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Abstract. Circumferential shear deformation in an annular domain is studied for a large class of
incompressible isotropic elastic materials. It is demonstrated that large strains are confined in a region
adjacent to a boundary, in analogy to the boundary layer phenomenon in fluid mechanics. The size of
this region is quantified. An approximate solution technique for the deformation of nonlinear elastic
solids, proposed by Rajagopal [7], is further studied. In this solution, akin to the boundary layer
approximation in classical fluid mechanics, the full nonlinear problem is solved in a relatively small
region of large strain, while the linearized problem is solved in the remaining region. Error estimates
for the approximate solution are obtained.

1. Introduction

Whether it is the motion of fluids or solids, most of the interesting phenomena take
place adjacent to solid boundaries or at interfaces. Prescribing boundary condi-
tions and describing the observed phenomena adjacent to boundaries remain the
most challenging aspect of mechanics, especially when nonlinear materials are
concerned. The intense interest and effort expended in the development and study
of boundary layer theory for the classical linearly viscous fluid (Schlichting [1])
notwithstanding, basic issues remain unresolved and elude our understanding of
the effect of boundaries; wetting of boundaries is but one example. In the case
of certain nonlinear fluids, the phenomenon of “stick-slip” is a prime example of
our inadequate understanding of the effect of boundaries on the flow of such fluids.
When attention is shifted to the deformation of solids, there is a lacuna with respect
to the development of a boundary layer theory similar to the one that is in place for
fluids, though there seems to be enough evidence to show that the development of
such a theory is warranted.

By a boundary layer, we mean a narrow region adjacent to a boundary wherein
the strains are large and the full nonlinear equations are assumed to hold, while
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exterior to this region the strains are small and the linearized equations are expected
to hold. Such a theory can have relevance to a much larger class of problems
involving strain localization with the nonlinear theory holding in the small region
of strain localization (say due to an inclusion or defect) with the linearized theory
holding outside the small region. There have been many studies where the presence
of boundary layers has been established (Zhang and Rajagopal [2], Rajagopal and
Tao [3], Rajagopal [4], Tao et al. [5], and Haughton [6]) within the context of a
specific model. More recently, it was shown [7] within the context of a power-
law neo-Hookean solid that the problem of circumferential shear deformation can
be studied in the spirit of a boundary layer approach. An arbitrary thickness is as-
sumed for the boundary layer and the nonlinear and linearized equations are solved
respectively, inside and outside the boundary layer, with continuity in the displace-
ment field and a prescribed tolerance for the difference in strain. The solution is
iterated by varying the boundary layer thickness until the prescribed tolerance for
the strain is met. The results compare excellently with the exact solution to the
nonlinear problem in the full domain.

It is suggested that the thickness of the boundary layer can be chosen as the
region in which a large portion of the strain, say 99%, is confined, i.e., at the edge
of the boundary layer the strain has reduced to 1% of its maximum value. In this
paper, unlike the works cited above, we do not confine ourselves to a particular
constitutive function. Instead, we show that the development of boundary layers
seems typical of a large class of nonlinear elastic materials, providing an even
stronger case for the development of a boundary layer like theory for nonlinear
elastic solids.

Here, we must point out that we do not claim that boundary layers occur for all
nonlinear elastic solids, nor do we claim that boundary layers occur for all other
geometries and boundary conditions than that considered here. In this paper, we
concentrate on the circumferential shear deformations in annular domains because
the analytic solutions exist for this problem, which allows us to carry out an explicit
and quantitative study on the development of boundary layers. On the other hand,
we see no reason to believe that this would be the only geometry that exhibits
boundary layer phenomenon. It will be totally unsurprising if one demonstrates,
perhaps through numerical analysis, that boundary layers can be identified for other
problems involving more complicated geometries.

Depending on the problem under consideration, different quantities can be con-
fined adjacent to boundaries. Traditional boundary layer theory for the linearly vis-
cous fluid concerns the confinement of vorticity adjacent to the boundary (Schlicht-
ing [1]). In nonlinear fluids, it is possible that a variety of quantities can be confined
adjacent to the boundary with the possibility of multiple deck structures with differ-
ent quantities confined in the different layers. In the case of solids, it is possible to
define boundary layers based on strains or stresses. The thickness of these bound-
ary layers are not necessarily the same. For the problem considered in this paper,
the thickness of the boundary layer based on strain depends on the strain level
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in the problem. Interestingly, however, the thickness of the boundary layer based
on stress depends on the geometry of the annulus, but not on the stress or strain
levels.

Error estimates are obtained for the boundary layer solution from the exact so-
lution to the full nonlinear equations for a general class of materials. As a particular
example, explicit results are given for the power-law neo-Hookean material.

2. Basic Equations

Consider an elastic body which in a reference configuration occupies an annu-
lar, multiply-connected domain �. In a cylindrical polar coordinate system, � is
denoted by

� = {
(R,�,Z): Ri � R � Ro, 0 � � < 2π, −∞ < Z < ∞}

,

where Ri and Ro are the inner and outer radii of the annulus, respectively.
We wish to find the deformation of the body when the inner surface is rotated

through an angle φ, while the outer surface is held fixed. A semi-inverse method
will be used in which we consider a circumferential shear deformation of the form

r = R, θ = �+ f (R), z = Z, (1)

where (r, θ, z) denote the coordinates of the material particle (R,�,Z) after de-
formation, and f ∈ C1([Ri, Ro];	),	 being the set of real numbers, satisfies

f (Ri) = φ, f (Ro) = 0. (2)

The physical components of the deformation gradient F for the shear deforma-
tion (1) are

F =

 1 0 0
γ 1 0
0 0 1


 ,

where the shear strain γ is given by

γ ≡ Rf ′(R). (3)

The physical components of the left Cauchy–Green tensor B ≡ FFT are

B =

 1 γ 0
γ 1 + γ 2 0
0 0 1


 . (4)

The principal invariants of B are
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I1 ≡ trB = 3 + γ 2, I2 ≡ 1

2

[
(trB)2 − tr

(
B2)] = 3 + γ 2,

I3 ≡ detB = 1.
(5)

The deformation (1) is isochoric.
We shall consider an elastic body that is incompressible, homogeneous, and

isotropic in the reference configuration. The Cauchy stress tensor T for such a
material takes the form (see, for example, [2])

T = −pI + g1B + g2B2, (6)

where I is the identity tensor, g1 and g2 are functions of two principal invariants I1

and I2, and p is the indeterminate part of the stress due to the incompressibility
constraint. We shall assume that g1 and g2 are of class C1([3,∞) × [3,∞);	).
Substituting (4) into (6), we find the physical components of the Cauchy stress
tensor to be

T=

−p + g1 + (

1 + γ 2
)
g2 γg1 + (

2γ + γ 3
)
g2 0

γg1 + (
2γ + γ 3

)
g2 −p + (

1 + γ 2
)
g1 + (

1 + 3γ 2 + γ 4
)
g2 0

0 0 −p + g1 + g2


.
(7)

Here and henceforth, the response functions g1 and g2 are evaluated at (I1, I2) =
(3 + γ 2, 3 + γ 2).

In this work, we do not require that the material be hyperelastic. If the material
is hyperelastic, there exists a strain-energy function W ∈ C2([3,∞)× [3,∞);	),
depending on two principal invariants I1 and I2, such that the response functions
g1 and g2 are given by

g1 = 2

(
∂W

∂I1
+ I1

∂W

∂I2

)
, g2 = −2

∂W

∂I2
.

In the absence of body forces, the equations of equilibrium take the form

divT = 0. (8)

For a deformation of the form (1), the components of F and B are functions of R
alone. We shall assume that p is also a function of R alone. Hence, the components
of T are functions of R as well. Substituting (7) into (8), we find that

d

dR

[−p + g1 + (
1 + γ 2

)
g2

] − γ 2

R

[
g1 + (

2 + γ 2
)
g2

] = 0, (9)

d

dR

[
γg1 + (

2γ + γ 3)g2
] + 2

R

[
γg1 + (

2γ + γ 3)g2
] = 0. (10)

For given response functions g1 and g2, one can solve, in principle, equation (10)
for γ , and hence f . Equation (9) can be then used to find the pressure p.
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3. Existence of Equilibrium Solutions

Let us define the shear stress function τ̂ by

τ̂ (γ ) ≡ γg1 + (
2γ + γ 3

)
g2.

For the deformation under consideration, the value of τ̂ gives the circumferential
shear stress τ . If the material is hyperelastic, the shear stress function is given by

τ̂ (γ ) = 2γ

(
∂W

∂I1
+ ∂W

∂I2

)
. (11)

Here and henceforth, the derivatives of W are evaluated at (I1, I2) = (3 + γ 2,

3 + γ 2).
Obviously, τ̂ is an odd function of γ . In this work, we shall assume that τ̂ is

strictly increasing. This assumption is implied by

g1 + (
2 + 3γ 2)g2 + 2γ 2

(
∂g1

∂I1
+ ∂g1

∂I2

)
+ 2γ 2(2 + γ 2)(∂g2

∂I1
+ ∂g2

∂I2

)
> 0,

or, for a hyperelastic material, by

∂W

∂I1
+ ∂W

∂I2
+ 2γ 2

(
∂2W

∂I 2
1

+ 2
∂2W

∂I1∂I2
+ ∂2W

∂I 2
2

)
> 0.

Under this assumption, function τ̂ can be inverted. The inverse function τ̂−1 ≡ γ̂

is also odd and strictly increasing. Furthermore, since g1 and g2 are defined in an
unbounded domain, function γ̂ is unbounded.

PROPOSITION 1. There exists a unique equilibrium solution f (R) that satisfies
the boundary conditions (2).

Proof. The equation of equilibrium (10) can be rewritten as

dτ

dR
+ 2τ

R
= 0, (12)

where τ ≡ τ̂ (γ ). Equation (12) admits the general solution

τ = C

R2
, (13)

where C is a constant of integration. By (3), we can write (13) as

Rf ′(R) = γ̂
(
C

R2

)
. (14)

The equilibrium solution that satisfies the boundary condition (2)2 is then given by

f (R) = −
∫ Ro

R

1

ρ
γ̂

(
C

ρ2

)
dρ. (15)
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Now it suffices to show that there exists a unique C such that the solution given by
(15) satisfies the boundary condition (2)1. Since γ̂ is strictly increasing, the integral

−
∫ Ro

Ri

1

ρ
γ̂

(
C

ρ2

)
dρ (16)

is strictly decreasing in C. Moreover, since γ̂ is unbounded, the integral (16) is
unbounded below as C increases, and unbounded above as C decreases. By the
continuity of the value of the integral in C, there exists a unique C such that the
integral (16) equals φ. ✷

We note that the assumption that τ̂ (γ ) is strictly increasing in γ is made in this
section only to establish the uniqueness of the solution. Such an assumption is not
essentially needed for the existence of boundary layers that we shall discuss next.

4. Boundary Layers

In this section, we examine the variation of the shear stress and shear strain. In
particular, we show that large stresses and strains are confined in a region adjacent
to the inner surface. This leads to the quantitative definitions of boundary layers.

We first examine the stress distribution. Without loss of generality, we shall
assume in the remainder of this paper that the constant C in (13) is positive. Then,
the shear stress τ is a decreasing function of the radius R. We further observe that
the value of the stress is the greatest at the inner surface. It is anticipated that there
is an annular layer adjacent to the inner surface, within which large stress variation
takes place, and outside which the value of the stress is close to the value of the
stress at the outer surface.

We thus introduce the following definition of stress boundary layer.

DEFINITION 1. For a given small number ε, the stress boundary layer is the
annular region

�s = {
(R,�,Z): Ri � R � Rs, 0 � � < 2π, −∞ < Z <∞}

,

such that

τ(R) < τo + ε(τi − τo) if R > Rs (17)

and

τ(R) > τo + ε(τi − τo) if R < Rs, (18)

where τi and τo are the shear stresses at the inner and outer surfaces, respectively.

In the above definition, Rs is the outer radius of the stress boundary layer, and
ε is the ratio of the stress variation outside the boundary layer and the total stress
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variation. For the concept of boundary layer to be useful, we shall take ε to be
a small number, for example, 0.01. A remark here is that in classical Newtonian
fluid mechanics, boundary layers often result from the singular perturbation of a
small parameter that is included in the original formulation of the problem. Here,
we are not confined by this viewpoint, as we believe in solids (and in fluids as well)
boundary layers could stem from material nonlinearity. In particular, the parame-
ter ε introduced above is not to be compared with the small parameter appearing
in singular perturbation in classical fluid mechanics. Instead, ε is a measure of
the “smallness” of the stress (or the strain below) outside the boundary layer as
opposed to that inside. It is used to capture the basic characteristics of a boundary
layer.

We denote by k the ratio of the outer and inner radii of the annulus, and by h the
relative thickness of the stress boundary layer with respect to the total thickness of
the annulus:

k ≡ Ro

Ri
, h ≡ Rs − Ri

Ro − Ri
.

By (13), (17) and (18), we have

C

R2
s

= C

R2
o

+ ε
(
C

R2
i

− C

R2
o

)
, (19)

which leads to

h = 1

k − 1

[
k√

1 + ε(k2 − 1)
− 1

]
. (20)

When ε = 0.01 and k = 100, we find from (20) that

h ∼= 0.0904,

that is, 99% of stress variation occurs within the boundary layer of about 9%
relative thickness. Outside the boundary layer, the stress varies by only 1%.

We also note from (20) that the relative thickness h of the boundary layer tends
to zero as k approaches ∞. In this case, the absolute thickness of the boundary
layer is given by

lim
k→∞

(Rs − Ri) = lim
k→∞

Rih(k − 1) = Ri

(
1√
ε

− 1

)
.

Since, by (13), the stress at infinity is zero, the value of the shear stress outside the
boundary layer is smaller than ε times the shear stress at the inner surface.

Here, we must emphasize that we do not claim that the boundary layer as de-
fined above is always “thin”. It is obvious that the relative thickness of the boundary
layer can be large for smaller values of k. For general boundary value problems, the
existence and thickness of a boundary layer will of course depend on the geometry,
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boundary conditions, or the constitutive function. One of the purposes of this paper
is to promote the idea that the phenomenon of boundary layer does exist for solids
of certain geometry. In fact, this statement also pertains to fluids, as many studies in
fluid dynamics concern the boundary layers appearing in “external domains” that
extend to infinity.

We now turn to examine the variation of the shear strain γ . Evaluating (13) at
R = Ri gives

τ̂ (γi) = C

R2
i

, (21)

where γi is the shear strain at the inner surface:

γi ≡ Rif
′(Ri).

Since the constant C is assumed to be positive, the shear stress and the shear strain
are both positive. Eliminating C between (13) and (21), we have

τ̂ (γi)

τ̂ (γ )
= R2

R2
i

. (22)

Equation (22) implicitly describes how the shear strain γ depends on the ra-
dius R. Since τ̂ (γ ) is assumed to be strictly increasing, the strain γ decreases in R.
Similar to the definition of the stress boundary layer, we now define the strain
boundary layer.

DEFINITION 2. For a given small number ε, the strain boundary layer is the
annular region

�n = {
(R,�,Z): Ri � R � Rn, 0 � � < 2π, −∞ < Z <∞}

,

such that

γ (R) < γo + ε(γi − γo) if R > Rn (23)

and

γ (R) > γo + ε(γi − γo) if R < Rn, (24)

where γo is the shear strain at the outer surface

γo ≡ Rof
′(Ro).

In the above definition, Rn is the outer radius of the strain boundary layer,
and ε is now the ratio of the strain variation outside the boundary layer and the
total strain variation. Of course, for a given ε, Definitions 1 and 2 lead to the
stress and strain boundary layers of different thicknesses in general. The following
proposition facilitates comparison of the two thicknesses.
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PROPOSITION 2. If the stress function τ̂ is of C2 and satisfies, for γ � 0,

τ̂ ′′(γ ) � 0, (25)

then

Rn � Rs. (26)

On the other hand, if

τ̂ ′′(γ ) � 0,

then

Rn � Rs.

Proof. We shall show that (25) implies (26). The proof of the remaining propo-
sition is similar. By (25) and the mean value theorem, we have

τ̂ (γi) � τ̂ (γn)+ (γi − γn)τ̂ ′(γn),

and

τ̂ (γo) � τ̂ (γn)+ (γo − γn)τ̂ ′(γn),

which imply

(γo − γn)
[
τ̂ (γi)− τ̂ (γn)

]
� (γi − γn)

[
τ̂ (γo)− τ̂ (γn)

]
, (27)

where γn ≡ Rnf ′(Rn). By (13), (23) and (24), inequality (27) can be written as

−ε
(
C

R2
i

− C

R2
n

)
� (1 − ε)

(
C

R2
o

− C

R2
n

)
. (28)

The desired result then follows from (19) and (28). ✷
We shall refer to τ̂ ′(γ ) as the shear stiffness. Inequality (25) states that the

shear stiffness is a non-increasing function of γ . This includes materials with a
linear stress function, and materials that soften. Proposition 2 shows that for such
materials, the strain boundary layer is not thicker than the stress boundary layer.
In particular, the previous quantitative discussion of the stress distribution can be
made appropriate for the strain distribution.

We now consider a special class of materials for which the stress function is
bounded. For such materials, we define

τm ≡ sup
γ∈	

τ̂ (γ ).

Equation (22) immediately leads to the following proposition.



212 Y.-C. CHEN AND K.R. RAJAGOPAL

PROPOSITION 3. If the stress function τ̂ is bounded, then

γ � γ̂
(
R2

i τm

R2

)
. (29)

Inequality (29) implies that the shear strain in the region outside an annulus
is bounded by a number that is independent of the maximum shear strain γi. For
example, exterior to a thin annular layer of thickness 0.01Ri, the shear strain is
bounded by γ̂ (τm/1.012) for arbitrarily large shear strain γi and shear displace-
ment φ at the inner surface. The strain variation in this thin layer can be very
large.

It is worth noting that the class of materials considered in Proposition 3 includes
as a special case the classical perfectly elastic-plastic materials, with τm being
the yield stress [10]. Indeed, when an elastic-plastic body undergoes quasi-static
deformations without unloading, it behaves like a nonlinear elastic body and can
be analyzed within the framework of this paper. It is well-known in classical plas-
ticity theory that for certain geometry and boundary conditions, localized plastic
zones may develop where large plastic deformations occur, while to the exterior of
the plastic zones the deformation is small and the body remains elastic. A typical
problem of this kind is the so-called plastic hinge [10, 11] in bending of elastic-
plastic beams. When a plastic hinge develops, the beam ceases to have resistance to
further increase of bending moment, and could rotate indefinitely about the plastic
hinge.

As is clear from (20), the thickness of the stress boundary layer depends on ε
and the geometry of the annulus, but not on the stress or strain. The thickness of the
strain boundary layer, on the other hand, will in general depend on the strain level.
In particular, as will be shown in the following proposition, if the stress function is
bounded, the thickness of the strain boundary layer tends to zero as the strain γi or
the displacement φ at the inner surface approaches infinity.

PROPOSITION 4. If the stress function τ̂ is bounded, then

lim
|φ|→∞

(Rn − Ri) = 0.

Proof. We consider the case when φ → −∞. The proof for the case when
φ → ∞ is similar. By (2) and (15), we have∫ Ro

Ri

1

ρ
γ̂

(
C

ρ2

)
dρ = −φ. (30)

Since γ̂ in increasing, equation (30) implies

Ro − Ri

Ri
γ̂

(
C

R2
i

)
> −φ,

that is,

γi > − φRi

Ro − Ri
. (31)



BOUNDARY LAYER SOLUTIONS IN ELASTIC SOLIDS 213

It then follows from (23) and (24) that

γn = γo + ε(γi − γo) > εγi > − εφRi

Ro − Ri
.

Since the stress function τ̂ is strictly increasing, we must have

lim
φ→−∞

C

R2
n

= lim
φ→−∞ τ̂ (γn) = τm.

The same argument with (31) leads to

lim
φ→−∞

C

R2
i

= τm.

The conclusion then follows. ✷
5. An Approximate Solution

Inspired by the boundary layer theory in fluid mechanics, Rajagopal [7] has pro-
posed a scheme of finding approximate solutions of equilibrium in elastic solids.
It exploits the fact that the strain in the region outside a boundary layer may be
so small that the solutions in linear elasticity becomes a good approximation.
Thus, instead of solving a full nonlinear problem in the entire domain, one only
need solve the nonlinear problem in a perhaps small subdomain. This method can
present considerable advantages when finding the solution numerically.

For the problem considered in the present paper, this scheme can be formu-
lated as follows. Let Rb be the outer radius of the boundary layer. The nonlinear
and linearized equilibrium equations are to be solved in [Ri, Rb] and [Rb,Ro],
respectively. The solutions in the two regions will be matched so that the shear
displacement and the shear stress are continuous across Rb. The value of Rb can
be chosen a priori by using the criteria discussed in the previous section, or can be
determined for the particular problem under consideration so that the error of the
approximate solution is sufficiently small.

For R ∈ [Ri, Rb), the approximate solution is again determined by (14), with C
being replaced by a new constant C1. Integration of equation (14) leads to

f ∗(R) = φ +
∫ R

Ri

1

ρ
γ̂

(
C1

ρ2

)
dρ, (32)

where the constant C1 is to be determined by the continuity conditions at R = Rb.
Here and henceforth, ∗ denotes the quantities associated with the approximate
solution. The approximate solution (32) satisfies the boundary condition (2)1. The
corresponding shear stress is

τ ∗(R) = C1

R2
. (33)
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For R ∈ (Rb, Ro], the approximate solution is determined by solving the equi-
librium equations for a linear stress function obtained from the original stress
function. Taking τ = µγ in (13) with the new integration constant C1, we find that

γ ∗(R) = C1

µR2
,

where

µ ≡ τ̂ ′(0), (34)

and the constant of integration C1 has been so chosen that the stress continuity
condition across the interface is satisfied. In fact, the shear stress in this region
is again given by (33). The corresponding shear displacement that satisfies the
boundary condition (2)2 is

f ∗(R) = C1

2µ

(
1

R2
o

− 1

R2

)
. (35)

The continuity of shear displacement at R = Rb requires
∫ Rb

Ri

1

ρ
γ̂

(
C1

ρ2

)
dρ −

∫ Ro

Ri

1

ρ
γ̂

(
C

ρ2

)
dρ = C1

2µ

(
1

R2
o

− 1

R2
b

)
. (36)

Here use has been made of (2)1, (15), (32), and (35). Equation (36) implicitly de-
termines the constant C1. It is observed that when Rb = Ro, the solution of (36) is
C1 = C, corresponding to the trivial case when the nonlinear equilibrium equation
is solved in the entire domain, and the approximate solution becomes exact.

We wish to estimate the error of the approximate solution. For brevity, we shall
only present the error analysis for the stress. The error analysis for the strain and
the displacement is similar, but more lengthy. To this end, we rewrite (36) as

∫ Rb

Ri

1

ρ
γ̂

(
C1

ρ2

)
dρ −

∫ Rb

Ri

1

ρ
γ̂

(
C

ρ2

)
dρ + C1 − C

2µ

(
1

R2
b

− 1

R2
o

)

=
∫ Ro

Rb

1

ρ
γ̂

(
C

ρ2

)
dρ − C

2µ

(
1

R2
b

− 1

R2
o

)
. (37)

Applying the mean value theorem to the left-hand side of (37) yields

(C1 − C)
{

1

2C2

[
γ̂

(
C2

R2
i

)
− γ̂

(
C2

R2
b

)]
+ 1

2µ

(
1

R2
b

− 1

R2
o

)}

=
∫ Ro

Rb

1

ρ

[
γ̂

(
C

ρ2

)
− C

µρ2

]
dρ, (38)

where C2 is between C and C1. In the remainder of this paper, we shall assume that
(25) holds for γ � 0. Then applying the mean-value theorem to (38), and casting
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bounds for appropriate terms, we find that

C1 − C = 2(Ro − Rb)[γ̂ (C/R2
1)− C/(µR2

1)]
R1[(1/R2

i − 1/R2
b)γ̂

′(τ2)+ (1/µ)(1/R2
b − 1/R2

o)]
� 2CR2

i R
2
o(Ro − Rb)[µγ̂ ′(τ1)− 1]
R3

1(R
2
o − R2

i )

� 2CR2
i R

2
o(Ro − Rb)[µγ̂ ′(τ1)− 1]
R3
b(R

2
o − R2

i )
, (39)

where R1, τ1 and τ2 are some intermediate values, for example, τ1 is between 0 and
C/R2

b .
Let δ denote the relative error of the approximate shear stress. By (13), (33),

and (39), we have

δ =
∣∣∣∣τ

∗ − τ
τ

∣∣∣∣ = C1 − C
C

� 2R2
i R

2
o(Ro − Rb)[µγ̂ ′(τ1)− 1]
R3
b(R

2
o − R2

i )
. (40)

It is observed from (40) that the error decreases as Rb increases. In particular, δ
tends to zero as Rb approaches Ro, in which case the nonlinear equilibrium equa-
tion is solved in the entire domain, and the approximate solution becomes exact.
Also note that the error becomes zero if the stress function is linear for which
γ̂ ′ = 1/µ.

6. An Example

In this section, we consider a power-law neo-Hookean hyperelastic material for
which the strain-energy function is given by

W = µ

2

[(
1 + I1 − 3

n

)n
− 1

]
, (41)

where µ and n are material constants. The notation has been so chosen that (34)
continues to hold. We shall assume that 0.5 � n � 1 so that the condition (25)
is satisfied. In studying the shear field near a crack tip for an anti-plane problem,
Knowles [9] found that the equilibrium equations of plane-strain lose ellipticity
when n < 0.5. When n = 1, the model reduces to the classical neo-Hookean
model.

Substituting (5) and (41) into (11) gives

τ̂ (γ ) = µγ
(

1 + γ 2

n

)n−1

,

τ̂ ′(γ ) = µ
(

1 + 2γ 2 − γ 2

n

)(
1 + γ 2

n

)n−2

.

(42)
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By (40), (42) and the relation γ̂ ′ = 1/τ̂ ′, we arrive at

δ � 2R2
i R

2
o(Ro − Rb)[(1 + 2γ 2

1 − γ 2
1 /n)

−1(1 + γ 2
1 /n)

2−n − 1]
R3
b(R

2
o − R2

i )
, (43)

where γ1 is between 0 and γ (Rb).
As an illustrative example, we take n = 0.75 and Ro = 2Ri in (43). The

relative error is less than 29% if Rb = 1.5Ri and the shear strain γ is less than
1 everywhere. Note that the error decreases rapidly in the strain. If the strain is less
than 0.2, the error is less than 1.6%. For small strains, one can choose a thinner
layer in which the nonlinear problem is solved. For example, if the strain is less
than 0.1, then the error would be less than 2.7% even when Rb = Ri, i.e., when the
approximate solution in the entire domain is obtained from linear elasticity.
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