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Abstract. Results on the Prandtl–Blasius-type kinetic and thermal boundary
layer (BL) thicknesses in turbulent Rayleigh–Bénard (RB) convection in a broad
range of Prandtl numbers are presented. By solving the laminar Prandtl–Blasius
BL equations, we calculate the ratio between the thermal and kinetic BL
thicknesses, which depends on the Prandtl number Pr only. It is approximated as
0.588Pr−1/2 for Pr � Pr∗ and as 0.982Pr−1/3 for Pr∗

� Pr , with Pr∗
≡ 0.046.

Comparison of the Prandtl–Blasius velocity BL thickness with that evaluated in
the direct numerical simulations by Stevens et al (2010 J. Fluid Mech. 643 495)
shows very good agreement between them. Based on the Prandtl–Blasius-type
considerations, we derive a lower-bound estimate for the minimum number of
computational mesh nodes required to conduct accurate numerical simulations
of moderately high (BL-dominated) turbulent RB convection, in the thermal and
kinetic BLs close to the bottom and top plates. It is shown that the number
of required nodes within each BL depends on Nu and Pr and grows with the
Rayleigh number Ra not slower than ∼Ra0.15. This estimate is in excellent
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agreement with empirical results, which were based on the convergence of the
Nusselt number in numerical simulations.
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1. Introduction

Rayleigh–Bénard (RB) convection is the classical system for studying the properties of thermal
convection. In this system, a layer of fluid confined between two horizontal plates is heated
from below and cooled from above. Thermally driven flows are of utmost importance in
industrial applications and in natural phenomena. Examples include the thermal convection
in the atmosphere, the ocean, in buildings, in process technology and in metal-production
processes. In the geophysical and astrophysical context, one may think of convection in the
Earth’s mantle, in the Earth’s outer core and in the outer layer of the Sun. For example, the
random reversals of the Earth’s or the Sun’s magnetic field have been connected with thermal
convection.

Major progress in the understanding of the RB system has been made over recent decades,
see e.g. the recent reviews [1, 2]. Meanwhile, it has been well established that the general
heat transfer properties of the system, i.e. Nu =Nu(Ra,Pr ) and Re =Re(Nu,Pr ), are well
described by the Grossmann–Lohse (GL) theory [3]–[6]. In that theory, in order to estimate
the thicknesses of the kinetic and thermal boundary layers (BLs) and the viscous and thermal
dissipation rates, the BL flow is considered to be scalingwise laminar Prandtl–Blasius flow over
a plate. We use the conventional definitions: the Rayleigh number is Ra = αgH 31/νκ with
the isobaric thermal expansion coefficient α, the gravitational acceleration g, the height H of
the RB system, the temperature difference 1 between the heated lower plate and the cooled
upper plate, and the material constants ν (kinematic viscosity) and κ (thermal diffusivity), both
considered to be constant in the container (Oberbeck–Boussinesq approximation). The Prandtl
number is defined as Pr = ν/κ and the Reynolds numberRe = UH/ν, with the wind amplitude
U that forms in the bulk of the RB container.

The assumption of a laminar BL will break down if the shear Reynolds number Res in
the BLs becomes larger than approximately 420 [7]. Most experiments and direct numerical
simulations (DNS) currently available are in regimes where the BLs are expected to be still
(scalingwise) laminar: see [1]. Indeed, experiments have confirmed that the BLs scalingwise
behave as in laminar flow [8], i.e. follow the scaling predictions of the Prandtl–Blasius
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theory [7], [9]–[13]. Recently, Zhou et al [14, 15] have shown that not only the scaling of the
thickness but also the experimental and numerical BL profiles in RB convection agree perfectly
with the Prandtl–Blasius profiles if they are evaluated in the time-dependent reference frames,
based on the respective momentary thicknesses. This confirms that the Prandtl–Blasius BL
theory is indeed the relevant theory to describe the BL dynamics in RB convection for not
too large Res.

The aim of this paper is to explore the consequences of the Prandtl–Blasius theory for the
required numerical grid resolution of the BLs in DNSs. Hitherto, convergence checks could only
be done a posteriori, by checking whether the Nusselt number does not change considerably
with increasing grid resolution [16]–[21] or by guaranteeing (e.g. in [21, 22]) that the Nusselt
numbers calculated from the global energy dissipation rate or thermal dissipation rate agree
well with those calculated from the temperature gradient at the plates or those obtained from
the overall heat flux. The knowledge that the profiles are of Prandtl–Blasius type offers the
opportunity to a priori determine the number of required grid points in the BLs for a given
Rayleigh number and Prandtl number, valid in the BL-dominated ranges of moderately high
Ra numbers.

In section 2, we will first revisit the Prandtl–Blasius BL theory—see [7], [9]–[13] or,
for more recent discussions in the context of RB, [6, 23]—and derive the ratio between the
thermal BL thickness δθ and the velocity BL thickness δu as functions of the Prandtl number Pr
extending previous work (section 3). We will also discuss the limiting cases for large and small
Pr , respectively. The transitional Prandtl number between the two limiting regimes turns out
to be surprisingly small, namely Pr∗

= 0.046. The crossover range is found to be rather broad,
roughly four orders of magnitude in Pr . In section 4, we note that the Prandtl–Blasius velocity
BL thickness is different from the velocity BL thickness based on the position of the maximum
rms velocity fluctuations (widely used in the literature), but agrees well with a BL thickness
based on the position of the maximum of an energy dissipation derivate that was recently
introduced in [21, 24]. We then derive the estimate for the minimum number of grid points
that should be placed in the BLs close to the top and bottom plates, in order to guarantee proper
grid resolution. Remarkably, the number of grid points that must have a distance smaller than δu

from the wall increases with increasing Ra, roughly as ∼Ra0.15. This estimate was compared
with a posteriori results for the required grid resolution obtained in various DNSs of the last
three decades, and good agreement was found. Section 5 is devoted to conclusions.

2. Prandtl BL equations

The Prandtl–Blasius BL equations for the velocity field u(x, z) (assumed to be two-dimensional
(2D) and stationary) over a semi-infinite horizontal plate [7], [9]–[13] read

ux∂xux + uz∂zux = ν∂z∂zux , (1)

with the boundary conditions ux(x, 0) = 0, uz(x, 0) = 0 and ux(x, ∞) = U . Here, ux(x, z) is
the horizontal component of the velocity (in the direction x of the large-scale circulation),
uz(x, z) the vertical component of the velocity (in the direction z perpendicular to the plate)
and U the horizontal velocity outside the kinetic BL (wind of turbulence). Correspondingly, the
equation determining the (stationary) temperature field T (x, z) reads

ux∂x T + uz∂zT = κ∂z∂zT, (2)
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with the boundary conditions T (x, 0) = Tplate and T (x, ∞) = Tbulk, which under the
Oberbeck–Boussinesq conditions is the arithmetic mean of the upper and lower plate
temperatures. Applying these equations to RB flow implies that we assume the temperature
field to be passive.

The dimensionless similarity variable ξ for the vertical distance z from the plate measured
at distance x from the plate’s edge is

ξ = z

√
U

xν
. (3)

Since the flow in Prandtl theory is 2D, a streamfunction 9̂ can be introduced, which represents
the velocity field. The streamfunction is non-dimensionalized as 9 = 9̂/

√
xνU , and the

temperature is measured in terms of 1/2, giving the non-dimensional temperature field 2.
Rewriting equations (1) and (2) in terms of 9 and 2, one obtains

d39/dξ 3 + 0.59 d29/dξ 2
= 0, (4)

d22/dξ 2 + 0.5Pr 9 d2/dξ = 0. (5)

Here the boundary conditions are

9(0) = 0, d9/dξ(0) = 0, d9/dξ(∞) = 1, (6)

2(0) = 0, 2(∞) = 1. (7)

The temperature and velocity profiles obtained from numerically solving equations (4)–(7)
(for particular Prandtl numbers) are already shown in textbooks [7, 12, 13] and in the context
of RB convection in [23, 25]: from the momentum equation (6) with the above boundary
conditions, one immediately obtains the horizontal velocity d9/dξ . The dimensionless kinetic
BL thickness δ̃u can be defined as that distance from the plate at which the tangent to the
function d9/dξ at the plate (ξ = 0) intersects the straight line d9/dξ = 1 (see figure 1(a)).
As equation (4) and the boundary conditions (6) contain no parameter whatsoever, the
dimensionless thickness δ̃u of the kinetic BL with respect to the similarity variable ξ is universal,
i.e. independent of Pr and U or Re,

δ̃u = A−1
≈ 3.012 or A ≈ 0.332. (8)

Solving numerically equation (5) with the boundary conditions (7) for any fixed Prandtl
number, one obtains the temperature profile with respect to the similarity variable ξ (see
figure 1(b)). Note that, in contrast to the longitudinal velocity d9/dξ , the temperature profile 2

depends not only on ξ but also on the Prandtl number, since Pr appears in equation (5) as the
(only) parameter. The distance from the plate at which the tangent to the 2 profile intersects the
straight line 2 = 1 defines the dimensionless thickness of the thermal BL,

δ̃θ = C(Pr), (9)

where C(Pr) is a certain function of the Prandtl number. For example, one numerically finds
C ≈ 3.417, 1.814 and 1.596 for Pr = 0.7, 4.38 and 6.4, respectively (see figure 1(b)).

From (8) and (9), one obtains the ratio between the (dimensional) thermal BL thickness δθ

and the (dimensional) kinetic BL thickness δu:

δθ

δu
=

δ̃θ

δ̃u

= AC(Pr). (10)
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Figure 1. Solution of the Prandtl–Blasius equations (4)–(7): (a) longitudinal
velocity profile d9/dξ(ξ) (solid curve) with respect to the similarity variable ξ .
The tangent to the longitudinal velocity profile at the plate (ξ = 0) and the
straight line d9/dξ = 1 (both dashed lines) intersect at ξ = δ̃u ≡ A−1

≈ 3.012,
for all Pr . We define this value δ̃u as the thickness of the kinetic BL.
(b) Temperature profile 2(ξ) as a function of the similarity variable ξ for
Pr = 0.7 (black solid curve), Pr = 4.38 (red solid curve) and Pr = 6.4 (green
solid curve). The tangents to the profile curves at the plate (ξ = 0) and the straight
line 2 = 1 (dashed lines) define the edges (thicknesses) of the corresponding
thermal BLs, i.e. ξ = δ̃θ ≡ C(Pr). For the presented cases Pr = 0.7, 4.38 and
6.4, one has C(0.7) ≈ 3.417, C(4.38) ≈ 1.814 and C(6.4) ≈ 1.596, respectively.

As discussed above, the constant A and the function C = C(Pr) are found from the solutions of
equations (4)–(7) for different Pr . A and C(Pr) reflect the slopes of the respective profiles:

A =
d29

dξ 2
(0), C(Pr) =

[
d2

dξ
(0)

]−1

. (11)

With (3) the physical thicknesses are δu = δ̃u/
√

U/xν and δθ = δ̃θ/
√

U/xν, generally
depending on U and the position x along the plate. The physical thermal BL thickness
then is

δθ =
C(Pr)

√
U/(xν)

=

[√
U

xν

∂2

∂ξ
(0)

]−1

=

[
∂2

∂z
(0)

]−1

. (12)

Thus, explicitly it depends either on U or on the position x along the plate. Recalling
the definition of the thermal current J = 〈uzT 〉 − κ∂z〈T 〉, we obtain 〈

∂2

∂z (0)〉 =
1

1/2〈
∂T
∂z (0)〉 =

2
κ1

J = 2H−1Nu, i.e. on x-average we have

δθ =
H

2Nu
. (13)

δθ is the so-called slope thickness: see section 2.4 of [23]. In contrast to the thermal BL
thickness δθ , the physical velocity BL thickness δu = A−1/

√
U/xν depends explicitly both on

the position x and on the wind amplitude U . In an RB cell, we choose for x a representative
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value x = ãL = ã0H . Then the famous Prandtl formula [9] results:

δu =
aH

√
Re

. (14)

Here, a =
√

ã0/A2 = A−1
√

ã0. The constant a has been obtained empirically [5], based on the
experimental measurements of Qiu and Tong [26] performed in a cylindrical cell of aspect ratio
one, filled with water. The result was the following [5]:

a ≈ 0.482. (15)

We note that this value probably depends on the aspect ratio and on the shape of the RB container
and can also be different for numerical 2D RB convection [27]–[29]. It will also be different for
the slope thickness as considered here or other definitions, e.g. the 99% thickness.

It seems worthwhile to note that similarly to the case of δθ , also δu can be expressed
by a profile slope at the plate. Analogously to the temperature case, one calculates for the
kinetic thickness δu = U/ ∂ux

∂z (0). Here, U appears explicitly and the derivative may depend on x.
The denominator is the local stress tensor component, which—after averaging—describes the
momentum transport, just as the temperature profile derivative at the plate characterizes the
heat transport. In combination with equation (14), it means that the kinetic stress behaves as
〈

∂ux
∂z (0)〉 ∼ U

√
Re/(aH).

From equations (10) and (14) we also find the useful (and known) relation for the
Prandtl–Blasius BLs:

δθ = aθC(Pr)
H

√
Re

with aθ = A · a ≈ 0.160. (16)

From solving equations (4)–(7) together with relations (11), one finds that the BL thickness
ratio (10) has two limiting cases, namely δθ/δu ∼ Pr−1/2 for very small Pr � 1 and δθ/δu ∼

Pr−1/3 for very large Pr � 1. We thus present the ratio of the thermal and kinetic BL thicknesses
normalized by Pr−1/3 in figure 2 for different Pr from Pr = 10−6–106. The figure confirms that
the scaling of the ratio between the thermal and kinetic BL thicknesses in the low and high
Prandtl number regimes is Pr−1/2 and Pr−1/3, respectively. Between these two limiting regimes,
there is a transition region whose width is about four orders of magnitude in Pr . In the next
section, we will derive analytic expressions for the ratio δθ/δu in the respective regimes, which
will be used in the remainder of the paper to analyse the resolution properties for DNS in the
BLs of the RB system.

In the Prandtl–Blasius theory the asymptotic velocity amplitude U is a given parameter; the
resulting heat currentNu is a performance of the BLs only. In contrast, in the RB convection the
heat transport is determined by the BLs together with the bulk flow. Therefore in RB convection
the wind amplitude U is no longer a passive parameter, but U and Nu are actively coupled
properties of the full thermal convection process.

The Reynolds number Re is defined as the dimensionless wind amplitude:

Re =
UH

ν
. (17)

From the law for the kinetic BL thickness (14), the thermal BL thickness δθ (13) and the BL
thickness ratio (10), one obtains

Re =

(
aH

δu

)2

=

(
δθ

δu

)2 (
aH

δθ

)2

= 4a2Nu2

(
δθ

δu

)2

. (18)
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Figure 2. Double-logarithmic plot of the ratio between the thermal and kinetic
BL thicknesses, normalized by Pr−1/3, as obtained from numerical solution
of equations (4)–(7) as a function of Pr (solid black line). For large Pr the
curve through the data is constant; for small Pr the (plotted, reduced) curve
behaves ∝ Pr−1/6. Approximation (22) (green dotted line) is indistinguishable
from δθ/δu in the region Pr < 3 × 10−4. Approximation (24) (blue dashed-dotted
line) well represents δθ/δu for Pr > 0.3; for Pr > 3 it practically coincides with
approximation (25). Approximation (26) (red solid curve) connects the analytical
approximations in the transition range 3 × 10−4 6 Pr 6 3 between the lower and
upper Prandtl number regimes.

This Re ∼Nu2 law is in perfect agreement with the GL theory [3]–[6]. In that theory, several
sub-regimes in the (Ra,Pr ) parameter space are introduced, depending on the dominance of the
BL or bulk contributions. In regimes I and II, the BL of the temperature field dominates, while
in III and VI it is the thermal bulk. Regimes I and II differ in the velocity field contributions:
it is either the u-BL (I) or the u-bulk (II) that dominates; analogously, the pair III and IV is
characterized. The labels ` (for lower Pr ) and u (for upper Pr ) distinguish the cases in which
the thermal BL is thicker or smaller than the kinetic one. All ranges in the GL theory, which are
thermal BL dominated, show the Re ∼Nu2 behaviour, namely Il , Iu , I I l , I I u . In the thermal
bulk dominated ranges of RB convection, the relation between Re and Nu is different. In I I I u

we have Re ∼Nu4/3, in I V l it is Re ∼Nu, and in I V u also Re ∼Nu4/3 holds; but here the
Prandtl–Blasius result (18) is not applicable, since the heat transport mainly depends on the
heat transport properties of the bulk. In the range I∞, although BL dominated, also a different
relation (Re ∼Nu3) holds; here the upper and the lower kinetic BLs fill the whole volume and
therefore there is no free flow outside the BLs, in contrast to the Prandtl–Blasius assumption of
an asymptotic velocity with the LSC amplitude U .

3. Approximations for the ratio δθ/δu of the temperature and velocity BL thicknesses

In this section, we will derive analytical approximations for the ratio δθ/δu for the three regimes
identified in the previous section (cf figure 2). We start by discussing the low (Pr < 3 × 10−4)
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and high (3 < Pr ) Prandtl number regimes, before we discuss the transition region 3 × 10−4 6
Pr 6 3.

3.1. Approximation of δθ /δu for Pr < 3 × 10−4

In the case of a very small Prandtl number, Pr � 1, the thickness of the velocity BL is negligible
compared with the thickness of the temperature BL, i.e. δθ � δu . Hence, in most of the thermal
BL, it is ux ≈ U . Introducing the similarity variable as in [13],

η =
z

2

√
U

xκ
, (19)

one obtains the following equation for the temperature as a function of η:

d22/dη2 + 2η d2/dη = 0, with 2(0) = 0, 2(∞) = 1.

The solution of this boundary value problem is the Gaussian error function:

2(η) = erf(η) ≡
2

√
π

∫ η

0
e−t2

dt. (20)

According to (3) and (19), the similarity variable ξ used in the Prandtl equations and the
similarity variable η used in the approximation for Pr � 1 are related as follows:

η =
1
2Pr 1/2ξ. (21)

Applying now formulae (20), (21) and (11), we obtain the following equalities:

2
√

π
=

d2

dη
(0) =

d2

dξ
(0) ·

dξ

dη
=

1

C(Pr)
· 2Pr−1/2.

This leads to the approximation for the function C(Pr) =
√

πPr−1/2 for very small Pr :

δθ

δu
= A

√
πPr−1/2

≈ 0.588Pr−1/2, Pr � 1. (22)

In figure 2, one can see that for very small Prandtl numbers, Pr < 3 × 10−4, approxi-
mation (22) is as expected indistinguishable from the numerically obtained δθ/δu .

3.2. Approximation of δθ /δu for Pr > 3

Meksyn [12], based on the work by Pohlhausen [11], derived that the solution of the temperature
equation (5), together with relation (7), equals

2

(
ξ

√
2

)
= D

∫ ξ/
√

2

0
e−F(t)Pr dt, F(t) =

1
√

2

∫ t

0
9(q)dq. (23)

The constant D can be found as usual from the boundary condition at infinity and was
approximated in [11, 12] for Pr > 1 as follows:

D =
0.478Pr 1/3

c(Pr)
, c(Pr) ≈ 1 +

1

45Pr
−

1

405Pr 2
+

161

601425Pr 3
− · · · .
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From this and (23), one derives

0.478Pr 1/3

c(Pr)
= D =

d2

d(ξ/
√

2)
(0) =

√
2

d2

dξ
(0) =

√
2

C(Pr)
.

This connects c(Pr) and C(Pr), as follows:

C(Pr) ≈

√
2

0.478
c(Pr)Pr−1/3

≈ 2.959 c(Pr)Pr−1/3,

resulting in the approximation

δθ

δu
= AC(Pr) = EPr−1/3c(Pr), E ≈ A

√
2

0.478
≈ 0.982. (24)

For Pr � 1, the function c(Pr) approaches 1, hence C(Pr) ≈ 2.959Pr−1/3, implying

δθ

δu
= EPr−1/3, Pr � 1. (25)

In figure 2, approximation (24) is presented as a blue dash-dotted curve. For Pr > 3, the function
(δθ/δu)Pr 1/3 almost coincides with the constant E .

3.3. Approximation of δθ/δu in the crossover range 3 × 10−4 6 Pr 6 3

As can be seen in figure 2, approximation (22) well represents δθ/δu in the regionPr < 3 × 10−4,
while (25) is a good approximation of δθ/δu for Pr > 3. An approximation of the ratio between
the thermal and kinetic BL thicknesses in the transition region 3 × 10−4 6 Pr 6 3 is obtained by
applying a least square fit to the numerical solutions of the Prandtl–Blasius equations (4)–(7).
One finds

δθ

δu
≈ Pr−0.357+0.022 logPr , 3 × 10−4 6 Pr 6 3. (26)

As seen in figure 2, this relation is a good fit of the full solution in the transition regime.

3.4. Summary

For the ratio δθ/δu of the thicknesses of the thermal and kinetic BLs, which depends strongly
(and only) on Pr , we find, according to (22), (25) and (26),

δθ

δu
=


A
√

πPr−1/2, A ≈ 0.332, Pr < 3 × 10−4,

Pr−0.357+0.022 logPr , 3 × 10−4 6 Pr 6 3,

E Pr−1/3, E ≈ 0.982, Pr > 3.

(27)

The crossover Prandtl number Pr∗ between the asymptotic behaviours, cf the first and the last
line of (27), is defined as the intersection point Pr∗

= 0.046 of the asymptotic approximations.
Note that this crossover between the small-Pr behaviour δθ/δu ∝ Pr−1/2 and the large-Pr
behaviour δθ/δu ∝ Pr−1/3 does not happen at a Prandtl number of order 1, but at the more than 20
times smaller value Pr∗

= 0.046. In this sense, most experiments are conducted in the large Pr
regime. However, also note that other definitions of the BL thicknesses lead to other crossover
Prandtl numbers.
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Figure 3. Profiles of ε ′′

u (29) (black), and the rms velocity fluctuations for the
azimuthal velocity component uφ (green) for (a) Ra = 108 and Pr = 6.4 and
(b) Ra = 2 × 109 and Pr = 0.7. The profiles have been normalized with the
respective maxima for clarity. The vertical black lines indicate the velocity BL
thickness based on (28). The red dashed and solid lines indicate the heights
at which the quantity ε ′′

u (29) has a maximum and two times this height,
respectively. The vertical green line indicates the position of the maximum rms
velocity fluctuations.

Finally, we also give the thickness of the kinetic BL in the three regimes, as obtained
from (27) and (13), namely

δu =


0.5Nu−1Pr 1/2 A−1π−1/2 H, Pr < 3 × 10−4,

0.5Nu−1Pr 0.357−0.022 logPr H, 3 × 10−4 6 Pr 6 3,

0.5Nu−1Pr 1/3 E−1 H, Pr > 3.

(28)

We compare this Prandtl–Blasius result (28) for the kinetic BL thickness in terms of Nu
and Pr (thus valid if the heat transport is BL dominated) with the estimate given in [21], where
the kinetic BL thickness in a cylindrical cell is identified as two times that height at which the
averaged quantity

ε ′′

u := 〈u · ∇
2u〉t,φ,r (29)

has a maximum, because it was empirically found that the maximum of ε ′′

u is approximately in
the middle of the velocity BL. Here, u is the velocity field and the averaging is over time t , the
azimuthal direction φ, and over the radial direction 0.1R < r < 0.9R, with R being the radius of
the cylindrical convective cell. The restricted range for the radial direction has been used in order
to exclude the singularity region close to the cylinder axis and the region close to the sidewall,
where the definition misrepresents the kinetic BL thickness. Figure 3 shows that there is very
good agreement between the theoretical Prandtl–Blasius slope BL thickness and that obtained
using (29). The figure also shows that the position of the maximum rms velocity fluctuations is
not a good indicator of the velocity BL edge; it rather seems to identify the position where the
LSC is the strongest.
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4. Resolution requirements within the BLs in DNS

We now come to the main point of the paper: what can we learn from the Prandtl–Blasius theory
for the required mesh resolution in the BLs of DNS of turbulent RB convection? Obviously,
a ‘proper’ mesh resolution should be used in order to obtain accurate results. In a perfect
DNS the local mesh size should be smaller than the local Kolmogorov ηK(x, t) and Batche-
lor ηB(x, t) scales (see, e.g., [30]), and the resolution in the BLs should be also sufficient (see,
e.g., [16, 21, 25, 31, 32]). It indeed has been well established that the Nusselt number is very
sensitive to the grid resolution used in the BLs; when DNS is underresolved, the measured Nus-
selt number is too high [16, 21, 31], [33]–[36]. Hitherto, the standard way to empirically check
whether the mesh resolution is sufficient is to try a finer mesh and to make sure that the Nusselt
number is not too different. In this way, the minimal number of grid points that is needed in the
BL is obtained by trial and error: Grötzbach [31] varied the number of grid points in the BL be-
tween 1 and 5 in simulations up toRa = 3 × 105 with Pr = 0.71 and found that three grid points
in the BLs should be sufficient. Verzicco and Camussi [33] tested this at Ra = 2 × 107 and
Pr = 0.7, and stated that at least five points should be placed in the BLs. Stevens et al [21] tested
the grid resolution for Ra = 2 × 106–2 × 1011 and Pr = 0.7. They found that for Ra = 2 × 109

the minimum number of nodes in the BLs should be about 10 and that this number increases for
increasing Ra. Together with the earlier series of papers, the data clearly suggest that indeed
there is an increase in required grid points in the BL with increasing Rayleigh number.

However, one must be careful. The empirical determination of the required number of
grid points in the BL is not only intensive in computational cost but also difficult. The Nusselt
number obtained in the simulations not only depends on the grid resolution in the BLs at
the top and bottom plates, but also on the grid resolution in the bulk and at the side walls
where the thermal plumes pass along [21]. So, obviously, a general theory-based criterion for
the required grid resolution in the thermal and kinematic BLs will be helpful for performing
future simulations. In this section, we will derive such a universal criterion, harvesting the above
results from the Prandtl–Blasius BL theory.

We first define the (local) kinetic energy dissipation rates per mass:

εu(x, t) ≡
ν

2

∑
i

∑
j

(
∂ui(x, t)

∂x j
+

∂u j(x, t)

∂xi

)2

. (30)

Its time and space average for incompressible flow with zero velocity b.c. is 〈εu〉t,V =

ν
∑

i

∑
j〈(

∂ui (x,t)
∂x j

)2
〉t,V . It is connected with the Nusselt number through the exact relation

〈εu〉t,V =
ν3

H 4
(Nu − 1)RaPr−2. (31)

This follows directly from the momentum equation for RB convection in Boussinesq
approximation [37]. Here, 〈·〉t,V denotes averaging over the whole volume of the convective
cell and over time and (later) 〈·〉t,A denotes averaging over any horizontal plane and time.

We start with the well-established criterion that in a perfect DNS simulation the (local)
mesh size must not be larger than the (local) Kolmogorov scale [38] ηK(x, t), which is locally
defined with the energy dissipation rate of the velocity:

ηK(x, t) =
(
ν3/εu(x, t)

)1/4
. (32)

ηK is the length scale at which the inertial term ∼ u2
r /r and the viscous term ∼νur/r 2 of

the Navier–Stokes equation balance, where ur ∼(εur)1/3 has been assumed for the velocity
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difference at scale r . A corresponding length scale ηT follows from the balance of the advection
term ∼ur Tr/r and the thermal diffusion term κTr/r 2 in the advection equation; it is

ηT(x, t) =
(
κ3/εu(x, t)

)1/4
= ηK(x, t)Pr−3/4. (33)

However, for large Pr , the velocity field is smooth at those scales at which the temperature field
is still fluctuating. Then the velocity difference ur ∼

√
εu/νr and the advection term and the

thermal diffusion term balance at the so-called Batchelor scale [39] ηB, which is defined as

ηB(x, t) =
(
νκ2/εu(x, t)

)1/4
= ηK(x, t)Pr−1/2. (34)

For small Pr < 1, obviously ηT > ηB > ηK, and for comparison with the grid resolution, the
Kolmogorov scale ηK seems to be the most restrictive (i.e. smallest) length scale. In contrast,
for large Pr > 1, ηT < ηB < ηK, and one may argue that ηT is the most restrictive length scale.
This indeed may be the case in the Prandtl number regime in which the velocity field can still
be described through Kolmogorov scaling ur ∼ (εur)1/3, but for even larger Pr the velocity field
becomes smooth ur ∼

√
εu/ν r and then the grid resolution should be compared to the Batchelor

scale ηB as the smallest relevant length scale. In the analysis below, for Pr > 1 we will restrict
ourselves to this limiting case.

We now define the global Kolmogorov and Batchelor length scales η
global
K ≡

ν3/4

〈εu〉
1/4
t,V

and η
global
B ≡

ν1/4κ1/2

〈εu〉
1/4
t,V

, respectively. Using the exact relation (31), one can find how the global

Kolmogorov length η
global
K depends on Ra, Pr and Nu, namely

η
global
K ≡

ν3/4

〈εu〉
1/4
t,V

=
Pr 1/2

Ra1/4(Nu − 1)1/4
H. (35)

The admissible global mesh size hglobal should clearly be smaller than both η
global
K and η

global
B ,

which implies that one is on the safe side provided that

hglobal 6
Pr 1/2

Ra1/4(Nu − 1)1/4
H for Pr 6 1 (36)

or with relation (34) between the Kolmogorov and Batchelor length:

hglobal 6
1

Ra1/4(Nu − 1)1/4
H for Pr > 1. (37)

A similar way to estimate mesh requirements in the bulk was suggested for the first time by
Grötzbach [31]. Note that, with these estimates for the required bulk resolution for most times
and locations, one is on the safe side, as equation (31) is an estimate for the volume averaged
energy dissipation rate, which is localized in the BLs. However, not only the background field
but also plumes detaching from the BLs do require an adequate resolution.

To estimate the number of nodes that should be placed in the BLs, we will first estimate
the area averaged energy dissipation rate in a horizontal plane in the velocity BL, 〈εu〉t,A∈BL.
Employing equations (17), (14) and (30), one can find a lower bound for this quantity, namely

〈εu〉t,A∈BL > ν

〈(
∂ux

∂z

)2
〉

t,A

> ν

(〈
∂ux

∂z

〉
t,A

)2

≈ ν

(
U

δu

)2

= ν

(
νRe

H

Re1/2

aH

)2

=
ν3Re3

a2 H 4
. (38)
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From equations (31), (38), (18) and (27), it follows a lower bound for the ratio:

〈εu〉t,A∈BL

〈εu〉t,V
>
Pr 2Re3

a2RaNu
= 64a4Nu5Pr 2

Ra

(
δθ

δu

)6

=


64π3a4 A6Nu5Pr−1Ra−1, Pr < 3 × 10−4,

64a4Nu5Pr−0.15+0.132 logPrRa−1, 3 × 10−4 6 Pr 6 3,

64a4 E6Nu5Ra−1, Pr > 3.

(39)

For the Kolmogorov length ηBL
K in the velocity BL, one can therefore write

ηBL
K ≡

〈(
ν3

εu

)1/4
〉

t,A∈BL

≈

(
〈εu〉t,V

〈εu〉t,A∈BL

)1/4

η
global
K . (40)

The mesh size hBL in the BL must be smaller than ηBL
K and ηBL

B , i.e. one is on the safe side if

hBL .


2−3/2a−1Nu−3/2Pr 3/4 A−3/2π−3/4 H, Pr < 3 × 10−4,

2−3/2a−1Nu−3/2Pr 0.5355−0.033 logPr H, 3 × 10−4 6 Pr 6 1,

2−3/2a−1Nu−3/2Pr 0.0355−0.033 logPr H, 1 < Pr 6 3,

2−3/2a−1 E−3/2Nu−3/2 H, Pr > 3,

(41)

according to (39), (40), (36) and (37).
From relations (41), (27) and (13), one can estimate the minimum number of nodes of the

computational mesh which must be placed in each thermal and kinetic BL close to the plates.
We find that this minimum number of nodes in the thermal BLs is

Nth.BL ≡
δθ

hBL

&



√
2aNu1/2Pr−3/4 A3/2π 3/4, Pr < 3 × 10−4,

√
2aNu1/2Pr−0.5355+0.033 logPr , 3 × 10−4 6 Pr 6 1,

√
2aNu1/2Pr−0.0355+0.033 logPr , 1 < Pr 6 3,

√
2aNu1/2 E3/2, Pr > 3,

(42)

while the minimum number of nodes in the kinetic BLs is

Nv.BL ≡
δu

hBL
=

δu

δθ

δθ

hBL

&



√
2aNu1/2Pr−1/4 A1/2π 1/4, Pr < 3 × 10−4,

√
2aNu1/2Pr−0.1785+0.011 logPr , 3 × 10−4 6 Pr 6 1,

√
2aNu1/2Pr 0.3215+0.011 logPr , 1 < Pr 6 3,

√
2aNu1/2Pr 1/3 E1/2, Pr > 3.

(43)
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Figure 4. Minimum number of BL nodes necessary in DNS of BL domi-
nated, moderately high RB convection. (a) Nth.BL (42) in the thermal BLs and
(b) Nv.BL (43) in the kinetic BLs, required to simulate the experimentally inves-
tigated cases, [40] (lilac squares, Pr = 0.67), [41] (black triangles, 0.606 Pr 6
7.00), [42] (blue circles, 0.686 Pr 6 5.92), [43] (green triangles, 0.736 Pr 6
6.00), [44] (red pentagons, 3.766 Pr 6 5.54), [45] (black crosses, Pr = 4.2)
and [46] (black pluses, Pr = 7.0). Dashed lines are fits to the quasi-data
(measured values introduced into equations (42) and (43)), with preci-
sion O(10−4); rounding the respective numbers to their upper bounds gives
(a) Nth.BL ≈ 0.35Ra0.15 (44) and (b) Nv.BL ≈ 0.31Ra0.15 (45) for the quasi-data
in the ranges 106 6Ra 6 1010 and 0.676 Pr 6 0.73.

The number of nodes in the thermal BL looks very restrictive for very low Pr . However, one
should realize that for very low Pr the thermal BL also becomes much thicker than the velocity
BL. Hence, the criterion for the number of nodes in the thermal BLs determines the ideal
distribution of nodes above the viscous BL. For very high Pr the kinetic BL becomes much
thicker than the thermal BL and hence the restriction for the velocity BL determines the ideal
distribution of nodes above the thermal BL. Note that for large Pr , equation (42) suggests that
the number of grid points in the thermal BL becomes independent of Pr (for fixed Nu). Indeed,
as the velocity field is smooth anyhow, with increasing Pr no extra grid points are necessary in
the thermal BL.

In figure 4, we show the minimum number of nodes Nth.BL and Nv.BL, respectively,
necessary to simulate the cases that have been investigated experimentally so far, for different
Ra and Pr . The data points are generated by introducing the experimental values ofRa and Pr
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and the (measured) corresponding Nu into formulae (42) and (43). Based on these quasi-data
points, one can give, e.g., the following fits for the minimum number of nodes within the BLs
for the case of Pr ≈ 0.7:

Nth.BL ≈ 0.35Ra0.15, 106 6Ra 6 1010, (44)

Nv.BL ≈ 0.31Ra0.15, 106 6Ra 6 1010. (45)

Note that the numerical pre-factors in these estimates significantly depend on the Prandtl
number and on the empirically determined [5] value of a (cf equation (15)). The minimum
number of nodes for other values of Pr can be calculated directly using relations (42) and (43).
Apparently, the scaling exponent depends much less on Pr . All these estimates only give lower
bounds on the required number of nodes in the BLs.

As discussed at the beginning of this section, previous studies by Grötzbach [31], Verzicco
and Camussi [33] and Stevens et al [21] found an increasing number of nodes that should be
placed in the thermal and kinetic BLs. The theoretical results thus confirm all the above studies,
because the increasing number of nodes was due to the increasingRa number at which the tests
were performed. To be more specific, according to the estimates (44) and (45) for Pr = 0.7,
the minimum number of nodes that should be placed in the thermal and kinetic BLs is N ≈ 2.3
for Ra = 3 × 105, N ≈ 4.4 for Ra = 2 × 107 and N ≈ 8.7 for Ra = 2 × 109. The empirically
found values at the respectiveRa with Pr ≈ 0.7 are 3 forRa = 3 × 105, 5 forRa = 2 × 107 and
10 forRa = 2 × 109. Thus there is very good agreement between the theoretical results and the
empirically obtained values, especially if one considers the difficulties involved in determining
these values empirically, and the empirical value for the constant a (15) that is used in the
theoretical estimates. We want to emphasize that not only the BLs close to the plates, but also the
kinetic BLs close to the vertical walls, must be well resolved.

To sum up, the mesh resolution should be analysed a priori using the resolution
requirements in the bulk (36), (37) and in the BLs (42), (43). Having conducted the DNS,
the Kolmogorov and Batchelor scale should be checked a posteriori, to make sure that the mesh
size was indeed small enough (as it has been done, for example, in [19, 20]).

5. Conclusion

In summary, we used the laminar Prandtl–Blasius BL theory to determine the relative thick-
nesses of the thermal and kinetic BLs as functions of Pr (27).

We found that neither the position of the maximum rms velocity fluctuations nor the
position of the horizontal velocity maximum reflects the slope velocity BL thickness, although
many studies use these as criteria to determine the BL thickness. In contrast to them, the
algorithm by Stevens et al [21] agrees very well with the theoretical estimate of the kinetic
slope BL thickness.

We used the results obtained from the Prandtl–Blasius BL theory to derive a lower bound
on the minimum number of nodes that should be placed in the thermal and kinetic BLs close to
the plates. We found that this minimum number of nodes increases no slower than ∼Ra0.15 with
increasingRa. This result is in excellent agreement with results from several numerical studies
over recent decades, in which this minimum number of nodes was determined empirically.
Hence, the derived estimates can be used as a guideline for future DNS.
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