacts to deplete it. The eddy advection termEArepresents

conversion from mean to eddy vorticity and vice versa. It acts

as a source term on the slopes and a sink after flow separation.

On the anticyclonic side, BSDT is again the dominant gen-

eration term.A notable observation is that, for the ĥ5 6:4 case,

there is a reversal in tendencies immediately past the en-

counter region (y/a’ 16) where VSVT and BSDT switch signs.

A similar reversal is seen for ĥ5 12:8 (not shown). Nevertheless,

there is no net generation of vorticity after the reversal, much

of it having already occurred during the early encounter

through BSDT. We have checked that while BSDT continues

to act strictly as a source term along certain individual

FIG. 6. Time-averaged tendency terms in the 3D vertical vorticity equation, Eq. (6), normalized by fV0a
21 and overlain by flow iso-

pycnals for (top) ĥ5 1:6 and (bottom) ĥ5 6:4, indicated inside the leftmost panel. (a) Stress divergence curl and (b) VS1VT, the sum of

vortex stretching and tilting terms in Eq. (6). The subpanel columns in (a) and (b) depict the following vertical sections: (left) at encounter

region y/a 5 10 and (right) averaged across the straight section of the ridge.
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streamlines for these solutions, in a streamline-averaged sense,

it nonetheless has the tendency of a sink along the straight

section of the ridge. The sign reversal of BSDT implies a

negative bottom stress divergence. A possible explanation for

this is that it occurs due to the near collapse of bottom stress on

the upper reaches of the straight section past the southern edge

of the ridge (Fig. 4c). Consequently, in an average sense,

parameterized vertical mixing of the convectively unstable

downwelling flow dominates bottom stress-driven mixing

there, resulting in a positive BSDT. Finally, we remark that

the budget for the integrated vorticity in Eq. (18) is closed to

within 5% on both the cyclonic and anticyclonic sides.

Along the straight section of the ridge and prior to flow

separation, the mean value of the integrated vorticity remains

nearly constant. This might be expected, for example, from the

geometric argument of Molemaker et al. (2015) according to

which the vertical vorticity in the BBL is given by z’2u›y/›z,

where juj � 1 is the slope, so that integrating over the BBL

yields v’2uV0. The nearly constant value of v along the

straight section may also be interpreted as being reflective of

Ekman balance, with vortex tilting effects balancing frictional

torques (Wenegrat and Thomas 2017).

c. A heuristic explanation for BSC and BSDT patterns

Consider our geometry with a ridge of height h(x, y) and an

inflow V0 directed northward. Assume, heuristically, that the hor-

izontal circulation around the ridge isweak (i.e., ĥ. 1) and that the

main effect of the ridge is to split the flow such that y(x, y) is

acceleratedon theflanksof the ridgeanddeceleratedover the ridge

top, with some broadscale return to the inflow V0 in the x far field.

The bottom stress and its vertical derivative can be ap-

proximated as

t
b
’C

d
y2b ĵ , (19a)

›t

›z

�
�
�
�
b

’2
C

d
y2b

h
bbl

. (19b)

The second relation assumes a uniform decrease of the stress

over the boundary layer depth. Then we have the following

approximations for BSC and BSDT,

BSC52k̂ � =
H
3 t

b
’2C

d
y
b

›y
b

›x
, (20a)

BSDT52k̂ �
�
›t

›z

�
�
�
�
b

3=
H
h

�

’2
C

d
y2b

h
bbl

›h

›x
. (20b)

For BSC, the left side of the ridge is positive and the right

side is negative because of the sign of ›yb/›x; thus, it is opposite

to the sense of the vorticity generation. For BSDT, the signs are

the opposite due to the opposite sign of ›h/›x on the two sides;

thus, this is a generation term. These heuristic predictions are

broadly consistent with what we see in our solutions (Fig. 8).

A scale estimateof the ratio of themagnitudes of the two terms is

BSC

BSDT
;

dy
b

y
b

h
bbl

dh
, (21)

where d indicates the size of the changes over the ridge. Further

assuming that dyb ’ yb, Eq. (21) then implies that BSC is small

relative to BSDT in our solutions simply because hbbl is smaller

than h.

FIG. 7. Time averages of vertically integrated vorticity, normalized by fhm for the ridge solutions. The black and

green contour lines are, respectively, streamlines of the barotropic transport U and bathymetry contours at z 5

0.14hm, z 5 0.37hm, and z 5 0.9hm. Values of the parameter ĥ are indicated inside each panel.
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FIG. 8. Time-averaged generation terms on the RHS of the integrated vorticity equation, Eq. (9). VSVT is

the sum of the vortex stretching (VS) and tilting (VT) terms. Each term has been normalized by fhmV0a
21:

(a) ĥ5 3:2 and (b) ĥ5 6:4.
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d. The connection between BSDT and BPT

An alternate way to formulate the vorticity balance is by taking

the curl of the vertically integrated horizontal momentum equa-

tions, Eq. (5a). This yields the so-called barotropic vorticity

equation (see, e.g., Hughes andDeCuevas 2001;Gula et al. 2015),

›V

›t
52k̂ �

�
1

r
0

=
H
p
b
3=

H
h

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

BPT

2 k̂ �
�
1

r
0

=
H
3 t

b

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

BSC

1 A
S

|{z}

NL terms

,

(22)

where, borrowing from the notation in Gula et al. (2015), AS

encapsulates all the nonlinear terms and

V5=
H
3U (23)

is referred to as the barotropic vorticity. It is related to the vertically

integrated vorticity v through the bottom horizontal velocity as

V5

ðh

2H1h

z dz

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

v

1 u
b
3=

H
h . (24)

Notice that in the no-slip limit, barotropic and vertically inte-

grated vorticity are exactly identical. However, in regional

ocean models with a quadratic bottom drag parameterization

and a well-resolved BBL, one would instead expect that these

are almost identical, which is what we find in our simulations.

Recall from Eq. (11) that BPT can be written as the sum of

BSDT and nonlinear bottom stretching, tilting and advective

contributions. Further, the term AS in Eq. (22) has embedded

within it the cumulative effects of nonlinear vortex stretching and

tilting in the interior. This implies that, in general, BPT andAS are

not necessarily mutually independent with respect to the pro-

cesses they represent. A comparison of Figs. 10b and 10c, which

depicts the time-mean BPT distribution over the ridge, with Fig. 8

reveals the similarity in the patterns of BPT andBSDT.However,

the difference ofBPT andBSDT, plotted in Figs. 10d–f shows that

BPT additionally has a smaller inviscid part to it. The implication

is that, when the turbulent BBL is well resolved, the dominant

dynamical role of BPT is as a frictional torque, with a smaller

‘‘flow turning’’ component that steers the current around the to-

pography.We shall see in section 5 that the interpretation of BPT

changes completely when bottom drag is ‘‘turned off’’ or as may

be the case, the BBL resolution is inadequate.

5. Vorticity generation without bottom drag

a. The role of vortex stretching and tilting

We saw in section 4b that, for large ĥ, the diminishing bot-

tom stress on the anticyclonic side (Fig. 4) causes a reversal of

FIG. 9. Partial cumulative integrations of source terms on the RHS of Eq. (18) to v averaged separately on each of the cyclonic and

anticyclonic sides across the streamlines depicted in Fig. 7. BSDT is the bottom stress divergence torque, VSVT denotes the net sum of

vortex stretching and tilting terms, and EA is the eddy advection; a is the ridge half-width and s/a is the normalized distance along the

streamline. Values of the parameter ĥ are indicated inside each panel: (a) anticyclonic side and (b) cyclonic side.
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tendencies along the straight section of the ridge whereby

VSVT becomes a source and BSDT a sink of mean vorticity in

the evolution Eq. (9) (see also Fig. 9). Nevertheless, we saw

that this reversal does not lead to net generation of vorticity by

VSVT. To explore the possibility of vorticity generation purely

by vortex stretching and tilting effects, we now examine the

general problem of vorticity generation in the idealized limit of

zero bottom drag, and by implication, no bottom Ekman layer.

From an oceanic perspective, this is an unphysical limit, yet a

quantitative comparison with the drag solution serves to

highlight by contrast the more robust features of BBL medi-

ated vorticity generation.

Snapshots of the vertically integrated vorticity for the no-

drag solutions (Figs. 11a–c) show that, after separation, the

wake vortices have a smaller horizontal scale compared to the

cases with drag at the same ĥ (Fig. 1). As Ekman processes are

absent, there are no submesoscale instabilities over the anti-

cyclonic side of the ridge. The dominant source of vorticity

production in these flows is advective vortex stretching and

tilting. This is depicted in Figs. 12a–c. BSDT is negligibly small,

FIG. 10. (top) Bottom pressure torque (BPT), defined in Eq. (10) and (bottom) difference of BPT and BSDT

[defined in Eq. (9)], both time-averaged and normalized by fhmV0a
21. Values of the parameter ĥ are indicated

inside each panel.
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so BPT is balanced purely by the inviscid terms in Eq. (11).

Indeed, Fig. 12 reveals regions of partial overlap between

VSVT and BPT. This must be contrasted with the drag cases

(Fig. 10) in which BSDT was noted to be the dominant com-

ponent of BPT. The disparate balances for flows with and

without bottom drag show that, in realistic model solutions, the

relative contributions of BSDT and advective processes to

BPT are sensitive to the details of the drag parameterization

and BBL resolution.

As in the drag solutions, we perform a quasi-Lagrangian

integration of Eq. (18) along barotropic streamlines and av-

erage across many streamlines on either side of the ridge

(Fig. 13a). Here we show the vortex stretching (VS) and tilting

(VT) contributions separately rather than as a sum (VSVT).

Note that while BSC is identically zero, BSDT is also practi-

cally negligible in these no-drag solutions (it is not identically

zero because of the small background viscosity in ROMS).

Figures 13b and 13c reveal that vorticity generation on both sides

is attributable primarily to VT during the early flow encounter

with the ridge. This is to be contrasted with the drag cases (Fig. 9)

where vorticity is primarily generated by BSDT during the early

encounter. An asymptotic analysis of the no-drag problem along

the lines of Smolarkiewicz and Rotunno (1989) (see appendix)

illustrates how a rotating, stratified flow encountering bottom

topography causes tilting of horizontally oriented vortex tubes,

generating vertical vorticity in the process.

On the anticyclonic side, we note an abrupt reversal in the

tendencies of VS and VT just ahead of the straight ridge

section. However, this does not produce any discernible

change in the net vorticity, suggesting it represents merely a

reversible, advective flow adjustment on the slopes rather

than irreversible vorticity generation. Finally, here again, as in

the drag solutions, there is negligible net generation of vorticity

along the straight ridge section, where VS, VT, and eddy ad-

vection are approximately in balance.

That eddying solutions (Fig. 11) are obtained without bot-

tom drag and BBL separation may seem surprising on the face

of it. However, recall that although bottom drag is set to zero,

these solutions are not truly inviscid. This is because of the

biharmonic horizontal dissipation and mixing (Lemarié et al.

2012) implicit in the third-order upwind-biased scheme. As we

shall see below, the eddies in Fig. 11 are in fact associated with

potential vorticity (PV) anomalies.

We define the PV

q5V
a
� =b (25)

where b 5 2gr/r0 is the buoyancy and Va is the three-

dimensional absolute vorticity. The PV balance equation

may bewritten in flux-divergence form as follows (e.g., Thomas

2005; McWilliams 2016),

›q

›t
52= �

0

B
@ qu
|{z}

Jadv

1=b3F
|fflfflfflffl{zfflfflfflffl}

JV

2D
b
V

a
|fflfflffl{zfflfflffl}

JB

1

C
A . (26)

Here = is the three-dimensional gradient operator. The terms

JV and JB denote viscous and diabatic fluxes of PV, respec-

tively. The nonconservative terms are expressed concisely as

F5
t
z

r
0

1D
h
(u) (27a)

FIG. 11. Snapshots of vertically integrated vorticity, normalized by fhm for solutions with no bottom drag:

(a) ĥ5 1:6, (b) ĥ5 3:2, and (c) ĥ5 6:4. Compare with the drag solutions in Fig. 1.
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D
b
5D

y
(b)1D

h
(b) . (27b)

where Dy(b) is vertical divergence of the turbulent buoyancy

flux andDh(u) andDh(b) represent horizontal momentum and

buoyancy mixing, respectively.

In Fig. 14a, we display the PV, normalized by the back-

ground value fN2 on the horizontal plane z52H1 (hm/2) for

the case ĥ5 3:2. The figure revealsO (1) anomalies of PV in the

wake vortices, implying a net flux of PV through the bottom

boundary. As the bottom drag is identically zero by design, it

follows that PV injection at the boundary can happen only due

to the horizontal mixing terms. Indeed, we find that the PV flux

through the topography J � n̂, where n̂ is the unit outward

surface normal, is almost entirely due to the horizontal buoy-

ancymixing componentDh(b) of the diabatic flux JB (Fig. 14b),

with both JV and Dy(b) being negligible in comparison. A

possible interpretation is that horizontal buoyancy mixing

leads to vertical shear (horizontal vorticity) generation

FIG. 12. (top) Time-averaged source term VSVT (sum of VS and VT) in Eq. (9) normalized by fhmV0a
21 for the

no-drag solutions. (bottom) Time-averaged bottom pressure torque (BPT), normalized by fhmV0a
21. Values of the

parameter ĥ are indicated inside each panel.

1770 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Unauthenticated | Downloaded 08/16/22 12:07 PM UTC



through the baroclinic torque, which is then tilted into the

vertical during the topographic encounter. Hence, although

frictional torques do not contribute directly to vertical vorticity

generation in these no-drag solutions, the source of vorticity is

ultimately nonconservative.

b. Comparison with the drag solutions

The qualitative differences between the drag and no-drag

solutions are apparent when we compare snapshots like Fig. 1

with Fig. 11. To make more concrete these intuitive visual

perspectives, we now examine some integral properties of the

eddying flow. Following Srinivasan et al. (2019, 2021), eddy

horizontal and vertical scales are defined as

1

L
I

5
1

2
ffiffiffi

2
p 1

T

ðT

0

ð

z02 dx dz
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EKE dx dz
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FIG. 13. (a) Time average of vertically integrated vorticity, normalized by fhm for the ĥ5 3:2 no-drag solution.

(bottom) As in Fig. 9, but for the no drag solution at ĥ5 3:2 for (b) anticyclonic side and (c) cyclonic side.
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Here EKE5 0:5(u02
1 y02) is the eddy kinetic energy, z02 5

(y0x 2 u0
y)

2
is the eddy enstrophy, and U 0

z 5 0:5(u02
z 1 y02z ) is the

squared eddy vertical shear. All eddy quantities ( )0 here are

defined as deviations from a time mean (�).
Figure 15 shows that the eddy integral scales in the no-drag

cases do not depend sensitively on ĥ. The separated eddies

have smaller horizontal scales than their drag counterparts. On

the cyclonic side, the no-drag LI are almost 60% smaller

compared to the drag cases. Likewise, for ĥ5 3:2, the vertical

eddy scales are also substantially smaller on either side of

the ridge.

Another integral measure of SCV strength is its circulation,

G5

ð2p

f50

ðLI

r50

v0 r dr df , (29)

where v0 is the vertically integrated eddy vorticity, with the

origin taken to be the SCV center. The double integral is

readily evaluated upon identifying the locations corresponding

to the minima minx[miny(v
0)] and maxima maxx[maxy(v

0)] of

v0 in the wake region.

Figures 17a and 17b display time averages over 50 inertial

periods, GAC and GCYC, respectively, of the anticyclonic and

cyclonic SCVs in the wake. These have been normalized by

fhmpa
2, the strength of an axisymmetric columnar vortex of

height hm and radius a, with vorticity f at the center and a

Gaussian radial distribution. There is only a weak ĥ depen-

dence of the SCV circulation G in the no-drag cases. Further,

for a given value of ĥ, SCVs of either parity are stronger when

bottom drag is included. For the anticyclonic SCVs, the ratio of

their strengths with and without drag ranges from as large as

3.5 for ĥ5 1:6 to around 1.7 for ĥ5 6:4. The largest strength

discrepancy (a factor greater than 3) in the case of the cyclonic

SCVs is at ĥ5 3:2 and hovers around 2 for the other values of ĥ

considered.

To summarize, compared to the no-drag cases, bottom-drag-

mediated vorticity generation spawns SCVs that are stronger

and more energetic, and larger in scale, both horizontal and

vertical.

6. Discussion and summary

Using idealized ROMS solutions and an integrated vorticity

balance analysis, we have demonstrated the role of BBLs in

mediating vorticity generation on ridge slopes when the non-

dimensional ridge height ĥ is larger than 1. As a current en-

counters topography, the nonconservative frictional torque

(BSDT), proportional to the vertical stress divergence on the

slopes, injects vorticity into the flow. A quasi-Lagrangian

analysis of the vertically integrated vorticity equation,

Eq. (9) demonstrates that most of the vorticity injection hap-

pens during the early encounter with the ridge. The vorticity is

intensified and redistributed in the interior through vortex

stretching and tilting effects. The upshot of these processes is

the emergence of vertically coherent vortices that eventually

separate from the ridge slopes and roll up to form SCVs in

the wake.

For all values of ĥ considered, vorticity generation transpires

primarily through the action of BSDT during the early en-

counter with the ridge, with the tendency terms largely being

in a balanced state along the straight section of the ridge. For

ĥ’ 6:4 and higher, the stress reduction on the anticyclonic side

FIG. 14. PV and PV flux for the ĥ5 3:2, no-drag solution. (a) Snapshot of the PV normalized

by the background value fN2 on the horizontal plane z 5 2H 1 (hm/2) and (b) normalized,

time-mean diabatic bottom flux of PV (JB � n̂)/(fN2V0) along the boundary normal n̂. Note that

this is dominated by the horizontal buoyancy mixing component Dh(b)Va.
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is significant enough that, in a streamline-averaged sense,

VSVT and BSDT reverse signs along the straight section of the

ridge. However, as seen in Fig. 9, there is no net vorticity

generation after this reversal occurs.

When the barotropic vorticity equation Eq. (22) is employed

to analyze the vorticity balances, BPT is often interpreted as

the inviscid twisting force responsible for steering flow around

bottom topography (e.g., Jackson et al. 2006; Molemaker et al.

2015). However, because pressure is only a Lagrange multi-

plier when the incompressibility constraint is enforced, there is

necessarily some ambiguity in its interpretation, particularly

when viscous processes are involved. In the inviscid quasi-

geostrophic limit, it is easily shown that BPT is exactly equal to

bottom vortex stretching 2fwb. More generally, when ex-

pressed as a bottommomentum balance [Eq. (11)], BPT is seen

to be directly related to both frictional (BSDT) and advective

terms that account for the effects of bottom vortex stretching,

tilting, and flow inertia. Indeed, as Fig. 10 demonstrates, in our

solutions with a well-resolvedBBL, the viscous torque BSDT is

in fact the dominant component of BPT. These findings show

that whenBBLs are present, the apparently contradictory roles

of BPT and BSDT in vorticity generation are only illusory. The

advantage of the integrated vorticity formulation used here is

that it explicitly eliminates the ambiguous pressure gradient

term and partitions the generation into inviscid vortex

stretching and tilting contributions and nonconservative

boundary injection terms associated with the bottom drag.

Visually (e.g., Fig. 1), cyclones are at least as prevalent as

anticyclones in our solutions, if not more so. Moreover, Fig. 17

shows that, by an average integral measure of circulation, cy-

clonic SCVs are in fact stronger than their anticyclonic coun-

terparts. These results appear to contradict the fact that most

observed SCVs in the ocean are anticyclonic—a theoretical

puzzle that remains unresolved (McWilliams 1985, 2016).

Recently, an intense cyclonic SCV has been documented in the

Arabian Sea (De Marez et al. 2020), which the authors hy-

pothesize has its origin at the mouth of the Gulf of Aden, a site

of steep topography. More studies are needed to bridge the

apparent gap between observations and simulations.

The alternating positive and negative patterns along the

cyclonic slope in Figs. 12d and 12e for the no-drag case are

reminiscent of the BPT signals around the Charleston Bump

in the Gulf Stream simulation of Gula et al. (2015, their

Fig. 13). This is consistent with their observation that bot-

tom vortex stretching is locally the leading-order term in

BPT around the Bump, implying a largely inviscid balance

against the seaboard. In light of our results, it would appear

that realistic simulations with higher BBL resolution are

FIG. 15. Downstream evolution of eddy integral length scales [defined in Eq. (28)] on the cyclonic and anticy-

clonic sides for the ridge solutions (a) horizontal scale LI/a and (b) vertical scale HI/hm. The dashed vertical lines

mark the approximate locations of the ridge centerline and northern edge of the straight section.
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needed to ascertain if the western boundary current truly

represents an inviscid balance.

The importance of bottom drag in vorticity generation has

been recognized previously, for example by Signell and Geyer

(1991). Using a simple analytical model of flow separation and

2D simulations of the linearized, depth-averaged shallowwater

equations, they found that the choice of the drag coefficient

strongly influenced eddy formation in tidally forced flows

around headlands. In their formulation, the depth-averaged

drag manifests through the so-called ‘‘speed torque’’ and

‘‘slope torque’’ terms. These may be considered roughly

analogous to BSC and BSDT, respectively. A key difference is

that while the Signell and Geyer (1991) model is 2D and

moreover, relies on empirical choices for the depth averaged

drag coefficient, here we directly demonstrate the role of

BSDT in vorticity generation using three-dimensional

ROMS simulations that resolve the BBL using the KPP

parameterization.

Vorticity generation can happen even without bottom drag.

The nonrotating, free-slip solutions of Smolarkiewicz and

Rotunno (1989) are the earliest modeling evidence for this

phenomenon. Recent work by Jagannathan et al. (2019) and

Puthan et al. (2020), again for nonrotating flows, also show lee

vortex formation with a free-slip bottom boundary. The pres-

ent study demonstrates that vorticity generation without drag

is possible in rotating systems as well, through vortex stretching

and tilting mechanisms. However, as seen in Figs. 15–17, the

wake eddies tend to be substantially less robust compared to

the cases with bottom drag. Hence, model simulations that

lack a bottom drag parameterization and/or insufficiently re-

solve the BBL will often tend to underestimate the spatial

scales and strength of the SCVs, and care is needed in inter-

preting such solutions.

There are several outstanding issues. One question is, how

do the dynamics differ for one-sided slopes vis-à-vis isolated

topography, such as considered here? On isolated topography,

it is conceivable that adverse pressure gradients resulting from

the convex topographic curvature and horizontal around-ridge

circulations influence boundary layer separation. This is cer-

tainly suggested by the analytical and two-dimensional model

solutions of Signell and Geyer (1991) for flow around a head-

land, where the onset of flow separation is found to be con-

trolled by a three-way balance between adverse pressure

gradient, curvature, and drag effects. One-sided slopes are

FIG. 16. Downstream evolution of the normalized, vertically integrated eddy kinetic energy on the anticyclonic

and cyclonic sides for the ridge solutions. The dashed vertical lines mark the approximate locations of the ridge

centerline and northern edge of the straight section.

FIG. 17. The normalized, time-averaged circulation, defined in Eq. (29), of the wake SCVs for each of the drag and

no-drag solutions: (a) anticyclonic circulation GAC/(fhmpa
2) and (b) cyclonic circulation GCYC/(fhmpa

2).
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more directly relevant to boundary currents, and further un-

derstanding is needed there. Another pertinent question is, to

what extent is Ekman arrest sensitive to ridge curvature and

aspect ratio? Preliminary simulations also indicate that there

is a transition from centrifugal to more strongly dissipative,

hybrid centrifugal/symmetric instability as the ridge aspect

ratio increases, i.e., it becomesmore elongated.Wewill further

explore some of these issues in a forthcoming paper.
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APPENDIX

Asymptotic Analysis of the No-Drag Problem

The governing equations under the hydrostatic approxima-

tion are

u � =
H
u1w

›u

›z
2 f y52

1

r

›p

›x
, (A1a)

u � =
H
y1w

›y

›z
1 fu52

1

r

›p

›y
, (A1b)

›p

›z
52gr . (A1c)

Along with this set of equations, we have the continuity

equation

=
H
� u1 ›w

›z
5 0, (A2)

and the scalar advection equation

u � =
H
[r1 ~r(z)]1w

›r

›z
1w

›~r(z)

›z
5 0, (A3)

where ~r(z) is the background density field, assumed here to be

uniformly stratified. For simplicity we impose rigid lid condi-

tions w5 r 5 0 at the upper surface. Finally, in the absence of

diapycnal fluxes, we can express the vertical velocityw in terms

of the instantaneous isopycnal displacement field d as

w5 u � =
H
d . (A4)

The boundary condition at the bottom zb 5 2H 1 h(x, y) is

that of no flow into the topography

u
b
� =

H
h5w

b
. (A5)

We nondimensionalize the various quantities as follows

(x0, y0)5 (x, y)/a, (A6)

z0 5 z/(afN21) , (A7)

(u0, y0)5 (u, y)/(Nh
m
), (A8)

p0
5p/(rNfh

m
a) , (A9)

r0 5 r/(rg21N2h
m
) , (A10)

d0 5 d/(afN21) . (A11)

Note that the scaling for p is chosen so that the leading-order

balance is geostrophic. The appropriate choice of scale for the

vertical velocity is constrained through the continuity equation as

w0
5w/fh

m
. (A12)

The governing equations in dimensionless form are then given

by (dropping primes),

�

�

u � =
H
u1w

›u

›z

�

2 y52
›p

›x
, (A13a)

�

�

u � =
H
y1w

›y

›z

�

1u52
›p

›y
, (A13b)

›p

›z
52r , (A13c)

=
H
� u1 ›w

›z
5 0, (A13d)

u � =
H
r1w

›r

›z
1w

›~r(z)

›z
5 0: (A13e)

Here �5Nhm/af 5 ĥ is the nondimensional ridge height. The

bottom boundary condition is now given by

w
b
5 �u

b
� =

H
h . (A14)

Assuming � , 1, we now expand in powers of �,

u5 u
0
1 �u

1
1 �

2u
2
1O (�3) , (A15)

and similarly for the other variables. Substituting these ex-

pansions in Eq. (A13), we have geostrophic balance at lead-

ing order,

y
0
5
›p

0

›x
, (A16a)

u
0
52

›p
0

›y
. (A16b)

The continuity equation and the boundary condition w05 0 on

the upper surface then leads to

›w
0
/›z5w

0
5 r

0
5 0: (A17)

Therefore at leading order, the streamlines and hence iso-

pycnals lie on horizontal planes. Geostrophic balance and the

hydrostatic approximation Eq. (A13d) then imply that the

vertical gradients of u, y, and r are all zero and the flow is es-

sentially barotropic.

The O (�) balance is given by

u
0

›u
0

›x
1 y

0

›u
0

›y
2 y

1
52

›p
1

›x
, (A18a)
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u
0

›y
0

›x
1 y

0

›y
0

›y
1u

1
52

›p
1

›y
. (A18b)

Taking cross derivatives with respect to x and y and subtracting

Eq. (A18a) from (A18b),

u
0
� =

H
z
0
5

›w
1

›z
. (A19)

Equation (A19) tells us that the vertical vorticity at O (1),

z0 5 ›y0/›x2 ›u0/›y arises purely as a consequence of linear

vortex stretching at O (�). This is the quasigeostrophic limit

explored by Hogg (1973) and Schär and Davies (1988), among

others, which predicts a conical anticyclone on top of the

seamount.

The O (e2) problem

At this order, the horizontal momentum equations are

u
0

›u
1

›x
1 y

0

›u
1

›y
1 u

1

›u
0

›x
1 y

1

›u
0

›y
1w

1

/

›u
0

›z

0

2 y
2
52

›p
2

›x
,

(A20a)

u
0

›y
1

›x
1 y

0

›y
1

›y
11u

1

›y
0

›x
1 y

1

›y
0

›y
1w

1

/

›y
0

›z

0

1u
2
52

›p
2

›y
.

(A20b)

Cross differentiating and subtracting as before,

u
0
� =

H
z
1
52u

1
� =

H
z
0
1 z

0

›w
1

›z
|fflfflffl{zfflfflffl}

QLVS

1
›w

2

›z
|{z}

linearO (�2)VS

. (A21)

Thus at O (�), a cross term appears that is quasi linear at O (�).

This term represents stretching of O (1) vorticity by the O (�)

horizontal divergence.

The O (�3) problem

u
1

›u
1

›x
1 y

1

›u
1

›y
1w

1

›u
1

›z
1u

0

›u
2

›x
1 y

0

›u
2

›y

1u
2

›u
0

›x
1 y

2

›u
0

›y
2 y

3
52

›p
3

›x
, (A22a)

u
1

›y
1

›x
1 y

1

›y
1

›y
1w

1

›y
1

›z
1 u

0

›y
2

›x
1 y

0

›y
2

›y

1u
2

›y
0

›x
1 y

2

›y
0

›y
1u

3
52

›p
3

›y
. (A22b)

Cross differentiating and subtracting as before,

u
0
� =

H
z
2
52u

1
� =

H
z
1

1 z
1

›w
1

›z
1 z

0

›w
2

›z
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

NLVS

1
›w

3

›z
|{z}

linearO (�3)VS

1 j
1

›w
1

›x
1h

1

›w
1

›y
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

tilting of 0(�) horz. vorticity

,

(A23)

where j1 5 ›y1/›z and h1 5 ›u1/›z are the two components of

O (�) horizontal vorticity. Thus at O (�2), in addition to linear

and nonlinear vortex stretching, vortex tilting effects start

to become important in determining the vertical vorticity

evolution. Now under the hydrostatic approximation, the

horizontal vorticity is identical to the vertical shear. At O (�),

the equations for vertical shear are obtained by taking the

derivatives with respect to z of Eqs. (A18a) and (A18b).

Recalling that (›u0/›z)5 (›y0/›z)5 0 and using the hydrostatic

pressure equation Eq. (A13d) to eliminate p1, we have,

j
1
52

›y
1

›z
52

›

›x

�
›p

1

›z

�

5
›r

1

›x
, (A24a)

h
1
5
›u

1

›z
52

›

›y

�
›p

1

›z

�

5
›r

1

›y
. (A24b)

The parity of j1 and h1 can be inferred from consideration of

the O (�) scalar advection equation, Eq. (A13e),

u
0
� =

H
r
1
1w

1

›~r

›z
5 0: (A25)

Using Eq. (A4) w1 can be expressed in terms of the isopycnal

displacement field d1 as

w
1
5u

0
� =

H
d
1
. (A26)

Close to the bottom, we can further use the boundary condition

of no normal flow into the topography [Eq. (A14)] to ap-

proximate w1 as w1 ’ u0 � =Hh. Then, Eq. (A25) can be writ-

ten as

u
0
� =

H

�

r
1
1h

›~r

›z

�

5 0: (A27)

Equation (A27) tells us that (r1 1h›~r/›z) remains constant on

the O (1) horizontal streamlines of the flow. Now noting that

›~r/›z, 0 for a stably stratified background, this implies that

the two components of =Hr1 near the bottom have the same

parity, respectively, as those of =Hh. In the context of our ridge

solutions (e.g., Fig. 11), Eq. (A24) shows that as the flow en-

counters the ridge, j1 , 0 (.0) on the cyclonic (anticyclonic)

side, while h1 . 0 on both sides.

Therefore, when � 5 Nhm/(fa) is not asymptotically small,

second-order nonlinear effects are important from the per-

spective of vorticity production. While the perturbation anal-

ysis above does not automatically carry over to the cases ĥ. 1

which we consider, it does nevertheless show that nonlinear

vortex stretching and tilting effects can be significant away

from the quasigeostrophic limit. Note that the analysis pre-

sented here differs from the nonrotating case considered by

Smolarkiewicz and Rotunno (1989) in which the appropriate

small parameter is the inverse Froude number Fr21
5Nhm/V0.

In that case, the O (1) and O (Fr21) contributions are both

uniformly zero and the vertical vorticity, which is generated by

tilting of baroclinically generated O (Fr21) horizontal vorticity,

makes an appearance only at O (Fr22).
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