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Abstract

We analyze the behavior of solutions of steady advection-diffusion prob-
lems in bounded domains with prescribed Dirichlet data when the Péclet
number Pe � 1 is large. We show that the solution converges to a
constant in each flow cell outside a boundary layer of width O(ε1/2),
ε = Pe−1 around the flow separatrices. We construct an ε-dependent
approximate “water-pipe problem” purely inside the boundary layer that
provides a good approximation of the solution of the full problem but
has ε-independent computational cost. We also define an asymptotic
problem on the graph of streamline separatirces, and show that solution
of the water-pipe problem itself may be approximated by an asymp-
totic, ε-independent problem on this graph. Finally, we show that the
Dirichlet-to-Neumann map of the water-pipe problem approximates the
Dirichlet-to-Neumann map of the separatrix problem with an error in-
dependent of the flow outside the boundary layers.
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1 Introduction

1.1 The advection-diffusion problem

We consider the steady advection-diffusion problem

(1.1) ε∆φε − u · ∇φε = 0

in a simply connected bounded domain Ω ⊂ R
2. The flow u is incompress-

ible: ∇ · u = 0, and non-penetrating through the boundary of Ω: u · n = 0
at ∂Ω (see Figure 1.1). The small parameter ε = Pe−1 � 1 is the inverse
of the Péclet number, where Pe = fracLUν with L a legth scale typical
of the size of the domain, U a velocity scale characteristic of u and ν the
diffusivity. Equation (1.1) is supplemented with Dirichlet boundary data:

(1.2) φε(x) = T0(x), x ∈ ∂Ω.

The problem of the qualitative behavior of solutions of (1.1)-(1.2) has
been studied in various areas where passive scalar advection arises, such
as oceanography, meteorology and elsewhere. One of the most interesting
effects is the non-trivial coupling of diffusion and strong advection at high
Péclet number. Numerical and physical evidence [4, 16, 17, 18] suggests the
following qualitative structure of the solution φε inside each flow cell. There
exists a boundary layer of the width O(

√
ε) along the separatrices between

different flow cells Cj . Outside this layer the solution is approximately equal
to a constant Kj in each cell Cj (see Figure 1.2 for a sample numerical
solution). The total dissipation rate is small asymptotically, with scaling

ε

∫

Ω
|∇φε(x)|2dx ∼ O(ε1/2).

The large Péclet number advection-diffusion problem arises also for the
effective diffusivity in the periodic homogenization of cellular flows. The
effective diffusivity in homogenization of cellular flows is given by [2, 5]

Dε
ij = ε

∫

Ω
∇χε

i (x) · ∇χε
j(x)dx

where χε(x) is the mean-zero periodic solution of the cell problem

ε∆χε
j + u · ∇χε

j = uj .

This cell problem may be reduced to (1.1) with appropriate boundary con-
ditions by representing χj = xj + φj . Most of the mathematical studies
[5, 6, 10, 11] of the advection-diffusion problem have been devoted to the
problem of bounds on the effective diffusivity as ε− > 0. In the presence of
additional symmetries the tensor Dε

ij = Dεδij . Using boundary layer analy-
sis, Childress [4], and later [16, 17, 18], showed that the effective diffusivity
scales as

(1.3) Dε ∼ D∗√ε,
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Ω

Cj

Figure 1.1. The domain Ω is partitioned by flow separatrices into
cells Cj .

in the special case of symmetric square cells. This asymptotic behavior was
also obtained in [5, 6] using optimal bounds from variational principles. It
has been recently extended to general non-square periodic cells in [11] using
probabilistic techniques that have their origin in [8]. Furthermore, uniform
bounds of the type

(1.4) C1

√
ε ≤ Dε ≤ C2

√
ε,

for the effective diffusivity in the periodic case have been proved in [10],
generalizing the asymptotic result of [5] to finite ε > 0.

We recall that the case when the flow has no separatrices has been consid-
ered previously in [7, 8] including the effect of flows on the reaction-diffusion
equations. The general problem (1.1)-(1.2) has been recenty analyzed in [1]
in the context of the possibility of passive scalar energy cascade in a tur-
bulent flow. In particular, the upper bound in (1.4) has been shown to be
hold.

1.2 Outline of the paper

The purpose of this paper is to consider the general problem (1.1) with a
large but finite Péclet number and to establish rigorously and quantitatively
the above mentioned properties of the solution of the advection-diffusion
problem for a small but finite ε < 1, without any assumptions of periodicity
or symmetry for the flow. The main objective is to show that the oscillation
of the solution inside each cell at distances larger than O(

√
ε) from the

separatrices is small, and that close to separatrices the solution may be
approximated by an asymptotic problem on the graph of the separatrices.

We first prove the upper bound on the dissipation rate, as in the second
bound in (1.4), in the general case. The proof uses a slight modification
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Figure 1.2. The temperature distribution for periodic cellular
flows computed in MATLAB. u = ∇⊥H, H = sin(πx) sin(πy);
four cells, Pe = 20.

of the technique of [10]. Next, we establish convergence of the solution to
a constant Kε

j inside each cell Cj at a distance N
√
ε from the separatrices

and obtain bounds on the rate of convergence as N → ∞. The proof of this
fact uses some of the ideas of integration and averaging along streamlines
developed in [12] for getting bounds on the speed of a reaction-diffusion front
in a cellular flow. The fact that solution is nearly constant at a distance
O(

√
ε) away from the boundary, when the boundary data is non-constant,

implies the lower bound on the dissipation rate in (1.4).

These results do not, however, allow us to conclude that the interior
constants in each cell have a limit as ε → 0. This requires an additional
asymptotic analysis in the boundary layers. As a first step in this direction,
we show that the full problem (1.1) may be restricted to an ε-dependent
”water-pipe” problem inside a boundary layer of width N

√
ε around the

separatrices with an error decreasing as N → ∞. The ”water-pipe” problem
has a computational cost independent of ε � 1 and provides an effective
numerical tool to solve the problem at a high Péclet number.

The solution of the water-pipe problem itself is then shown to be well
approximated by yet another asymptotic ε-independent problem. The latter
is a many-cell generalization of a single cell problem introduced by Childress
in [4], in the periodic case, and is closely related to the limit Markov chain
constructed in the periodic case in [11]. In particular this allows us to show
that the interior constants Kε

j have a limit as ε → 0 and we identify this
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limit in terms of the solution of the extended Childress problem. It also
allows us to show that for any given boundary data T0(x) that is different
from a constant, and any cellular flow u, there exists a positive finite limit
of the scaled dissipation rate

√
ε

∫

Ω
|∇φε(x)|2dx → D∗ > 0,

as ε → 0. Finally, by means of variational principles similar to those in
[3, 5, 6, 13, 14] we show that for any ε the dissipation rate can be determined
from the solution of the water-pipe problem with an error independent of
the flow away from the separatrices.

We note that all our results are directly applicable if homogeneous Neu-
mann boundary conditions are prescribed on a part of the boundary, while
non-uniform Dirichlet boundary conditions are prescribed on the rest of ∂Ω.
The generalization to that case is straightforward.

1.3 The main results

We recall that the flow u is assumed to be incompressible, thus a stream
function H(x, y) exists so that u = ∇⊥H = (Hy,−Hx). Furthermore, since
we assume that the normal component of u at the boundary ∂Ω vanishes,
∂Ω has to be contained in a level set of H: ∂Ω ⊆ {H = H0}. Therefore,
either Ω is bounded by a closed streamline of the flow u or by a collection of
separatrices of u that connect a finite number of singular points of H lying
on the level set {H = H0}. The latter case is of most interest to us. We will
assume without loss of generality that the critical value H0 = 0 and that all
the critical points of H are non-degenerate. Then, the set Ω is a union of a
finite number of flow cells Cj bounded by separatrices of u, as in Figure 1.1.
We will also assume throughout the paper that the boundary data

T0(x) 6= const, x ∈ ∂Ω

is sufficiently smooth but is not constant, to avoid the trivial case of the
dentically constant solution. The streamlines of the flow (level sets of the
stream function) are assumed to be sufficiently regular.

The main results of this paper address three issues: bounds on the dis-
sipation rate, convergence to constants inside each cell, and approximation
of the solution by an asymptotic problem on the separatrix graph, and by
the ε-dependent problem inside the “water-pipe system” of boundary lay-
ers. We summarize them below although not in the order they appear in the
main body of the paper. The asymptotic problem on the graph is somewhat
lengthy to describe so we do not present the main result in this section. This
is done in Theorem 6.1 in Section 6. However, we do mention some of the
corollaries of this result below.
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Bounds for the dissipation rate

Our first result provides general bounds on the dissipation rate.

Theorem 1.1. Let us assume that ∂Ω is a piecewise smooth curve and the
boundary data T0 in (1.2) is sufficiently smooth. Then there exists a constant
C > 0 so that

(1.5)
1

C
√
ε
≤
∫

Ω
|∇φ(x)|2dx ≤ C√

ε
.

Moreover, for any given boundary data T0(x) 6= const and flow u there exists
a positive finite limit

(1.6) lim
ε→0

Dε(T0)/
√
ε = D∗(T0) > 0,

where the dissipation rate Dε(T0) = ε

∫

Ω
|∇φε(x)|2dx.

Here and below we denote by C various constants C = C(u, T0,Ω) that
may depend on the geometry of the streamlines of u, various norms of the
boundary data T0 and the domain Ω but nothing else, unless explicitly
specified. In particular they are independent of the Péclet number. The
proofs of various statements in Theorem 1.1 are closely related to other
results in the paper. The proof of the upper bound above is self-contained. It
is proved after Theorem 2.1 in Section 2. The lower bound on the dissipation
rate, on the other hand, is a corollary of the fact that solution converges to
a constant inside each cell. Hence, the proof of the lower bound in (1.5) is
presented only after the latter claim is proved, in Proposition 3.3 in Section
3. Finally, existence of the limit (1.6) is shown only after the asymptotic
boundary layer theory is developed. This statement is proved in Theorem
7.1.

Convergence to a constant inside flow cells

Convergence of the solution to a constant inside is quantified as follows.
Let D(h) = {x : |H(x)| ≥ h}, h > 0 be a domain strictly inside the flow
cells, at distance O(h) away from the separatrices.

Theorem 1.2. There exist constants Kε
j so that inside each cell Cj

(1.7) sup
x∈D(N

√
ε)

∣

∣

∣φε(x) −Kε
j

∣

∣

∣ ≤ C

N3/2
.

Moreover, the constants Kε
j converge as ε→ 0 to certain constants Kj.

The proof of the first part of this theorem is contained in Section 3 in
Theorem 3.1. Convergence of Kε

j to their limit values and identification of
the limit follow from the approximation of φε by the solution of the Childress
problem: see Theorem 6.1 in Section 6.
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Approximation by the water-pipe problem

Before we introduce the asymptotic Childress problem we consider an
intermediate approximation of the full advection-diffusion problem by an
ε-dependent “water-pipe” problem in the system of boundary layers around
the separatrices. The water-pipe problem consists of the advection-diffusion
equation (1.1) in the narrow domain

Ωε
N = Ω\D(N

√
ε) = {x ∈ Ω : |H(x)| ≤ N

√
ε}

around the separatrices with the Dirichlet boundary conditions (1.2) on
the outer boundary ∂Ω and Neumann boundary conditions on the level set
L(N

√
ε) = {x ∈ Ω : |H(x)| = N

√
ε} This problem has a computational

cost independent of ε. We show that its solution φε
N is close to φε. Denote

by χ(s) a smooth even function, monotonic on s ≥ 0, so that

χ(s) =

{

1, |s| ≤ 1/2,
0, |s| ≥ 1.

The following result describes the L∞-approximation of the solution of the
full problem by the solution of the water-pipe problem.

Theorem 1.3. Let φε solve (1.1) and let φε
N be the solution of the water-pipe

problem. Then there exist constants K̃ε
m,N so that φε

N satisfies

(1.8) |φε
N (x) − K̃ε

m,N | ≤ C

N3/2
, x ∈ Lj(N

√
ε) = L(N

√
ε) ∩ Cm.

Let φ̃ε
N be an extension φε

N to the whole domain Ω as

φ̃ε
N (x) = χ

(

H(x)

N
√
ε

)

φε
N (x) + K̃ε

m,N

(

1 − χ

(

H(x)

N
√
ε

))

, x ∈ Cm.

with the constants K̃ε
m,N defined above. Then we have

(1.9) ‖φε − φ̃ε
N‖L∞(Ω) ≤

C

N3/2
, |Kε

m − K̃ε
m,N | ≤ C

N3/2
,

and

(1.10)
√
ε‖∇φε −∇φ̃ε

N‖2
L2(Ω) ≤

C

N4
.

Moreover, the constants converge to finite limits:

(1.11) lim
ε→0

K̃ε
m,N = Km,N , lim

N→∞
Km,N = Km

and

(1.12) lim
ε→0

K̃ε
m = Km,

with Km as in (1.11).
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The proofs of the convergence of the water-pipe solution to a constant
as in (1.8) and of the error bound (1.9) are contained in Section 4: see

Theorem 4.2 and Proposition 4.1. Convergence of the constants K̃ε
m,N , Kε

m

to the corresponding limits in (1.11) and (1.12) is shown in Theorem 6.1.

The next result describes the approximation of the dissipation rate by
the solution of the water-pipe problem.

Theorem 1.4. The dissipation rate of the solution of the water-pipe system
has a limit

(1.13) lim
ε→0

√
ε

∫

Ωε
N

|∇φε
N (x)|2dx = DN , lim

N→∞
DN = D∗

with D∗ as in (1.6). Moreover, the error

Errorε
N =

√
ε

∣

∣

∣

∣

∣

∫

Ωε
N

|∇φε
N (x)|2dx −

∫

Ω
|∇φε(x)|2dx

∣

∣

∣

∣

∣

≤ K(N)

is bounded by a constant K(N) that depends on the flow u in Ωε
N only and

such that K(N) → 0 as N → ∞.

The main observation of the second statement in Theorem 1.4 is that the
error made in the approximation of the total dissipation rate by the water-
pipe system is independent of the flow outside the boundary layer. This
theorem is proved in Section 7 in Theorems 7.1 and 7.2 using variational
methods.

The asymptotic Childress problem

Our final set of results concern the approximation of the solution of (1.1)-
(1.2) by the solution of the asymptotic Childress problem on the graph of
separatrices. As the formulation of the latter is rather lengthy we postpone
its detailed discussion and the precise statement of the corresponding result
until later, in Sections 5 and 6. Here we just mention that the Childress
probelm for one cell, as has been introduced in [4] and also in [5, 6], involves
finding a periodic solution for heat flow along the separatrices with the
coordinate along the streamlines playing the role of time. The multi-cell
version we consider here is a coupled system of one-cell problems, which
seeks an equilibrium of such coupled heat flows with a prescribed boundary
data.

We recall that

Dε(T0) =

∫

Ω
|∇φε|2dx =

∫

∂Ω
φε∂φ

ε

∂n
dn =

∫

∂Ω
T0
∂φε

∂n
dn

is nothing but the quadratic form of the Dirichlet-to-Neumann map

T0 → ∂φε

∂n

∣

∣

∣

∣

∂Ω
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of the advection-diffusion problem (1.1). We show that the limiting con-
stant D∗ in Theorem 1.1 is, in fact, the quadratic form of the Dirichlet-
to-Neumann map of the asymptotic Childress problem, evaluated on the
boundary data T0. Moreover, Theorem 6.1 shows that the asymptotic Chil-
dress solution approximates the full solution in the H1-norm as well.

The paper is organized as follows. The upper bound on the dissipation
rate is presented in Theorem 2.1 in Section 2. Section 3 contains the proof
of the corresponding lower bound in Proposition 3.3. Convergence of the
solution to a constant is proved first, in Theorem 3.1 in the same section. The
”water-pipe” boundary layer problem is introduced in Section 4, where we
also prove in Theorem 4.2 that the solution of this problem approximates the
solution of the full problem. The asymptotic Childress problem is introduced
and studied in Theorem 5.2 in Section 5. We show that the solution of
the Childress problem approximates the solution of the water-pipe model in
Theorem 6.1 in Section 6. We also show in this section that the values of the
constants inside each flow cell for the full problem converge to those given by
the asymptotic Childress problem. Finally, the variational principles for the
total dissipation rate and estimates on the error in the effective diffusivity
of the water-pipe model are obtained in Section 7.

Acknowledgment. The work of G. Papanicolaou was supported by
grants AFOSR F49620-01-1-0465 and ONR N00014-02-1-0088. L. Ryzhik
was supported by NSF grant DMS-0203537, ONR grant N00014-02-1-0089
and an Alfred P. Sloan Fellowship. His research is also supported in part
by the ASCI Flash center at the University of Chicago under DOE contract
B341495.

2 A uniform upper bound on the dissipation rate

We prove in this section the uniform upper bound on the total dissipation
rate in the inequality (1.5) in Theorem 1.1. The proof is based on the
energy methods and uses the techniques of [10]. As a corollary we show in
proposition 2.2 that the boundary layer has to extend at least for a distance
O(

√
ε) inside the cells.

Theorem 2.1. Let us assume that ∂Ω is a piecewise smooth curve and T0

is sufficiently smooth. Let

M = sup
x∈Ω

sup
v∈S1

(

∂un

∂xm
vnvm

)

,

then there exists a constant C = C(M,T0,Ω) so that

(2.1)

∫

Ω
|∇φ(x)|2dx ≤ C√

ε
.
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Proof. We use a modification of the proof of an upper bound for the
effective diffusivity in [10]. Let ψε be a test function to be specified later.
We multiply (1.1) by the function qε = φε −ψε and obtain after integration
by parts:

ε

∫

∂Ω
qε∂φ

ε

∂n
dS − ε

∫

Ω
(∇φε −∇ψε) · ∇φεdx −

∫

Ω
(φε − ψε)u · ∇φεdx = 0.

Using incompressibility of the flow u we get

ε

∫

Ω
|∇φε|2dx ≤ ε

∫

∂Ω
qε∂φ

ε

∂n
dS + ε

∫

Ω
|∇ψε|2dx +

ε

4

∫

Ω
|∇φε|2dx(2.2)

+α

∫

Ω
|ψε|2dx +

1

α

∫

Ω
|u · ∇φε|2dx

with the constant α to be chosen. We now multiply (1.1) by u · ∇φε and
integrate to get

∫

Ω
|u · ∇φε|2dx = ε

∫

Ω
(u · ∇φε)∆φεdx

= ε

∫

∂Ω
(u · ∇φε)

∂φε

∂n
dS − ε

∫

Ω
∇(u · ∇φε) · ∇φεdx.

Once again using incompressibility of u and the definition of the constant
M we obtain from the above

∫

Ω
|u · ∇φε|2dx = ε

∫

∂Ω
(u · ∇φε)

∂φε

∂n
dS − 1

2
ε

∫

Ω
(u · ∇

(

|∇φε|2
)

)dx

−ε
∫

Ω

∂un

∂xm

∂φε

∂xm

∂φε

∂xn
dx ≤ ε

∫

∂Ω
(u · ∇φε)

∂φε

∂n
dS + εM

∫

Ω
|∇φε|2dx.(2.3)

We insert (2.3) into (2.2) to get

ε

∫

Ω
|∇φε|2dx ≤ ε

∫

∂Ω
qε∂φ

ε

∂n
dS + ε

∫

Ω
|∇ψε|2dx +

ε

4

∫

Ω
|∇φε|2dx

+α

∫

Ω
|ψε|2dx +

ε

α

(∫

∂Ω
(u · ∇φε)

∂φε

∂n
dS +M

∫

Ω
|∇φε|2dx

)

.

With the choice α = 4M the above becomes

ε

2

∫

Ω
|∇φε|2dx ≤ ε

∫

∂Ω

[

qε +
1

4M
(u · ∇φε)

]

∂φε

∂n
dS

+ε

∫

Ω
|∇ψε|2dx + 4M

∫

Ω
|ψε|2dx.

It remains to require that qε +
1

4M
(u · ∇φε) = 0 on the boundary ∂Ω.

However, ∂Ω is a streamline of u so that u · ∇φε = u · ∇T0 is a given
function. That imposes a boundary condition on the function ψε:

(2.4) ψε |∂Ω(x) = T0(x) +
1

4M
(u · ∇T0(x)).
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Then, provided that (2.4) holds we obtain

(2.5)
ε

2

∫

Ω
|∇φε|2dx ≤ ε

∫

Ω
|∇ψε|2dx + 4M

∫

Ω
|ψε|2dx.

We may choose a function ψε so that it satisfies the boundary conditions
(2.4), vanishes identically at distances larger that

√
ε away from ∂Ω and

satisfies the uniform bounds ‖ψε‖L∞(Ω) ≤ C, ‖∇ψε‖L∞(Ω) ≤ C/
√
ε. Using

such a test function in (2.5) we obtain the upper bound (2.1). �

Theorem 2.1 implies that the boundary layer along the boundary ∂Ω
has to extend to the distance at least of the order of O(

√
ε). This is made

precise in Proposition 2.2: oscillations of φε have to be present at such
distances from the boundary – we will later see that this is actually the
correct boundary layer scale.

In order to make this precise we let C0 be a flow cell adjacent to the
boundary such that T0 is not constant along l0 = ∂C0 ∩ ∂Ω. Such a cell
exists as T0 is continuous and non-constant on ∂Ω. We let l̃0 be a part of l0
that is separated away from the end-points of l0 and such that T0(x) is not

constant on l̃0. We may then introduce the following orthogonal system of
coordinates in a neighborhood of l̃0. The coordinate H(x, y) is “the label
of the streamline”. The coordinate θ orthogonal to H is normalized so that
|∇θ| = |∇H| on l̃0 and l̃0 may be represented as

(2.6) l̃0 = {H = 0, θ1 ≤ θ ≤ θ2}.
We may consider a sufficiently small tubular neighborhood U0 = {|H| ≤
H0, θ1 ≤ θ ≤ θ2} of l̃0 so as to have |∇H|, |∇θ| ≥ C > 0.

Proposition 2.2. Let C0 be a flow cell as above adjacent to the boundary
and L0(γ) = {(x, y) ∈ C0 : H(x, y) = γ

√
ε} be the level set of H(x, y) inside

the cell C0. Then there exists a constant C > 0 so that we have an inequality

(2.7)

∫ θ2

θ1

|φε(γ
√
ε, θ) − φ̄ε(γ

√
ε)|2dθ ≥

∫ θ2

θ1

(T0(θ) − T̄0)
2dθ − Cγ

for all γ < H0/
√
ε and with θ1.2 as in(2.6). Here

φ̄ε(ρ) = (θ2 − θ1)
−1
∫ θ2

θ1

φε(ρ, θ)dθ

is the average of φε over the corresponding part of the streamline and

T̄0 = (θ2 − θ1)
−1
∫ θ2

θ1

T0(θ)dθ

is the average of T0 along l̃0.

Proof. We have a simple bound

|φε(0, θ) − φε(γ
√
ε, θ)|2 ≤ γ

√
ε

∫ γ
√

ε

0

∣

∣

∣

∣

∂φε

∂H
(H, θ)

∣

∣

∣

∣

2

dH.
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Integrating the above in θ and using the boundary data for φε we obtain

(2.8)

∫ θ2

θ1

|T0(θ) − φε(γ
√
ε, θ)|2dθ ≤ γ

√
ε

∫ θ2

θ1

∫ γ
√

ε

0

∣

∣

∣

∣

∂φε

∂H
(H, θ)

∣

∣

∣

∣

2

dHdθ.

The Jacobian

(2.9) J = D(H, θ)/D(x, y)

is uniformly bounded from above and below away from zero in U0. Hence
we may re-write the right side as an integral over Uγ = {|H| ≤ γ

√
ε, θ1 ≤

θ ≤ θ2}:
∫ θ2

θ1

∫ γ
√

ε

0

∣

∣

∣

∣

∂φε

∂H
(H, θ)

∣

∣

∣

∣

2

dHdθ ≤ C

∫

Uγ

|∇φ(x)|2dx.

Using Theorem 2.1 and (2.8) we obtain

(2.10)

∫ θ2

θ1

|T0(θ) − φε(γ
√
ε, θ)|2dθ ≤ Cγ

√
ε

∫

Uγ

|∇φ(x, y)|2dxdy ≤ Cγ.

Therefore we have for any constant a ∈ R:

θ2
∫

θ1

|φε(γ
√
ε, θ) − a|2dθ ≥

θ2
∫

θ1

|T0(θ) − a|2dθ −
θ2
∫

θ1

|T0(θ) − φε(γ
√
ε, θ)|2dθ

≥
∫ θ2

θ1

|T0(θ) − T̄0|2dθ − Cγ

so that (2.7) follows. �

3 Convergence to constants inside the cells

3.1 The main results

In this section we obtain the lower bound of the inequality (1.5) in Theo-
rem 1.1 and prove the first statement in Theorem 1.2: we show that solution
of (1.1)-(1.2) is close to a constant ( that may depend on the Péclet number)
inside each cell of the flow when ε is small.

As before, we denote by Lj(γ) = {(x, y : H(x, y) = γ} the level set of
H(x, y) inside a cell Cj . We will usually omit the subscript j to simplify
the notation as long as we consider one cell and this does not cause any
confusion. We denote by Dj(γ) the region bounded by Lj(γ) inside each cell
and by Dj(α, β) = Dj(β)\Dj(α) the annulus between two level sets. The
main result of this Section is the following theorem.

Theorem 3.1. There exist constants Kε
j so that we have inside each cell Cj

(3.1) sup
x∈D(N

√
ε)

∣

∣

∣φε(x) −Kε
j

∣

∣

∣ ≤ C

N3/2
.
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This shows that the function φε is close to a constant inside each cell Cj .
An integral measure of the same phenomenon is provided by the following
theorem.

Theorem 3.2. We have an upper bound

(3.2)

∫

D(H)
|∇φε|2dx ≤ C

H

(

ε

H2

)3/8

for H ≥ √
ε.

Theorem 3.1 implies a lower bound on the L2-norm of the gradient of
solution in Theorem 1.1.

Theorem 3.3. There exists a constant C = C(T0,Ω, u) so that

(3.3)

∫

Ω
|∇φε(x)|2dx ≥ C√

ε
.

The proofs of Theorems 3.1-3.3 are organized as follows. The heart of
the matter is the proof of Theorem 3.1: to estimate the oscillation along
the individual streamlines of the flow at distance O(

√
ε) away from the

boundary. Theorems 3.2 and 3.3 are an easy consequence of this result. We
first explain how they follow from Theorem 3.1 and then go to the proof of
Theorem 3.1.

3.2 The lower bound on the dissipation rate: proof of Theo-

rem 3.3

We choose the boundary cell C0 as in the proof of Proposition 2.2 and
recall the first inequality in (2.10) (with the notation as in the same proof):

∫ θ2

θ1

|T0(θ) − φε(γ
√
ε, θ)|2dθ ≤ Cγ

√
ε

∫

Ω
|∇φ(x)|2dx.

The left side may be bounded from below by

∫ θ2

θ1

|T0(θ) − φε(γ
√
ε, θ)|2dθ

≥
∫ θ2

θ1

|T0(θ) −Kε
0 |2dθ −

∫ θ2

θ1

|Kε
0 − φε(γ

√
ε, θ)|2dθ

≥
∫ θ2

θ1

|T0(θ) − T̄0|2dθ − Cγ−3/4 ≥ C(1 − γ−3/4)

with the constant Kε
0 as in (3.1) in Theorem 3.1 for the cell C0. Combining

the last two inequalities and using γ > 1 we obtain (3.3). �
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3.3 The dissipation in the interior: proof of Theorem 3.2

Theorem 3.2 is proved as follows. Integrating (1.1) over D(H) we obtain
∫

D(H)
|∇φε|2dx =

∫

L(H)
φε∂φ

ε

∂n
ds.

Integrating this equation in H ∈ (H0, H0 + l) we get

(3.4)

∫ H0+l

H0

∫

D(H)
|∇φε|2dxdH =

∫ H0+l

H0

∫

L(H)
φε∂φ

ε

∂n
dsdH.

The left side of (3.4) is bounded below by
∫ H0+l

H0

∫

D(H)
|∇φε|2dxdH ≥ l

∫

D(H0+l)
|∇φε|2dx,

as D(H0 + l) ⊂ D(H) for H0 ≤ H ≤ H0 + l. The right side of (3.4) may be
estimated as
∣

∣

∣

∣

∣

∣

∣

∫ H0+l

H0

∫

L(h)

φε∂φ
ε

∂n
dsdh

∣

∣

∣

∣

∣

∣

∣

≤ C (M ε(H0) −mε(H0)) l
1/2







∫

D(H0)

|∇φε|2dx







1/2

.

We have introduced here M ε
j (α) = sup

x∈Lj(α)
φε(x), and mε

j(α) = inf
x∈Lj(α)

φε(x).

We denote F (H) =

∫

D(H)
|∇φε|2dx. Then the above estimates with

H0 = l = H imply that

HF (2H) ≤ C

(

ε

H2

)3/4

(HF (H))1/2.

That is, F̃ (H) = HF (H) satisfies F̃ (H) ≤ C for
√
ε ≤ H ≤ 2

√
ε and

F̃ (2H) ≤
(

ε

H2

)3/4

F̃ 1/2(H).

This implies that F̃ (H) ≤ C

(

ε

H2

)3/8

for H ≥ √
ε so that

∫

D(H)
|∇φε|2dx ≤ C

H

(

ε

H2

)3/8

which is (3.2). �

3.4 Oscillation along the streamlines: proof of Theorem 3.1

Theorem 3.1 is an immediate corollary of the maximum principle and the
following proposition.
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Proposition 3.4. Let φε(x) be solution of (1.1)-(1.2) and let M ε
j (α) =

sup
x∈Lj(α)

φε(x), and mε
j(α) = inf

x∈Lj(α)
φε(x). Then there exists a constant C >

0 so that

(3.5) M ε
j (α) −mε

j(α) ≤ C

(

ε

α2

)3/4

.

This proposition states the converse of Proposition 2.2: while the mean-
ing of the latter is that the width of the boundary layer is at least O(

√
ε),

the former shows that it is not larger than O(
√
ε), as the oscillation on the

level set H = N
√
ε is bounded by C/N3/2.

The proof of Proposition 3.4 is based on the following key lemma.

Lemma 3.5. (The level-set oscillation inequality) Let Lj(α) and Lj(β) be
two level sets of the stream function H(x) in a cell Cj with Dj(α) ⊂ Dj(β).
Then we have

(3.6) (Mε(α) −mε(α))|F (α, β)| ≤ ε

∫

Lj(α)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds+ ε

∫

Lj(β)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds,

where F (α, β) is the flux between two level sets
(3.7)

F (α, β) =

∫

γ
(u · n)ds, γ = γ(t), t ∈ [0, 1], γ(0) ∈ Lj(α), γ(1) ∈ Lj(β).

Here γ is any smooth curve that connects the level sets Lj(α) and Lj(β) and
does not intersect itself.

We will assume without loss of generality that F (α, β) ≥ 0. Note that
the flux between two level sets is independent of the choice of the curve γ
because of the incompressibility of the flow u.

The proof of Lemma 3.5

We now prove the level-set oscillation inequality (Lemma 3.5). As we
restrict our analysis to one cell we drop the subscript j in all the involved
quantities. The idea of the proof is to construct a set R bounded by a pair of
gradient curves of φε and parts of the streamlines L(α) and L(β) if possible.
The gradient curves would be chosen so that the difference in the values of
the function φε between these curves is at least as large as the oscillation
of φε along L(α). Integrating equation (1.1) over R we get then (3.6). The
main technicality is the construction of the set R: see Figures 3.1 and 3.2
below for a geometric depiction of R.

We turn now to the construction of R. Let us define the oscillation
function d(γ) = M ε(γ) − mε(γ). The maximum principle implies that if
the level set L(γ) is contained inside the region D(γ ′) bounded by the level
set C(γ′), then d(γ) < d(γ′). We denote by xm(α) and xM (α) the points
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where φε attains its minimum and maximum on the level set L(α): M ε(α) =
φε(xM (α)) and mε(α) = φε(xm(α)).

Consider the gradient curves

(3.8)
dγm

dt
= −∇φε(γm(t)), γm(0) = xm(α),

and

(3.9)
dγM

dt
= ∇φε(γM (t)), γM (0) = xM (α).

The function φε may have critical points in D(α, β) and the gradient curves
γM and γm potentially may tend to those points as t → +∞. However, all
critical points of φε are isolated saddle points as it may have neither internal
maxima nor minima according to the maximum principle. Moreover, as φε

satisfies an elliptic problem in Ω it may have only finitely many critical points
in the interior away from the boundary. Thus there are only finitely many
critical points of φε inside D(α, β) that we denote by ξ1, . . . , ξNε . Note that
both xM (α),xm(α) 6= ξk for all k because of the strong maximum principle
[9]. Let us consider the disks U r

j = {|x − ξj | ≤ r}, j = 1, . . . , Nε centered

at the singular points, and let U r = ∪Nε
j=1U

r
j . Note also that |∇φε(x)| >

C(ε, r) for x ∈ Dr(α, β) = D(α, β)\U r. Therefore φε(γM (t)) > M ε(α) +
C(ε)t if γM (s) ∈ Dr(α, β) for 0 ≤ s ≤ t and hence the curve γM (t) must
leave the set Dr(α, β) at a finite time since the function φε is uniformly
bounded. However, the curve γM (t), t > 0 may not intersect the level set
L(α) because φε(γM (t)) is strictly increasing for t < t0 provided that it stays
inside Dr(α, β) for all t < t0. Hence there are two possibilities: either both
γM and γm exit the set Dr(α, β) at L(β) or one of them crosses ∂Dr(α, β) at
one of ∂U r

j . We consider these two cases separately. First, we assume that
we may choose r > 0 so small that the curves γM and γm do not intersect
the circles U r

j = {|x − ξj | = r}, j = 1, . . . , Nε, and then we treat the other
case.

Case 1: There exists r > 0 so small that both γm(t) and γM (t)
exit Dr(α, β) at L(β).

We denote the corresponding exit times by tm and tM , that is γm(tm) ∈
L(β) and γM (tM ) ∈ L(β), while γm(s) ∈ Dr(α, β) for 0 ≤ s ≤ tm and
γM (s) ∈ Dr(α, β) for 0 ≤ s ≤ tM . With a slight abuse of notation we
denote γm = {γm(s), 0 ≤ s ≤ tm} and γM = {γM (s), 0 ≤ s ≤ tM}. The
curves γm and γM both have a finite length since |∇φε| is uniformly bounded
above and below in Dr(α, β) (by constants that may depend on ε and r).
These curves may not intersect since φε(x) > M ε > mε > φε(y) for all
x ∈ γM and y ∈ γm. Let R be a domain bounded by γm, γM and parts of
the streamlines γα ∈ L(α) and γβ ∈ L(β) (see Figure 3.1). There are two
such domains, R and D(α, β)\R. We fix R so that u · n > 0 on γM (t) for t
sufficiently small – this guarantees that “each streamline of u goes out of R
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when it intersects γM for the last time.” Furthermore, we have u · n < 0 on
γm for t sufficiently small so that “each streamline of u goes into R when
it intersects γm for the first time.” Here n is the outward normal to ∂R.
Integrating (1.1) over R we obtain

0 =

∫

R
(ε∆φε − u · ∇φε)dx = ε

∫

γα

∂φε

∂n
ds+ ε

∫

γβ

∂φε

∂n
ds(3.10)

−
∫

γm

(u · n)φεds−
∫

γM

(u · n)φεds,

because u · n ≡ 0 on γα, γβ and
∂φε

∂n
= 0 on γm, γM since the latter are

gradient curves of φε.

We will use the following fact.

Lemma 3.6. Let γ : [0, 1] → D(α, β) be any non-self intersecting smooth
curve that connects L(α) and L(β): γ(0) ∈ L(α), γ(1) ∈ L(β), has a finite
length and is not tangent to L(α) at t = 0. Fix the unit normal n to γ
so that n(t) is continuous and u · n is non-negative when a streamline of u
intersects γ for the last time, that is, u ·n(τ(ξ)) ≥ 0 for all ξ between α and
β, with τ(ξ) = sup{t : γ(t) ∈ L(ξ)}. Let f(x) ≥ 0 be a continuous function
monotonically increasing along γ. Then we have

(3.11) F (α, β) inf
x∈γ

f ≤
∫

γ
(u · n)fds ≤ F (α, β) sup

x∈γ
f,

where F (α, β) is the flux (3.7).

Proof. First, we observe that u · n(τ(ξ)) ≥ 0 for all ξ ∈ [α, β] provided
that u · n(t) > 0 for t sufficiently small. The inequality (3.11) is shown as
follows. For any N ∈ N we may approximate f along γ by two piecewise
constant (along γ) monotonically increasing functions f̄N and f̃N so that

∫

γ
(u · n)fds− 1

N
≤
∫

γ
(u · n)f̃Nds ≤

∫

γ
(u · n)fds(3.12)

≤
∫

γ
(u · n)f̄Nds ≤

∫

γ
(u · n)fds+

1

N

and |f − f̃N | ≤ 1/N , |f − f̄ | ≤ 1/N . Therefore it suffices to prove (3.11)
for a step function f that has finitely many discontinuities, the general case
follows after passing to the limit N → ∞ in (3.12). We assume below that
f is a step function. Let α1, . . . , αp be values of the stream function H such
that f has jumps only on the level sets L(αk), k = 1, . . . , p. We order them
so that L(αk) ⊂ D(αk+1). Then we may represent γ as the union

γ = ∪p
k=1γk, γk ⊂ D(αk, αk+1).

Here γk is the part of γ contained in the annulus D(αk, αk+1). We may
further split the subset γk as a union γk = γ′k∪γ′′k . Here the set γ′k = ∪sk

l=1γ
′
kl
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is a union of finitely many curves γ ′kl that connect the level sets L(αk) and
L(αk+1). There can be only finitely many of such curves since γ has a finite
length and the distance between L(αk) and L(αk+1) is positive. The set
γ′′k = ∪lγ

′′
kl consists of curves that start and end on the same level set L(αk)

or L(αk+1). We note that the function f is constant on each curve γ ′kl and
γ′′kl. Therefore we have using incompressibility of u

∫

γ′′

k

f(u · n)ds =
∑

l

∫

γ′′

kl

f(u · n)ds = 0.

We also have
∫

γ′

kl

f(u · n)ds = (−1)l+1fklF (αk, αk+1),

where fkl is the constant value of f on the curve γ ′kl. This implies that

∫

γk

f(u · n)ds =

∫

γ′

k

f(u · n)ds = F (αk, αk+1)
sk
∑

l=1

(−1)l+1fkl.

However, fkl is an increasing function of l and the total number of times sk

that γ crosses from L(αk) to L(αk+1) must be odd. Thus the above may be
bounded below by

∫

γk

f(u · n)ds ≥ fk1F (αk, αk+1) ≥ F (αk, αk+1) inf
γ
f.

Summing the above over k we obtain the first inequality in (3.11). The
second inequality is proved in the same way. �

We now apply (3.11) to the curves γm and γM with f = φε. Since
max
γm

φε = mε(α) and min
γM

φε = M ε(α), we have

(3.13)

∫

γm

(u · n)φεds ≥ −mε(α)F (α, β),

∫

γM

(u · n)φεds ≥M ε(α)F (α, β),

so that
∫

γm

(u · n)φεds+

∫

γM

(u · n)φεds ≥ (M ε(α) −mε(α))F (α, β).

Clearly we also have
∣

∣

∣

∣

∣

∫

∂γβ

∂φε

∂n
ds

∣

∣

∣

∣

∣

≤
∫

L(β)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds,

and
∣

∣

∣

∣

∫

∂γα

∂φε

∂n
ds

∣

∣

∣

∣

≤
∫

L(α)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds.

The claim of Lemma 3.5 now follows from the last three inequalities and
(3.10) in the case when φε has no critical points in D(α, β) or when γm and
γM exit Dr(α, β) along L(β).
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Figure 3.1. The non-critical case
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Figure 3.2. The critical case

Case 2: It remains to consider the second case when γm or γM

exit the set Dr(α, β) at the boundary ∂U r for all r > 0.

We pick r > 0 sufficiently small to be specified below. In particular
we require that the starting points xM (α) and xm(α) are not contained in
any of U r

j , j = 1, . . . , Nε – this is possible since xm(α) and xM (α) are not
critical points of φε as implied by the strong maximum principle. Then one
(or both) of the curves γm and γM defined by (3.8) and (3.9) should exit

Dr(α, β) at the boundary ∂U r = ∪Nε
j=1∂U

r
j . Let us assume that this happens

to γM and that it exits Dr
αβ at a point on ∂U r

j1
at a time t̃1M . We continue

γM past the time t̃1M as follows (see Figure 3.2). Let η̃j1
M = γM (t̃1M ) be

the point where γM intersected ∂U r
j1

and let also ηj1
M be the point where φε
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reaches its maximum over ∂U r
j1

φε(ηj1
M ) = sup

x∈∂Ur
j1

φε(x).

The vector ∇φε(ηj1
M ) points in the direction of the outer normal to ∂U r

j1

by the maximum principle. We stop γM at η̃j1
M and continue it along the

circle ∂U r
j1

to ηj1
M in either direction with the speed equal to one, so that

γM (t1M ) = ηj1
M . Then γM follows the gradient curve going out of ηj1

M for

t ≥ t1M until it hits either L(β) or another circle ∂U r
j2

at a point η̃j2
M at a time

t̃2M . In the former case we stop the curve γM , while in the latter we continue
it in the same fashion as at ∂U r

j1
, connecting γM to η2

M , the maximum of φε

along ∂U r
j2

, etc. Eventually γM has to cross the level set L(β) at some finite

time tβM . Indeed, we have φε(η̃jk
M ) < φε(ηjk

M ) < φε(η̃
jk+1

M ) < φε(η
jk+1

M ) which
implies that the curve γM may not hit the same circle ∂U r

j twice. Given
that the total number of critical points Nε is finite and that γM may not

stay inside Dr(α, β) for an infinite time we conclude that the exit time tβM
is finite. A similar construction may be applied to the curve γm with ηjk

m

being the point where φε attains its minimum on U r
jk

.

In order to guarantee that the curves γm and γM constructed in such
way do not intersect, we require that r is so small that
(3.14)

0 < sup
∂Ur

j

φε − inf
∂Ur

j

φε <
δ

1 +Nε
(φε(xM (α)) − φε(xm(α))), j = 1, . . . , Nε

where δ is a small parameter. Observe that the sequence φε(ηjk
M ) is increasing

in k, φε(ηj1
M ) > φε(xM (α)) and φε(γ(s)) > φε(ηjk

M ) for tkM < s < t̃k+1
M . We

also have

φε(γM (s)) > φε(ηjk
M ) − δ

1 +Nε
(φε(xM (α)) − φε(xm(α)))

for t̃kM < s < tkM . That implies a lower bound

(3.15) φε(γM (s)) > φε(xM (α)) − δ

1 +Nε
(φε(xM (α)) − φε(xm(α)))

for all 0 < s < tβM . Similarly we have

φε(γm(s)) < φε(xm(α)) +
δ

1 +Nε
(φε(xM (α)) − φε(xm(α)))

for all 0 < s < tβm. That implies an estimate

(3.16) φε(γM (s)) − φε(γm(s′)) >

(

1 − 2δ

1 +Nε

)

(φε(xM (α)) − φε(xm(α)))

for all s and s′ so that γM and γm may not intersect provided that δ < 1/2.
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We may now proceed as in the first part of the proof. Let R be the
domain bounded by γm, γM and parts of the level sets L(α) and L(β), as
depicted on Figure 3.2, chosen so that u · n > 0 for t sufficiently small, that
is, so that each streamline of u goes out of R when it crosses γM for the last
time. Integrating (1.1) over R we now obtain instead of (3.10):

0 =

∫

R
(ε∆φε + u · ∇φε)dx

= ε

∫

γα

∂φε

∂n
ds+ ε

∫

γβ

∂φε

∂n
ds+ ε

Nε
∑

k=1

∫

γM∩ ∂Ur
k

∂φε

∂n
ds

+ε
Nε
∑

k=1

∫

γm∩ ∂Ur
k

∂φε

∂n
ds

∫

γm

(u · n)φεds−
∫

γM

(u · n)φεds,(3.17)

where γα = ∂R ∩ L(α) and similarly for γβ. The function φε(γM (s)) is
no longer necessarily monotonically increasing in s, as monotonicity might

be broken for t̃jM < s < tjM . However, we may adjust its values on these

intervals, interpolating linearly between φε(η̃jk
M ) and φε(ηjk

m ), to make the

new function φ̃ε(s) monotonic in s. The oscillation bound (3.14) implies
that

∣

∣

∣

∣

∫

γM

(u · n)φ̃εds−
∫

γM

(u · n)φεds

∣

∣

∣

∣

≤
Nε
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∫

γM∩ ∂Ur
k

(u · n)(φ̃ε − φε)ds

∣

∣

∣

∣

∣

∣

∣

≤ ‖u‖∞Nε
δ

1 +Nε
(φε(xM (α)) − φε(xm(α))) ≤ Cδ.(3.18)

The estimate (3.11) may be applied to φ̃ε which together with (3.15) and
(3.18) implies:

∫

γM

(u · n)φεds ≥
∫

γM

(u · n)φ̃εds− Cδ ≥ [M ε(α) − Cδ]F (α, β) − Cδ

= M ε(α)F (α, β) − Cδ.(3.19)

Similarly we obtain

∫

γm

(u · n)φεds ≥
∫

γm

(u · n)φ̃εds− Cδ ≥ −[mε(α) + Cδ]F (α, β) − Cδ

= −mε(α)F (α, β) − Cδ.(3.20)

Furthermore, we may choose r < 1 so small that |∇φε| < δ/(1 + Nε) on
all ∂U r

j , j = 1, . . . , Nε – this is possible since the centers of U r
j are singular
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points of ∇φε. Then we obtain
∣

∣

∣

∣

∣

∣

∣

Nε
∑

k=1

∫

γM∩ ∂Ur
k

∂φε

∂n
ds

∣

∣

∣

∣

∣

∣

∣

≤ Nε2πr
δ

1 +Nε
≤ Cδ.

Using the above estimates in (3.17) we get

ε

∫

L(α)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds+ ε

∫

L(β)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds ≥ ε

∣

∣

∣

∣

∣

∫

L(α)

∂φε

∂n
ds+

∫

L(β)

∂φε

∂n
ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

ε
Nε
∑

k=1

∫

γM∩ ∂Ur
k

∂φε

∂n
ds+ ε

Nε
∑

k=1

∫

γm∩ ∂Ur
k

∂φε

∂n
ds−

∫

γm

(u · n)φεds−
∫

γM

(u · n)φεds

∣

∣

∣

∣

∣

∣

∣

≥ (M ε(α) −mε(α))F (α, β) − Cδ.

This proves Lemma 3.5 in case 2, as δ is arbitrary, and thus the proof of
this lemma is complete. �

The proof of Proposition 3.4

We now prove Proposition 3.4. We use inequality (3.6) for a pair of level

sets L((α+ β)/2 +H) and L(β +H) with 0 ≤ H ≤ α− β

2
to obtain

(

M ε
(

α+ β

2
+H

)

−mε
(

α+ β

2
+H

))

F

(

α+ β

2
+H,β +H

)

≤ ε

∫

L( α+β
2

+H)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds+ ε

∫

L(β+H)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds.

However, we have

M ε(α) −mε(α) ≤M ε
(

α+ β

2
+H

)

−mε
(

α+ β

2
+H

)

according to the maximum principle. Therefore we get

(M ε(α) −mε(α))F

(

α+ β

2
+H,β +H

)

(3.21)

≤ ε

∫

L( α+β
2

+H)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds+ ε

∫

L(β+H)

∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

ds.

We integrate (3.21) with respect to H to obtain

(M ε(α) −mε(α))

∫ (α−β)/2

0
F

(

α+ β

2
+H,β +H

)

dH(3.22)

≤ ε

∫ α

β

∫

L(H)

∣

∣

∣

∂φε

∂n

∣

∣

∣ ds dH.
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The integral on the right side of inequality (3.22) may be re-written in the
curvilinear coordinates as

∫ α

β

∫

L(h)

∣

∣

∣

∂φε

∂n

∣

∣

∣dsdH =

∫ α

β

∫
∣

∣

∣

∣

∂φε

∂n

∣

∣

∣

∣

dθdH

|∇θ| ≤
∫

D(α,β)
|∇φε| |J |dxdy|∇θ|

=

∫

D(α,β)
|∇φε||∇H|dxdy

≤
(

∫

D(α,β)
|∇H|2dxdy

)1/2 (∫

C
|∇φε|2dxdy

)1/2

≤ C

ε1/4

(

∫

D(α,β)
|∇H|dxdy

)1/2

≤ C(α− β)1/2

ε1/4

where J = |∇H||∇θ| is the Jacobian (2.9).

The left side of (3.22) satisfies

(M ε(α)−mε(α))

(α−β)/2
∫

0

F

(

α+ β

2
+H,β +H

)

dH ≥ C(M ε(α)−mε(α))(α−β)2.

The above estimates imply that

M ε(α) −mε(α) ≤ C
ε(α− β)1/2

(α− β)2ε1/4
≤ C

(

ε

α2

)3/4

with the choice β = α/2. This finishes the proof of Proposition 3.4. �

4 The water-pipe network

The previous arguments show that there exist constants Kε
j so that so-

lution of (1.1) is well approximated by solution of the following water-pipe
problem (see Figures 4.1 and 4.2). As before, we denote by Ωε

N = {|H(x)| ≤
N
√
ε} the domain consisting of narrow pipes (boundary layers) near the

separatrices. Its boundary consists of ∂Ω and finitely many level set curves
l
N
k = Lk(N

√
ε), k = 1, . . . , p so that |H(x)| = N

√
ε on l

N
k . The results of

Section 3 show that φε, solution of (1.1) is uniformly close to solution of

(4.1) ε∆ψε − u · ∇ψε = 0, x ∈ Ωε
N

with the boundary conditions

(4.2) ψε |∂Ω = T0 , ψ
ε

∣

∣

∣

∣l
N
m

= Kε
m , m = 1, . . . , p

with the constants Kε
m as in Theorem 3.1. More precisely we have a uniform

bound

(4.3) |φε(x) − ψε(x)| ≤ C

N3/2
.
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Figure 4.1. The water-pipe model

|Ψ| =N ε

Figure 4.2. One cell

This shows that in a numerical computation of φε it suffices to consider the
pipe-problem (4.1)-(4.2) with the correct constants Kε

m in order to obtain
a good approximation of the solution. However, the constants Kε

m are not
known a priori and their computation is part of the problem. As we have seen
the function φε is very close to a constant near the level sets l

N
m. Therefore we
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should expect that we may replace the Dirichlet boundary data on l
N
m by the

homogeneous Neumann boundary conditions in the water-pipe problem (4.1)
and obtain an approximation that has the same order of error. In particular
this would provide an efficient numerical way to find the constants Kε

m as
the boundary value of the solution of (4.1) with the Neumann boundary
conditions. This is confirmed by the following results.

Proposition 4.1. Let φε
N be solution of the water-pipe model:

(4.4) ε∆φε
N − u · ∇φε

N = 0, x ∈ Ωε
N

on the domain Ωε
N = Ω ∩ {|H(x)| ≤ N

√
ε} with the boundary conditions

(4.5) φε
N |∂Ω = T0 ,

∂φε
N

∂n

∣

∣

∣

∣l
N
m

= 0 , m = 1, . . . , p.

Then there exist constants K̃ε
m,N so that

(4.6) |φε
N (x) − K̃ε

m,N | ≤ C

N3/2
,

for all x ∈ l
N
m.

Proof. The proof of this proposition is essentially the same as of Theo-
rem 3.1. One only has to observe that the strong maximum principle implies
that the maximum and minimum of the function φε

N over any sub-domain
{α ≤ |H(x)| ≤ N

√
ε} ∩ Cm is achieved on the boundary {|H(x)| = α} ∩ Cm

and not on the interior level set l
m
N . Therefore all arguments in the proof

of the level-set oscillation inequality (Lemma 3.5) are applicable verbatim,
and we do not repeat them. �

Theorem 4.2. Let φε solve (1.1) and let χ(s) be a smooth even function,
monotonic on s ≥ 0, so that

χ(s) =

{

1, |s| ≤ 1/2,
0, |s| ≥ 1

Let us extend φε
N to the whole domain Ω as

φ̃ε
N (x) = χ

(

H(x)

N
√
ε

)

φε
N (x) + K̃ε

m,N

(

1 − χ

(

H(x)

N
√
ε

))

, x ∈ Cm

with the constants K̃ε
m,N given by Proposition 4.1. Then we have

(4.7) ‖φε − φ̃ε
N‖L∞(Ω) ≤

C

N3/2
,

and

(4.8)
√
ε‖∇φε −∇φ̃ε

N‖2
L2(Ω) ≤

C

N4
,

where φε solves (1.1).
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Proof. Let ζε = φε − φε
N be the error that we need to estimate. It

satisfies the equation

(4.9) ε∆ζε − u · ∇ζε = gε, x ∈ Ω,

with

gε(x) = (K̃ε
m,N − φε

N )

[√
ε

N
∆H(x)χ′

(

H(x)

N
√
ε

)

+
1

N2
|∇H(x)|2χ′′

(

H(x)

N
√
ε

)

]

−2
√
ε

N
χ′
(

H(x)

N
√
ε

)

∇φε
N (x) · ∇H(x)

and the boundary condition ζε = 0 on ∂Ω. We multiply (4.9) by ζε and
integrate over Ω:

ε

∫

Ω
|∇ζε(x)|2dx = −

∫

Ω
ζε(x)gε(x)dx = I + II + III.

The first term on the right may be estimated using Proposition 4.1 as

I = −
∫

Ω
ζε(x)(K̃N

m − φε
N (x))

√
ε

N
∆H(x)χ′

(

H(x)

N
√
ε

)

dx

≤
C
√
ε‖ζε‖L∞(Ωε

N )

N5/2

∫

Ω

∣

∣

∣

∣

χ′
(

H(x)

N
√
ε

)∣

∣

∣

∣

dx ≤ C
√
ε

N5/2
‖ζε‖L∞(Ωε

N ).

The second term is bounded in a similar way as

II = −
∫

Ω
ζε(x)(K̃N

m − φε
N (x))

1

N2
|∇H(x)|2χ′′

(

H(x)

N
√
ε

)

dx

≤ C
√
ε

N5/2
‖ζε‖L∞(Ωε

N ).

The last term we bound integrating by parts as

III =

∫

Ω
ζε(x)

2
√
ε

N
χ′
(

H(x)

N
√
ε

)

∇φε
N (x) · ∇H(x)dx

= − 2
√
ε

N2
√
ε

∫

Ω
ζε(x)(φε

N (x) − K̃N
m )χ′′

(

H(x)

N
√
ε

)

|∇H(x)|2dx

−2
√
ε

N

∫

Ω
ζε(x)(φε

N (x) − K̃N
m )χ′

(

H(x)

N
√
ε

)

∆H(x)dx

−2
√
ε

N

∫

Ω
(φε

N (x) − K̃N
m )χ′

(

H(x)

N
√
ε

)

∇ζε(x) · ∇H(x)dx

≤ C
√
ε

N5/2
‖ζε‖L∞(Ωε

N ) +
C
√
ε

N5/2
‖ζε‖L∞(Ωε

N )

+
C
√
ε

N5/2

[

A

∫

Ω
|∇ζε(x)|2dx +

1

A

∫

Ω

∣

∣

∣

∣

χ′
(

H(x)

N
√
ε

)∣

∣

∣

∣

2

|∇H(x)|2dx
]

.
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We choose A =
√
εN5/2/(2C) to obtain the bound

(4.10) ε

∫

Ω
|∇ζε(x)|2dx ≤ C

√
ε

N5/2
‖ζε‖L∞(Ωε

N ) +
C
√
ε

N4
.

Recall that ζε = 0 on ∂Ω and

|ζε(x) − (Kε
m − K̃ε

m)| ≤ C

N3/2

on the level set l
N
m. Then if |Kε

m − K̃ε
m| = δ >

2C

N3/2
we have, on one hand,

ε

∫

Ωε
N

|∇ζε(x)|2dx ≥ C
√
ε

N

(

δ − C

N3/2

)2

,

while on the other ‖ζ‖L∞(Ωε
N ) ≤ δ+

C

N3/2
. Putting these bounds into (4.10)

we obtain

C
√
ε

N

(

δ − C

N3/2

)2

≤ C
√
ε

N5/2

(

δ +
C

N3/2

)

+
C
√
ε

N4
.

We denote γ = δ − C

N3/2
and rewrite the above as

C
√
ε

N
γ2 ≤ C

√
ε

N5/2
γ +

C
√
ε

N4
+
C
√
ε

N4

so that

γ ≤ C

N3/2
.

Therefore

|Kε
m − K̃ε

m| = δ ≤ 2C

N3/2
.

An application of the maximum principle on Ωε
N finishes the proof of The-

orem 4.2. �

Note that Proposition 4.1 and Theorem 4.2 do not imply existence of the
limits

(4.11) lim
ε→0

Kε
m = Km.

The proof of (4.11) requires a separate argument based on the analysis of
the asymptotic limit ε → 0 in the next two Sections. We will present first
the asymptotic analysis, and then return to the proof of (4.11) at the end
of Section 6.

5 The asymptotic problem

It turns out that in the limit ε → 0 the asymptotic behavior of the
solution to the advection-diffusion problem may be described in terms of a
model that is essentially a system of one-dimensional heat equations on a
graph. This section is concerned with the construction of this model.
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Figure 5.1. The two-cell problem
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h>0
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e

e

e

12

10

20

glue

Figure 5.2. The gluing procedure

5.1 The two-cell case

We describe the asymptotic problem first on the simplest example of a
domain Ω that consists of two cells C1 and C2 depicted in Figure 5.1. We
denote by ej0 = ∂Ω ∩ ∂Cj , j = 1, 2, the part of the boundary of Ω along
the cell Cj and by e12 the common edge of the two cells. We also introduce
the boundary layer coordinates h and θ12, θj0, j = 1, 2. The coordinate θ12
represents parameterization along the edge e12 = {h = 0}∩ {0 ≤ θ12 ≤ l12},
while the coordinates θj0 parameterize along the boundaries ej0 = {h =
0} ∩ {l12 ≤ θj0 ≤ lj0}. We first solve the heat equation ”along e12”:

(5.1)
∂f12

∂θ12
=
∂2f12

∂h2
, h ∈ [−N,N ], 0 ≤ θ12 ≤ l12
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with a prescribed initial data f 0
12 and the Neumann boundary conditions at

h = ±N :

(5.2)
∂f12(θ12,±N)

∂h
= 0.

Then we solve two half-space problems ”along the outer boundaries ej0”
with the prescribed Dirichlet data that comes from (1.2):

(5.3)
∂f10

∂θ10
=
∂2f10

∂h2
, −N ≤ h ≤ 0, 0 ≤ θ10 ≤ l10

and

(5.4)
∂f20

∂θ20
=
∂2f20

∂h2
, 0 ≤ h ≤ N, 0 ≤ θ20 ≤ l20

with the Neumann boundary condition (5.2) at h = −N , and h = N ,
respectively, and with the Dirichlet data fj0(θj0, 0) = T0(θj0) at h = 0. The
initial data for (5.3) and (5.4) comes from (5.1):

f10(l12, h) = f12(l12, h), −N ≤ h ≤ 0,(5.5)

f20(l12, h) = f12(l12, h), 0 ≤ h ≤ N.

Finally we glue together the functions f10(l10, h), h ≤ 0 and f20(l20, h),
h ≥ 0:

(5.6) fg
12(h) =

{

f10(l10, h), −N ≤ h ≤ 0
f20(l20, h), 0 ≤ h ≤ N

The asymptotic problem is to construct a periodic solution of the above,
that is, find a function f0

12(h) so that f0
12(h) = fg

12(h), h ∈ [−N,N ]. This
problem is described schematically in Figure 5.2.

Proposition 5.1. There exists a unique function f 0
12 ∈ L2(−N,N) such

that f0
12 = fg

12.

Proof. Let us define the operator L12 : L2(−N,N) → L2(−N,N) by
L12 : f0

12 → f12(l12), that is, the solution operator of (5.1). The operator
L12 is bounded and compact, since ‖f12(l12)‖H1(−N,N) ≤ C‖f0

12‖L2(−N,N).
We also let L10 and L20 be solution operators for (5.3) and (5.4), respec-
tively with homogeneous boundary data T0 = 0. The operators R± restrict
a function defined on [−N,N ] to the positive and negative semi-axes, re-
spectively, while the gluing operator G glues together two functions defined
on those axes:

G[f−, f+](h) =

{

f−(h), h ≤ 0,
f+(h), h > 0,

as in (5.6). We denote by g(h) the function obtained by solving (5.1)–
(5.6) with f0

12 = 0 and inhomogeneous boundary conditions. Then equation
f0
12 = fg

12 is equivalent to:

(5.7) G(L10R−L12f
0
12, L20R+L12f

0
12) + g = f0

12,
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or

(5.8) Kf0
12 − f0

12 = −g, Kf0
12 = G(L10R−L12f

0
12, L20R+L12f

0
12).

The operator K is a compact operator on L2(−N,N). Furthermore, we have
‖L10‖L2→L2 < 1 and ‖L20‖L2→L2 < 1, while ‖L12‖L2→L2 = 1. This implies
easily that ‖K‖L2→L2 < 1 so that solution of (5.8) exists and is unique by
the Fredholm alternative since K is compact.

An alternative approach to the proof of existence of a periodic solution
of (5.1)-(5.6), that is somewhat less transparent in the two-cell case but is
easier to generalize to the case of N cells is as follows. We introduce an
operator L = L12 ⊗ L10 ⊗ L20 defined on L2(R) × L2(R−) × L2(R+) as

L




f12

f10

f20



 =





L12f12

L10f10

L20f20



 .

We also define a re-distribution operator R on the same space L2(R) ×
L2(R−) × L2(R+) as

R




f12

f10

f20



 =





G[f10, f20]
R−f12

R+f12



 .

Then we may re-write (5.7) as

(5.9) RL




f0
12(h)

f10(l12, h)
f20(l12, h)



+





g(h)
0
0



 =





f0
12(h)

f10(l12, h)
f20(l12, h)



 .

In a sense, (5.9) views (5.1)-(5.6) as a boundary value problem while (5.7)
treats it is a periodic ”in time” solution. The operator Q = RL is compact
since L is compact. Observe that Q2 may be written as

Q2





f12

f10

f20



 = RL




G[L10f10, L20f20]
R−(L12f12)
R+(L12f12)



(5.10)

=





G[L10(R−(L12f12)), L20(R+(L12f12))]
R−(L12(G[L10f10, L20f20]))
R+(L12(G[L10f10, L20f20]))



 .

The norms ‖L10‖L2→L2 and ‖L20‖L2→L2 are both less than one, as we have
noted before. This implies immediately that ‖Q2‖ < 1 and thus (5.9) has a
unique solution by the Fredholm alternative. This approach has a straight-
forward generalization to the case of more than two cells.
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Figure 5.3. The velocity profile

The Dirichlet-to-Neumann map for the Childress problem

The Dirichlet-to-Neumann map for the Childress problem is defined as
the mapping of L2(e10 ∪ e20) onto itself by

D∗(T0)|ej0
=
∂fj0

∂h

∣

∣

∣

∣

ej0

.

It is straightforward to compute using (5.1), (5.3) and (5.4) that its quadratic
form is given by

D∗(T0) = 〈D∗(T0), T0〉 =

∫

e10

T0
∂f10

∂h
dθ +

∫

e10

T0
∂f10

∂h
dθ(5.11)

=

∫ N

0

∫
∣

∣

∣

∣

∂f10

∂h

∣

∣

∣

∣

2

dθdh+

∫ N

0

∫
∣

∣

∣

∣

∂f10

∂h

∣

∣

∣

∣

2

dθdh+

∫ N

−N

∫
∣

∣

∣

∣

∂f12

∂h

∣

∣

∣

∣

2

dθdh.

Note that only the gradient in the direction perpendicular to the streamlines
enters the Dirichlet-to-Neumann map – this is a natural consequence of the
narrow boundary layer phenomenon.

5.2 The general N -cell case

We now consider the general case when the domain Ω consists of a finite
number of cells. The asymptotic model is described in terms of an oriented
graph constructed using the stream function H as shown on Figures 5.3 and
5.4. The vertices of this graph are associated with the saddle points of H.
The edges eij of the graph are associated with the separatrices of the the
stream function. The direction of an edge is determined by the direction of
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Figure 5.4. The graph

the velocity field on the corresponding separatrix. The length of an edge is
determined by the length of the separatrix in the boundary layer coordinate
θ associated with H. The boundary edges are those that are associated with
the separatrices at the boundary of the domain. The cells Ci are quadrangles
bounded by minimal cycles of the graph. The interior edges (drawn as solid
arrows on Figure 5.4) are indexed so that a common edge of two cells Ci and
Cj is denoted by eij . The boundary edges (drawn as dotted arrows on Figure
5.4) are indexed so that the outer part of a boundary cell Ci is denoted by
ei0. The boundary value problem is:

• [i] Given the values of the temperature T0 on the boundary edges ei0,
determine the values of the temperature fij on all the edges. Note
that the value of fij may vary along each edge.

• [ii] Given the values of fe on all the edges, find the solutions fi of
the Childress’ problem for each cell Ci:

(5.12)



































∂2fi

∂h2 − ∂fi
∂θ = 0,

h ∈ [0, N ], θ ∈] −∞,+∞[,

fi(h = 0, θ) = fik(θ),
∂fi
∂h (h = N, θ) = 0,

fi(h, θ) = f(h, θ + li),

where the index k takes four values of the adjacent cells, li = lik1
+

· · · + lik4
is the length in θ of the four edges eik1

,. . . eik4
, bounding

Ci and fik(θ) = fik1
(θ), . . . , fik(θ) = fik4

(θ) are the values of the
temperature on respective edges.
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• [iii] When any two cells Ci and Cj share a common edge, the normal
derivatives from the left and from the right match point-wise on this
edge:

∂fi

∂h

∣

∣

∣

h=0
+
∂fj

∂h

∣

∣

∣

h=0
= 0 on eij .

We note that it is straightforward to extend the Dirichlet-to-Neumann map
(5.11) for the two-cell Childress problem to theN -cell case formulated above.

Theorem 5.2. There exists a unique solution of the boundary value problem
[i], [ii], [iii].

Proof. The proof generalizes the construction in two-cell case considered
in Proposition 5.1 to the general situation in a fairly straightforward albeit
somewhat tedious manner. Assume that a solution to the boundary value
problem [i],[ii],[iii] is found. Then the solutions fi and fj on two adjacent
cells Ci and Cj are such that they can be glued together into one function
fij(θ, h), h ∈ [−N,N ], θ ∈ [0, lij ] so that (possibly after an appropriate shift
of θ by a constant)

fij(θ, h) = fi(θ, h) for h > 0, andfij(θ, h) = fj(θ,−h) for h ≤ 0.

The function fij satisfies the heat equation

∂2fij

∂h2
− ∂fij

∂θ
= 0,

∂fij

∂h
(h = ±N, θ) = 0

(5.13)

on (h, θ) ∈ [−N,N ] × [0, lij ]. Equation (5.13) can be solved uniquely as a
Cauchy problem, provided that the initial data

(5.14) f0
ij(h) = fij(h, θ = 0)

is given. Therefore, we may define a linear operator

Lij : f0
ij(h) → f1

ij(h),

which maps the function f0
ij(h), assigned to the beginning of an interior edge

eij , to its value f1
ij(h) = fij(lij , h) at the end of this edge by solving the heat

equation (5.13),(5.14). For boundary edges the operator Li0 and, hence,
f1

i0(h) are defined by solving the homogeneous heat equation in half-space:

∂2f̄i0

∂h2
− ∂f̄i0

∂θ
= 0,

∂f̄i0

∂h
(h = N, θ) = 0,

f̄i0(h = 0, θ) = 0,

f̄i0(h = 0, θ) = f0
i0(h),

(5.15)
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on (h, θ) ∈ [0, N ]× [0, li0]. We denote by gi0(h) h ∈ [0,+∞) solutions of the
inhomogeneous heat equation ”along the boundary edge ei0”

∂2gi0

∂h2
− ∂gi0

∂θ
= 0,

∂gi0

∂h
(h = N, θ) = 0,

gi0(h = 0, θ) = fi0(θ),

gi0(h = 0, θ) = 0,

(5.16)

on (h, θ) ∈ [0, N ] × [0, li0]. Hence, if f solves the boundary value problem
[i], [ii], [iii], then the corresponding vector-valued function

f0 = (f0
10, . . . , f

0
ij , . . . , f

0
km)

solves

(5.17) RLf0 + g = f0,

similar to (5.9) where g = (g10, g20, g30, . . . , gm0, 0, . . . , 0) and L = ⊗Lij .
The first (non-zero) components of the vector g (and those of f) correspond
to the vertices at the boundary where the flow u is incoming: there is only
one such vertex in the two-cell case and hence g has only one non-zero
component in (5.9). The operator R

R : f1 → f0

is a linear redistribution operator. Given the values f 1
ij at the ends of the

edges the operator R constructs the values f 0
i′j′ at the beginnings of the

edges at each vertex in a natural way: f must be a continuous function in
each cell. Given the problem (5.17) is solved uniquely, the boundary value
problem [i],[ii],[iii] is equivalent to (5.17) as both amount to solving the heat
equations (5.13), (5.15), (5.16). Therefore it remains to show that

(5.18) (RL− I)f0 = −g,

has a unique solution. However, the unique solvability of (5.18) follows
from the Fredholm alternative. Indeed, the operator R is clearly bounded
on [L2([−N,N ])]k (here k is the number of edges) by construction. The
operator L is compact on [L2([−N,N ])]k for the same reason as in the
case of two cells; it is associated with the solution of the heat equation.
Moreover, λ = 1 is not an eigenvalue of the compact operator RL. Indeed,
each boundary operator Li0 has norm less than one: ‖Li0‖ < 1. Therefore,
if we let M be the total number of edges, we have ‖(RL)M‖ < 1 and thus
RL may not have eigenvalue equal to one. �



HIGH PÉCLET NUMBER BOUNDARY LAYERS 35

6 Approximation by the asymptotic problem

We now compare the function φε
N , the solution of the approximate water-

pipe problem (4.4), to the stretched asymptotic boundary layer solution

f ε(x, y) = f(H(x)/
√
ε, θ(x)).

Here f(h, θ) is the unique solution of the Childress’ problems described in
Section 5.2 and Theorem 5.2. The function f(h, θ) is smooth except at the
points (h = 0, θjk) that correspond to saddle points of the stream function
H, where f is discontinuous. This necessitates a careful local analysis near
the corners. Hence, we postpone the formulation of the main result of this
Section, Theorem 6.1, until we define all the local coordinates. Here we just
mention that we build our approximation as close to the Chilcress solution
f away from the corners – at distances larger than Mε1/4 with M � N .
We will use an orthogonal system (h = H/

√
ε, θjk) along each edge ejk that

separates cells Cj and Ck, and at indicated distances away from the corners.
However, a different coordinate system and a different approximation are
needed near the corners. We begin with the introduction of suitable local
coordinate systems.

6.1 The local coordinates

Observe that the advection-diffusion equation (1.1) has the following form
in an orthogonal system of coordinates of the form (h = H/

√
ε, θ):

(6.1) |∇H|2∂
2f

∂h2
+
√
ε∆H

∂f

∂h
+ ε∆θ

∂f

∂θ
+ ε|∇θ|2∂

2f

∂θ2
− J

∂f

∂θ
= 0

with J = ∇⊥H ·∇θ = |∇H||∇θ|. Therefore, in order to have at least a formal
approximation of (6.1) by (5.12) as ε → 0 we should have J ≈ |∇H|2, or,
equivalently, |∇H| ≈ |∇θ| in the boundary layer |H| ≤ N

√
ε. We impose

the condition |∇H| = |∇θjk| along the edge ejk. However, the coordinate
θjk introduced in such way may have a singularity at the end-points of ejk.
Therefore we will use these coordinates only away from the corners.

In order to perform a local analysis near the corners we may introduce
the local orthogonal coordinates (X,Y ) in a δ-neighborhood of a corner that
we fix at x = 0, so that near the saddle point we have

(6.2) H = X2 − kY 2.

Moreover, we may assume that the change of variables satisfies

(6.3) DxX = U +O(x), ∆xX = O(x)

with U a unitary matrix. Such change of coordinates always exists accord-
ing to the Morse lemma in a ball |x| ≤ δ near the saddle point with δ > 0
sufficiently small. We may assume without loss of generality that the con-
stant k ≥ 1. Then the separatrices are given by X = ±

√
kY in the variables
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region I
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M ε1/4

region III

x

| x − k y | = N 
2 2 ε1/2

y

Figure 6.1. The regions near the corner

(X,Y ). In order to simplify the notation we will assume that actually at the
corner the function H has the form (6.2) in the old coordinate system (x, y)
and no change of variables is required. Extension to the general case using
the coordinates (X,Y ) is straightforward, with the help of the estimates
(6.3), at the expense of slightly lengthier calculations. We omit them for
the sake of readability. Under our assumptions, the coordinate θ, orthogonal
to H, is defined along the whole edge ejk, and is given explicitly near the
corner by

(6.4) θ = Bk(x
ky)

2

k+1 .

The normalizing constant is chosen to be Bk = (k+ 1)k−(k−1)/(2(k+1)). It is
fixed by the requirement that we have |∇θ| = |∇H| along the separatrices

|x| =
√
k|y|. With such a choice of Bk we obtain

(6.5) ∇θ = 2

(

x√
ky

)
k−1

k+1

(ky, x).

We will use the following three regions inside the boundary layer (see Figure
6.1):

(6.6) I =
{

(x, y) ∈ Ωε
N : θ(x, y) ≤M2

√
kε
}

is the region around the corner. The region

(6.7) II =
{

(x, y) ∈ Ωε
N : M2

√
kε ≤ θ(x, y) ≤ 4M2

√
kε
}

is the next closest, and

(6.8) III =
{

(x, y) ∈ Ωε
N : 4M2

√
kε ≤ θ(x, y)

}
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is the farthest from the corner. Region III extends all the way to the
adjacent corner along the edge. The constant

√
k is included for convenience

in the definition of these regions, because

(6.9) |θ| =
(k + 1)√

k

(

xk
√
ky
)

2

k+1 ≈
√
k(x2 + y2)

inside the boundary layer {|H| ≤ N
√
ε}, as x ≈

√
ky. Hence the boundaries

of the three regions are approximately parts of the circles:
√

x2 + y2 ≈
Mε1/4 and

√

x2 + y2 ≈ 2Mε1/4.

We now show that for distances larger than Mε1/4 away from the corner
inside the boundary layer (regions II and III) the desired approximation
J = ∇θ ·∇⊥H ≈ |∇H|2 is valid. An elementary geometric calculation shows
that in region II ∪ III we have

(6.10)

∣

∣

∣

∣

∣

x2

ky2
− 1

∣

∣

∣

∣

∣

≤ Ch

M2 − h
≤ C

h

M2
, h ≤ N,

as M � N . Combining the last inequality with (6.5), and using the form
(6.2) of the stream function H near the corner we have

(6.11)
∣

∣|∇H|2 − J
∣

∣ ≤ C
(

x2 + k2y2
) h

M2
.

Similarly, we have that ∆θ is uniformly bounded in the same region (regions
II and III):

(6.12) |∆θ| ≤ C
N

M2
.

Observe also the following uniform bounds:

(6.13)
|J − |∇H|2|

|θ| ≤ C
h

M2
,

|∇H|2
|θ| ≤ C,

|J |
|θ| ≤ C

that we will need later. Here θ = 0 is the coordinate of the saddle point.
Indeed, the inequalities (6.13) are trivially true, when |θ| > δ. In the δ-
neighborhood of the saddle point we have (6.13) by using (6.11) and θ >
C(x2 + y2) in the boundary layer. Note that these estimates may not be
pushed all the way to the corner x = 0, that is, inside region I, as (6.10)
breaks down, and |∇θ| blows up at the saddle point except in the special
case k = 1. This is another reason why the Childress solution may not be
used at the corner.

6.2 The approximate solution

We may now present the main result of this section, Theorem 6.1. The
approximation to the solution of the full problem is constructed as follows.
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Let χ be a smooth cut-off function such that χ(r) = 0 for 0 ≤ r ≤ 1 and
χ(r) = 1 for r ≥ 4. We denote by xjk the saddle points of H and let

φε,app
N (x) =

∑

j,k

f ε(x)χ

( |θ(x)|
M2ε1/2

)

+
∑

j,k

[

1 − χ

( |θ(x)|
M2ε1/2

)]

f̄ ε
ij(x),

Φε(x) = φε,app
N (x) − φε

N (x).(6.14)

Here φε
N is the solution of the water-pipe problem (4.4), the function f ε(x) =

f(H(x)/
√
ε, θ(x)) is the stretched solution of the Childress problem, and the

function f̄ ε
ij satisfies the exact problem

(6.15) ε∆f̄ ε
jk − u · ∇f̄ ε

jk = 0

on the domain G = I ∪ II near the corner (see (6.6), (6.7)), that we again
fix to be at xjk = 0 in the local analysis that follows, so that

G =

{

x : χ

( |θ|
M2ε1/2

)

6= 1

}

.

The boundary ∂G consists of two parts: ∂Gn that is part of the level set
|H(x)| = N

√
ε, and ∂Gd that consists of pieces of the curve |θ| = 4M 2

√
kε,

which is close to the circle |x| = 2Mε1/4. We prescribe the homogeneous
Neumann boundary conditions for f̄ ε on ∂Gn and the Dirichlet boundary
condition f̄ ε

jk(x) = f ε(x) on ∂Gd. That is, f̄ ε coincides with f ε(x) on ∂Gd.

Qualitatively, since the Childress solution is not smooth near the cor-
ners, we cut the approximation f at a distance Mε1/4, M � N away from
the corners and glue into the corners solution of the true original equation
that coincides with the approximation on the gluing set. For the distances
between Mε1/4 and 2Mε1/4 we interpolate the two functions.

Theorem 6.1. The boundary layer approximation φε,app
N given by (6.14)

approximates the water-pipe solution φε
N of (4.4) in the sense that there

exists a constant C > 0 so that
∫

D(N
√

ε)
|∇φε

N (x) −∇φε,app
N |2 dx(6.16)

≤ C√
ε

(

ε2α + ε1/4+α +
√

Nε2α +N3(ε1/4−α + ε1/2−2α)

)

Moreover, the interior constants K̃ε
m,N for the water-pipe solution φε and

the constants Km,N obtained from the asymptotic problem satisfy
(6.17)

|K̃ε
m,N −Km,N | ≤ C

√
ε

(

ε2α + ε1/4+α +
√

Nε2α +N3(ε1/4−α + ε1/2−2α)

)

.

Finally, the asymptotic constants Km,N converge to certain constants Km

as N → ∞, and, moreover, the interior constants Kε
m of the true solution

converge as ε→ 0 to Km.
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We note, first, that the right side in the gradient bound (6.16) is of the

order smaller than O(ε−1/2), the size of the gradient of the solution itself.
Second, (6.17) shows that for each N fixed the interior value of the solution
of the water-pipe converges as ε→ 0 to that given by the asymptotic solution
of the Childress problem at this N .

6.3 The proof of the approximation Theorem 6.1

The proof of Theorem 6.1 is fairly straightforward if long. The main
difficulty is the analysis near the corners – this is overcome with the help
of an explicit solution, the function f2 constructed below in (6.34)-(6.35).
It mimics the behavior of the exact solution quite precisely and allows us
to obtain the necessary bounds. The rest of the proof is fairly routine. We
point out that many technical difficulties disappear when the corner is at
a right angle. This is best seen from the explicit expression (6.4) for the
local coordinate θ: when k = 1 (the right angle case) it is smooth, otherwise
it is not. That is one of the reasons why the variational methods and test
functions used in [5, 6] for the estimates on the effective diffusivity worked
so well in the case of a square cell.

Bounds for the Childress solution

We begin with some bounds for the Childress solution. We may decom-
pose the function f at the corner xjk into a smooth and a discontinuous
component as

(6.18) f(θjk, h) = fsm(θjk, h) +Bjks(h), s(h) =

{

0, for h ≤ 0,
1, for h > 1.

With the convention of Section 6.1 we have θjk = 0. Here s(h) is the
Heaviside function, Bjk is the magnitude of the jump of f that appears
because of gluing together of two solutions that come from different cells, and
fsm is a smooth function, except for the corners, where fsm is continuous.
Hence

(6.19)

∫ N

−N

(

∂fsm

∂h

)2

dh ≤ C.

The function f solves the boundary value Childress’ problem inside each
cell, hence fij converges exponentially to the corresponding constants Ki

and Kj away from the separatrix

|fij(h) −Ki| ≤ exp(−c|h|), h ≥ 0, |fij(h) −Kj | ≤ exp(−c|h|), h ≤ 0.

Decomposition (6.18) implies that f satisfies the following bounds:

(6.20)

∣

∣

∣

∣

∂f

∂θ

∣

∣

∣

∣

≤ C

|θ| ,
∣

∣

∣

∣

∣

∂2f

∂θ2

∣

∣

∣

∣

∣

≤ C

|θ|2 .
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These estimates follow from the explicit expression for the solution of the
heat equation on the interval −N ≤ h ≤ N with the Neumann boundary
conditions at h = ±N , and with the initial data f(h, 0) as in (6.18). We can
also estimate in a similar fashion, for θ close to zero,

(6.21) ‖f(θ) − f(0)‖2
L2(−N,N) ≤ C

√
θ,

where the main contribution comes from the discontinuous part of f in
(6.18). Similar considerations lead to a better bound for fsm:

(6.22) |fsm(θ, h) − fo(h)| ≤ C
√
θ, where fo(h) = fsm(h, 0).

for all h ∈ (−N,N).

Estimates on the corner solution

We will use the following bounds on the solution at the corner. The first
on provides a poor but sufficient for our purposes bound on its H1-norm.

Lemma 6.2. Solution of (6.15) with the boundary conditions as above sat-
isfies the following bound:

(6.23) ε

∫

G
|∇f̄ |2dx ≤ CN

√
ε.

The second lemma shows that the corner solution is close to the Childress
solution.

Lemma 6.3. Solution of (6.15) satisfies the following bound:

(6.24) ‖f̄ − f‖2
L2(II) ≤ C

N2√ε
M2

+ CMNε3/4 + CεM2.

where f is the Childress solution.

The proof of Lemma 6.3 is the main difficulty in the proof of Theorem
6.1. We postpone the proof of both of the above lemmas until after the
proof of Theorem 6.1.

Bounds for the remainder

The error function Φε defined by (6.14) satisfies an equation inside the
boundary layer Ωε

N = {|H(x)| ≤ N
√
ε} of the form

(6.25) ε∆Φε − u · ∇Φε = gε.

The function gε = 0 for distances less than Mε1/4 away from the corner,
that is, in region I:

(6.26) gε = 0 in region I
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as both φε
N and f̄ij are exact solutions of (6.25). Furthermore, for distances

larger than 2Mε1/4 away from the corner, that is, in region III, the function
gε may be written in the h = H/

√
ε, θ coordinates as

gε =

[

|∇H|2∂
2f

∂h2
+
√
ε∆H

∂f

∂h
+ ε∆θ

∂f

∂θ
+ ε|∇θ|2∂

2f

∂θ2
− J

∂f

∂θ

]

=

[

(|∇H|2 − J)
∂f

∂θ
+
√
ε∆H

∂f

∂h
+ ε∆θ

∂f

∂θ
+ ε|∇θ|2∂

2f

∂θ2

]

.

It may be now estimated as follows. Using the first inequalities in (6.13)
and (6.20) we bound the first term in the first bracket as

∣

∣

∣

∣

(J − |∇H|2)∂f
∂θ

∣

∣

∣

∣

≤ C
h

M2
.

Similarly, using the bound
√

|θ| > CMε1/4 we estimate the other terms in
the first bracket:

∣

∣

∣

∣

√
ε∆H

∂f

∂h

∣

∣

∣

∣

≤ C
ε1/4

M
,

∣

∣

∣

∣

ε∆θ
∂f

∂θ

∣

∣

∣

∣

≤ C

√
ε

M2

and

ε|∇θ|2
∣

∣

∣

∣

∣

∂2f

∂θ2

∣

∣

∣

∣

∣

≤ C

√
ε

M2
.

Therefore we have in region III

(6.27) |gε| ≤ C

[

h

M2
+
ε1/4

M

]

≤ C

[

N

M2
+
ε1/4

M

]

.

It remains to estimate the error term in region II. There we have

gε = χ [ε∆f ε − u · ∇f ε] + 2ε
[

∇f ε · ∇χ−∇f̄ ε · ∇χ
]

+(f ε − f̄ ε) [ε∆χ− u · ∇χ] = g1 + g2 + g3(6.28)

The first term can be estimated as above:

(6.29) |g1| ≤ C

[

h

M2
+
ε1/4

M

]

≤ C

[

N

M2
+
ε1/4

M

]

in region II

since estimates (6.13) hold in region II as well. In order to estimate the
second term we use Lemma 6.2. Lemma 6.2 and the estimate (6.33) below
in region II allow us to bound the second term in gε in this region. Indeed,
we again have that the area where ∇χ 6= 0 is bounded by CN

√
ε. Hence g2

is bounded as

(6.30) ‖g2‖L2(II) ≤
Cε

Mε1/4

1√
ε

(

N
√
ε
)1/2

+
Cε1/2

Mε1/4

(

N
√
ε
)1/2 ≤ C

√
Nε

M
.
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It remains to estimate g3, the third term in region II. This is done
using Lemma 6.3. Lemma 6.3 implies that the third term in (6.28) may be
estimated as

‖g3‖L2(II) ≤ ‖f − f̄‖L2(II)‖[ε∆χ+ u · ∇χ]‖L∞(6.31)

≤ C

√

N2
√
ε

M2
+ CMNε3/4 + CεM2.

By construction Φε is approximately constant (within C/N 3/2) on each
level set |H(x)| = N

√
ε and it satisfies homogeneous boundary conditions.

Our goal is to show that these constants are small. Using (6.27), (6.29) ,
(6.30), (6.31) we obtain for Φε:

ε

∫

D(N
√

ε)
|∇Φε|2dx ≤ CN

√
ε

(

N

M2
+
ε1/4

M

)

+ C
N

M
ε3/4

+C
√

N
√
ε

√

N2
√
ε

M2
+ CMNε3/4 + CεM2.

Choosing

M = ε−αN, 0 < α < 1/4,

we have

√
ε

∫

D(N
√

ε)

|∇Φε|2dx ≤ C

(

ε2α + ε1/4+α +
√

Nε2α +N3(ε1/4−α + ε1/2−2α)

)

.

This implies the first two statements in Theorem 6.1.

It remains only to verify the last statement in Theorem 6.1. However,
it follows immediately from (6.17) and the uniform in ε error bounds (4.7).
Indeed, we have from these estimates

(6.32) |Kε
m −Km,N | ≤ C

N3/2
+ o(ε).

This implies that the sequence Km,N converges as N → ∞ in an elementary
way. Indeed, if it has two limit points Am and Bm then given any δ > 0
we may choose ε so small that |Kε

m −Km,N | ≤ δ for all N ≥ N0. This in
particular implies that |Am−Bm| ≤ 2δ and hence Km,N converges to a limit
Km as N → ∞. Then (6.32) implies that Kε

m converges to the same limit
as ε→ 0. �

The proof of Lemma 6.2

We write f̄ = q + f εη(θ/(M2√ε/2)), that is we cut-off f at distance

Mε1/4/2 from the corner. Here η is a cut-off function of the same kind as
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x

| x − k y | = N 
2 2 ε1/2

y

x= k    y
1/2

Flow

2 M ε1/4

ingoing

ingoing

outcoming

outcoming

Figure 6.2. The incoming and outgoing parts at the corner

χ. Then the function q satisfies

ε∆q − u · ∇q = −pε,

pε = −η[ε∆f ε − u · ∇f ε] − f ε[ε∆η − u · ∇η] − 2ε∇f ε · ∇η = p1 + p2 + p3

with the homogeneous Dirichlet boundary conditions on Gd and the homo-
geneous Neumann boundary conditions on Gn. Note that |p1| ≤ CN/M2 -
this term is estimated as the first term in gε.The second term is bounded as
|p2| ≤ C, while the last one is estimated by |p3| ≤ Cε3/4|∇f ε|/M , because

|∇η| ≤ C/(Mε1/4). However, we have in the region where ∇η 6= 0:

(6.33) |∇f ε| ≤ |∇H|√
ε

∣

∣

∣

∣

∂f

∂h

∣

∣

∣

∣

+ |∇θ|
∣

∣

∣

∣

∂f

∂θ

∣

∣

∣

∣

≤ CMε1/4

√
ε

1

Mε1/4
+

C

Mε1/4
≤ C√

ε

so that |p3| ≤ Cε1/4/M . Observe that the area of the region where η 6= 0 is
bounded by CN

√
ε, where the constant C is independent of M . Therefore

we obtain, since q is uniformly bounded as a difference of two bounded
functions:

ε

∫

G
|∇q|2dx =

∫

G,η 6=0
qpεdx ≤ C

(

N

M2
+ 1 +

ε1/4

M

)

N
√
ε ≤ CN

√
ε.

This estimate, combined with the bound (6.33) in the region where η 6= 0
proves (6.23). �

The proof of Lemma 6.3

The boundary ∂Gd consists of four parts: ∂Gj
d, j = 1, . . . , 4, one in

each of the coordinate quadrants. The flow u = (2ky, 2x) is incoming on

∂Gin
d = ∂G2,4

d and outgoing on ∂Gout
d = ∂G1,3

d (see Figure 6.2). We will
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show that the first term in (6.24) comes from the Heaviside function s(h) in
decomposition (6.18) while the second and the third terms in (6.24) come
from the continuous piecewise smooth part in (6.18). Hence we first prove
inequality (6.24) in the special case when f = 1 on ∂G2

d and f = −1 on ∂G4
d.

The values of f on ∂Gout
d are determined by solving the heat equation with

the Neumann boundary conditions at h = ±N , for a time θ = 4M 2
√
kε and

the initial data fin(θ = 0, h) = sgn(h).

We claim that both the function f ε and the function f̄ for such data are
very well approximated by an exact solution of (6.15) with u = (2ky, 2x) in

the form f2 = f2(t), t = x −
√
ky. It mimics very precisely the behavior

of f ε with the discontinuous data as we are considering. The function f2

satisfies

(6.34) (1 + k)εf ′′2 + 2
√
ktf ′2 = 0

so that

(6.35) f2(t) = −1 + α(k)

∫ t

−∞
exp

(

−
√
ks2

(1 + k)ε

)

ds.

The constant α(k) is chosen so that f2(+∞) = 1. Observe that f2 approx-
imately satisfies the Neumann boundary conditions on the ∂Gn part of the
boundary:

(6.36)

∣

∣

∣

∣

∂f2

∂n

∣

∣

∣

∣

≤ C exp

(

−C N

M2
√
ε

)

on ∂Gn.

Note also that

(6.37) |f2 − f ε| ≤ C exp{−CM2ε−1/2}

on the inflow boundary, as follows immediately from (6.35), as |t| ∼ CMε1/4

on Gin
d . In order to show that f2 is close to f ε on the outflow boundary G1,3

d
we first observe that the value of f ε on G1,3 are very well approximated by
the anti-derivative of the heat-kernel on the whole real line. Let

f̃(θ, h) =
1√
2πθ

∫

R

e−(ξ−h)2/(4θ)sgn(ξ)dξ

be the solution of

∂f

∂θ
=
∂2f̃

∂h2
, h ∈ R, f̃(0, h) = sgn(h).

Then we have

|f(θ = 4M2
√
kε, h) − f̃(θ = 4M2

√
kε, h)| ≤ C exp

(

− CN2

M2
√
ε

)

, |h| ≤ N
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on the outgoing boundary. The function f̃ satisfies an equation along a
curve θ = const of the form

(6.38)
∂2

∂h2
f̃ = − h

2θ

∂

∂h
f̃ , f̃(−∞) = −1, f̃(+∞) = 1.

Now, in order to show that f2 is uniformly close to f̃ (and hence to f ε and
f̄) on the curve {|θ| = 4M 2√ε} we observe that f2 also satisfies an equation
along this curve of the form

(6.39)
∂2

∂h2
f2 = −c1(h)

√
ε+ h(1 + c2(h))

8M2
√
kε

∂

∂h
f2, h = H/

√
ε

with

(6.40) |c1(h)| ≤ C, |c2(h)| ≤ C
N

M2
.

This is shown as follows. Introducing the variable s = x+
√
ky we note that

along the outflow boundary θ = const. Parametrizing ∂Gout
d as s = s(t) we

have
ds

dt
=

(1 + k)t− (k − 1)s

(1 + k)s− (k − 1)t
.

A straightforward estimate shows that

(6.41) |t| ≤ CNε1/4/M, |s| ∼ CMε1/4 along ∂Gout
d .

Hence we obtain

(6.42) C1 ≤
∣

∣

∣

∣

ds

dt

∣

∣

∣

∣

≤ C2, along ∂Gout
d .

We also verify by a direct calculation

(6.43) C1 ≤ s
d2s

dt2
≤ C2 along ∂Gout

d .

Parametrizing now ∂Gout
d in terms of H = H(t) we may re-write (6.34) along

∂Gout
d as

ε(1 + k)

(

dH

dt

)2 d2f2

dH2
+

(

2
√
kt
dH

dt
+ ε(1 + k)

d2H

dt2

)

df2

dH
= 0.

Using the relation H = ts(t) we obtain

ε(1 + k)

(

s+ t
ds

dt

)2 d2f2

dH2

+

[

2
√
kt

(

s+
ds

dt

)

+ε(1 + k)

(

2
ds

dt
+ t

d2s

dt2

)]

df2

dH
= 0.

This may re-stated as

(6.44) ε
d2f2

dH2
+

2
√
k

(1 + k)s2

(

H
s

s+ tst
+ ζε(t)

)

df2

dH
= 0
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with

ζε(t) =
ε

2
√
k

(

s

s+ tst

)2

(2st + tstt).

Using the estimates (6.41), (6.42) and (6.43) we obtain
∣

∣

∣

∣

s

s+ tst
− 1

∣

∣

∣

∣

≤ C
N

M2
, |ζε(t)| ≤ εC

However, we have along the outflow boundary, using (6.9) and (6.10)
(6.45)√

k

(1 + k)s2
=

√
k

(1 + k)(x+
√
ky)2

=
1

4θ
(1 + co(H)) =

1

16M2
√
kε

(1 + co(H))

with |co(H)| ≤ CN/M2. Then (6.39) and (6.40) follow from (6.44), (6.45)
and the bounds on co and ζε above.

Equations (6.38), (6.39) and the bounds (6.40), together with the bound-

ary conditions for f̃ and f2 at infinity imply that

(6.46) |f2 − f ε| ≤ C

[

N

M2
+
ε1/4

M

]

on the outflow boundary. We now let η(x) be a function such that

∂η

∂n

∣

∣

∣

∣

∂Gn

=
∂f2

∂n

∣

∣

∣

∣

∂Gn

, ‖η‖C2(Ḡ) ≤
Cε100

N
.

This is possible because the bound in (6.36) is exponentially small in ε.
Then the function s = f2 − f − η satisfies

|ε∆s− u · ∇s| = | − ε∆η + u · ∇η| ≤ Cε100

N
, |s|∂Gd

≤ C

[

N

M2
+
ε1/4

M

]

,
∂s

∂n

∣

∣

∣

∣

Gn

= 0.

The maximum principle implies that then |s(x)| ≤ C
[

N/M2 + ε1/4/M
]

for

all x ∈ G. This is the first contribution in (6.24).

Let us now discuss the contribution of fsm. We assume that

f̄ ε
jk|∂Gd

= fsm.

Inequality (6.22) implies that the boundary conditions for (6.15) on the

Dirichlet’s part differ from fo(h) no more than CMε1/4 point-wise. Hence
by the maximum principle

‖f̄ ε
jk − f3‖L2(G) ≤ CMNε3/4.

where f3 solves (6.15) with the boundary conditions

f3(x) = fo(x), x ∈ ∂Gd.
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The function fo(h) is well-defined on the whole G so that u · ∇fo = 0 and
it satisfies the homogeneous Neumann boundary conditions everywhere on
∂Gn. This allows to estimate the Ḣ1 norm of f3. Multiplying the equation

(6.47) ε∆f3 − u · ∇f3 = 0

by f3 − fo and integrating by parts we have, using (6.11),

‖∇f3‖2
L2(G) =

∫

G
∇f3 · ∇fodxdy ≤ C||∇fo||2L2(G)

= C

∫ 4M2ε1/2

0

∫ N

−N

|∇H|2
ε

(

∂fo

∂h

)2 √
ε

J
dhdθ

≤ C√
ε

∫ 4M2
√

ε

0

∫ N

−N

(

∂fo

∂h

)2

dhdθ ≤ C√
ε

∫ 4M2
√

ε

0
dθ ≤ CM2.(6.48)

We now once again multiply (6.47) by f3 − fo and integrate over each of the
four disconnected parts Gi

δ , i = 1, 2, 3, 4, of the domain

Gδ = {(x, y) ∈ Ωε
N : 4M2√ε− δ ≤ θ ≤ 4M2√ε} = ∪4

i=1G
i
δ ⊆ II

On each Gi
δ we have

ε

∫

li
δ

(f3 − fo)
∂f3

∂n
dS − ε

∫

Gi
δ

|∇f3|2dx + ε

∫

Gi
δ

∇f3 · ∇fodx(6.49)

+

∫

li
δ

(u · n)(f3 − fo)
2

2
dS = 0,

where liδ = {(x, y) ∈ Ωε
N ∩∂Gi

δ : θ(x, y) = 4M2√ε− δ}. Since (u ·n) = ±|u|
with the same sign in each of the four connected components, (6.48) implies

(6.50)

∫

lδ

|u|(f3 − fo)
2

2
dS ≤ ε

∫

li
δ

|f3 − fo|
∣

∣

∣

∣

∂f

∂n

∣

∣

∣

∣

dS + CεM2.

Changing variables, (6.50) may be re-written as

∫ N
√

ε

−N
√

ε

|u|(f3 − fo)
2

2
(ρ, 4M2√ε− δ)

dρ

|∇H|(6.51)

≤ ε

∫ N
√

ε

−N
√

ε
|f3 − fo|

∣

∣

∣

∣

∂f3

∂n

∣

∣

∣

∣

(ρ, 4M2√ε− δ)
dρ

|∇H| + CεM2.

Integrating in δ ∈ (0, 3M 2√ε) and adding up the resulting four inequalities
we obtain
(6.52)
∫

II

|u|(f3 − fo)
2

2
(ρ, θ)

dρdθ

|∇H| ≤
∫

II
|f3 − fo|

∣

∣

∣

∣

∂f3

∂n

∣

∣

∣

∣

(ρ, θ)
dρdθ

|∇H| + Cε3/2M4.
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Once again using (6.11) we may re-write this as
(6.53)
∫

II

|u|(f3 − fo)
2

2
(x)|∇H|dx ≤ ε

∫

II
|f3 − fo|

∣

∣

∣

∣

∂f3

∂n

∣

∣

∣

∣

(x)|∇H|dx + Cε3/2M4.

However, we have C1Mε1/4 ≤ |u| = |∇H| ≤ C2Mε1/4 in region II so that
the above together with (6.48) imply

M2√ε
∫

II
|f3 − fo|2dx ≤ CεMε1/4

[

α

∫

II
|f − fo|2dx +

1

α

∫

II
|∇f |2dx

]

+Cε3/2M4.

We choose α = M/(2Cε3/4) and obtain

(6.54)

∫

II
|f3 − fo|2dx ≤ CεM2 + Cε3/2 ≤ CεM2

which is the third contribution in (6.24). This finishes the proof of Lemma

6.3 since ‖fo − f ε‖2
L2(II) ≤ CMε1/4N

√
ε - that contribution is included in

the second term in (6.24). �

7 Approximation of the dissipation rate by the water-pipe

network

We show in this section that the total dissipation rate of the full advection-
diffusion problem

(7.1)

{

ε∆T ε − u · ∇T ε = 0, in Ω ⊂ R
2,

T ε(x) = T0(x), x ∈ ∂Ω,

may be approximated by the dissipation rate for the water-pipe model

(7.2)























ε∆T ε
N − u · ∇T ε

N = 0, in Ωε
N ⊂ Ω,

T ε
N (x) = T0(x), x ∈ ∂Ω,

∂T ε
N (x)/∂n = 0, x ∈ L(N

√
ε),

L(N
√
ε) = {x ∈ Ω : |H(x)| = N

√
ε},

posed in the smaller domain:

Ωε
N = {x ∈ Ω : |H(x)| ≤ N

√
ε}.

While this result is not surprising in itself, given that the water-pipe network
provides an L∞-approximation of the full problem, remarkably, the error in
the approximation of the dissipation rate is independent of the flow inside
the cell, that is, outside the water-pipe model itself. This is the main result
of this section.

Recall that for the solution of the advection-diffusion problem (7.1) the
dissipation rate is defined as

Dε(u, T0) = ε〈|∇T ε|2〉Ω
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where

〈f〉Ω =

∫

Ω
f(x)dx.

Similarly, we define the dissipation rate for the solution of the water-pipe
network problem (7.2) as the total dissipation rate:

Dε
N (u, T0) = ε〈|∇T ε|2〉Ωε

N
.

The dissipation rates for the full advection-diffusion problem and for the
water-pipe model have the same limit:

Theorem 7.1. For any u, T0 sufficiently regular, there exists a finite limit

(7.3) lim
ε→0

Dε(u, T0)/
√
ε = D∗(T0).

Moreover, if N = N(ε) → ∞, as ε→ 0 then

(7.4) lim
ε→0

Dε
N (u, T0)/

√
ε = D∗(T0).

Here D∗(T0) is the quadratic form of the Dirichlet-to-Neumann map for
the asymptotic Childress problem. It is defined explicitly in (5.11) in the
two-cell case – this definition may be extended to the general case in a
straightforward manner. In the case of a smooth boundary ∂Ω Theorem 7.1
implies the convergence of the Dirichlet-to-Neumann map D∗ : H1/2(∂Ω) →
H−1/2(∂Ω) in the limit ε→ 0. However, unfortunately, we do not have the
bounds of the form Dε(T0) ∼ ‖T0‖H1/2/

√
ε for a finite ε > 0 and it is not

clear if this is because of the proof or if there exists a real obstacle to such
a bound.

The existence and equality of finite limits (7.3) (7.4) can be obtained
from the construction of the approximate solution in Section 6. The main
result of this section is the following statement about the error. Theorem
7.1 implies that

(7.5) |Dε
N −Dε|/

√
ε ≤ Cε(T0, u,N),

with Cε → 0 as ε → 0 and N = N(ε) → ∞. However, a priori the error
Cε may depend on the flow inside the cell, away from the separatrices. The
next theorem shows that this is not the case.

Theorem 7.2. The water-pipe model approximates the dissipation rate with
an error that is independent of the flow u outside of Ωε

N .

The proof relies on variational techniques. We construct variational min-
imum and maximum principles for the dissipation rate. Using solutions of
the water-pipe model, we construct trial fields which depend on the flow u
only in Ωε

N . These trial fields give upper and lower bounds on the dissi-
pation rate, and as ε → 0, N → ∞, these bounds have the limit D∗. We
conclude that the error of the water-pipe model is determined by the flow
u in Ωε

N only. For example, if we choose N = ε−α, 0 < α < 1/2, then the
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error is determined by u in the neighborhood of the separatrices |H| ≤ εβ ,
β = 1/2 − α > 0.

The above results may interpreted as the approximation of the
quadratic form associated to the Dirichlet-to-Neumann map of the
full advection-diffusion problem by that of the water-pipe problem.
The latter, in turn, converges to that of the Childress problem
(defined in (5.11) for the two-cell case).

We now turn to the two main technical details of the argument: the
variational principles and the trial fields.

7.1 Variational principles

We derive here saddle-point variational principles for the dissipation rate
Dε. The method follows the general ideas of [3, 5, 6, 13]. The first step is
to introduce the adjoint problems for (7.1) and (7.2), which are [5, 6, 14]
the same advection-diffusion equations but with the reversed advection: u
is replaced by −u. The adjoint problem for the advection-diffusion problem
(7.1) is:

(7.6)

{

ε∆T̃ ε + u · ∇T̃ ε = 0, in Ω ⊂ R
2,

T̃ ε(x) = T0(x), x ∈ ∂Ω.

Let us use the ”symmetrization” [3, 5]:

(7.7) T± =
T ε ± T̃ ε

2

and define E± = ∇T±. We dropped the superscript ε in the notation of the
symmetrized temperature to simplify the notation. The functions T+ and
T− satisfy the boundary conditions

T+(x) = T0(x), T−(x) = 0, x ∈ ∂Ω.

The gradients E± obey

(7.8) ∇ ·
(

E± + HεE∓) = 0

where

Hε =
1

ε

(

0 H
−H 0

)

.

It is easy to check that (7.8) are the Euler-Lagrange equations of the func-
tional

(7.9) W ε(E+, E−) = 〈
∣

∣E+
∣

∣

2〉Ω − 2〈E− · HεE+〉Ω − 〈
∣

∣E−∣
∣

2〉Ω.
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The dissipation rate can be determined as the the value of this functional
at its saddle-point:

Dε = ε min
E+∈V+

max
E−∈V−

W ε(E+, E−),

V+ =
{

E+ = ∇T+, T+ ∈ H1(Ω), T+(x) = T0(x), x ∈ ∂Ω
}

,

V− =
{

E− = ∇T−, T− ∈ H1(Ω), T−(x) = 0, x ∈ ∂Ω
}

.

(7.10)

Indeed, if E± solve (7.8), then

(7.11) Dε = ε
(

〈
∣

∣E+
∣

∣

2〉Ω + 〈
∣

∣E−∣
∣

2〉Ω
)

,

and
〈
∣

∣E−∣
∣

2〉Ω = −〈E− · HεE+〉Ω,
hence for such E±

Dε = εW ε(E+, E−).

Following the technique of [3, 5] we use the partial Legendre transform to
reformulate the min-max variational principle (7.10) as a min-min and a
max-max principles. The max-max principle is

Dε = ε max
J+∈W+

max
E−∈V−

W ε
max(J

+, E−),

W ε
max(J

+, E−) = 2

∫

∂Ω
T0J

+ · nds− 〈
∣

∣J+ − HεE−∣
∣

2〉Ω − 〈
∣

∣E−∣
∣

2〉Ω,

W+ =
{

J+, ∇ · J+ = 0, J+ ∈ L2(Ω)
}

,

(7.12)

while the min-min variational principle is

Dε = ε min
E+∈V+

min
J−∈W−

Wmin(E
+, J−),

W ε
min(E

+, J−) = 〈
∣

∣E+
∣

∣

2〉Ω + 〈
∣

∣J− − HεE+
∣

∣

2〉Ω,
W− =

{

J−, ∇ · J− = 0, J− ∈ L2(Ω)
}

.

(7.13)

The former allows us to obtain the lower bounds for Dε while the latter
produces the upper bounds. As a consequence we have

(7.14) εW ε
max(J

+
lower, E

−
lower) ≤ Dε ≤ εW ε

min(E
+
upper, J

−
upper)

for any trial fields E+
upper ∈ V+, E−

lower ∈ V−, J+
lower ∈ W+, and J−

upper ∈
W−.

7.2 The trial fields

The classical approach to variational bounds is to find some “good” trial
functions E+

upper, E
−
lower, J

+
lower, J

−
upper and apply inequality (7.14). A suc-

cessful choice of the trial functions leads to tight bounds, and it usually
relies on specific features of the problem. We construct the trial fields based
on the solution of the water-pipe problem.
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Let T ε
N solve (7.2) and T̃ ε

N be the solution of the adjoint water-pipe
network problem:

(7.15)















ε∆T̃ ε
N + u · ∇T̃ ε

N = 0, in Ωε
N ⊂ Ω,

T̃ ε
N (x) = T0(x), x ∈ ∂Ω,

∂T̃ ε
N (x)/∂n = 0, x ∈ L(N

√
ε).

We define the constants Kε
j and K̃ε

j as the averages of T ε
N and T̃ ε

N over the

streamline Lj(N
√
ε) = L(N

√
ε) ∩ Cj :

Kε
j =

1

|Lj(N
√
ε)|

∮

Lj(N
√

ε)
TN (x)dl, K̃ε

j =
1

|Lj(N
√
ε)|

∮

Lj(N
√

ε)
T̃N (x)dl.

As we have shown previously, TN (x) and T̃N (x) are uniformly close to Kε
j

and K̃ε
j , respectively, along Lj(N

√
ε). Let T ε

K and T̃ ε
K be the solutions of

the Poisson equation in Ωε
N with constant Dirichlet boundary conditions on

the interior boundaries:














ε∆T ε
K = ε∆T ε

N ≡ u · ∇T ε
K , x ∈ Ωε

N ,

T ε
K(x) = T0(x), x ∈ ∂Ω,

T ε
K(x) = Kj , x ∈ Lj(N

√
ε),















ε∆T̃ ε
K = ε∆T̃ ε

N ≡ −u · ∇T̃ ε
N , x ∈ Ωε

N ,

T̃ ε
K(x) = T0(x), x ∈ ∂Ω,

T̃ ε
K(x) = K̃j , x ∈ Lj(N

√
ε).

(7.16)

Let us denote the symmetrized temperatures as

T±
N =

T ε
N ± T̃ ε

N

2
, T±

K =
T ε

K ± T̃ ε
K

2
.

We can now define the trial fields for the upper and lower bounds. For
the upper bound we take

(7.17)

{

E+
upper = ∇T+

K , J−
upper = ∇T−

N + Hε∇T+
K , in Ωε

N ,

E+
upper = 0, J−

upper = 0, otherwise.

and for the lower one

(7.18)

{

E−
lower = ∇T−

K , J+
lower = ∇T+

N + Hε∇T−
K , in Ωε

N ,

E+
lower = 0, J−

lower = 0, otherwise.

By construction, the trial fields E and J given by (7.17) and (7.18) satisfy
E± ∈ V±, J± ∈ W± (here we dropped the subscripts upper/lower). Indeed,
the only nontrivial property we have to check is that ∇ · J± = 0 weakly.
Equations (7.16) imply that J± are indeed divergence-free away from the
level set |H(x)| = N

√
ε. We have to verify that the normal components of
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J± agree on the two sides of this level set. The inner normal component
n · J± ≡ 0. The outer normal component is

n·J± = n·
(

∇T±
N (x) + Hε∇T∓

K (x)
)

= n·Hε∇T∓
K (x) =

H(x)

|∇H(x)|u·∇T
∓
K = 0,

as T±
K is constant on the level set. Hence J+

lower ∈W+, and J−
upper ∈W−.

Lemma 7.3. There exist the finite limits

lim
ε→0

√
εWmax(J

+
lower, E

−
lower) = D∗, lim

ε→0

√
εWmin(E

+
upper, J

−
upper) = D∗.

where N = N(ε) → ∞.

The proof of Lemma 7.3 again follows from our previous asymptotic
analysis and we do not repeat the details. �

It remains to show that the error between Dε
N and Dε depends on the

flow near the separatrices only. However, since

|Wmin(E
+
upper, J

−
upper) −Dε| ≤Wmin(E

+
upper, J

−
upper) −Wmax(J

+
lower, E

−
lower),

and all J+
lower, E

−
lower, E

+
upper, J

−
upper depend only on the flow inside Ωε

N , the
error

|Wmin(E
+
upper, J

−
upper) −Dε|

also has this property. Finally, multiplying the equation

ε∆T+
N − u · ∇T−

N = 0

by T−
N and integrating by parts we obtain

〈∇T+
N · ∇T−

N 〉Ωε
N

= 0,

and therefore

Dε
N = ε

(

〈
∣

∣

∣∇T+
N

∣

∣

∣

2
〉Ωε

N
+ 〈
∣

∣

∣∇T−
N

∣

∣

∣

2
〉Ωε

N

)

= εW ε
min(E

+
upper, J

−
upper)

+2ε〈∇T+
K · (∇T+

N −∇T+
K )〉Ωε

N
+ ε〈

∣

∣

∣∇T+
N −∇T+

K

∣

∣

∣

2
〉Ωε

N
.

Hence we have

|Dε −Dε
N |/

√
ε ≤ |

√
εWmin(E

+
upper, J

−
upper) −

Dε

√
ε
|

+

√

Dε
N√
ε

√√
ε〈
∣

∣

∣∇T+
N −∇T+

K

∣

∣

∣

2
〉Ωε

N
+
√
ε〈
∣

∣

∣∇T+
N −∇T+

K

∣

∣

∣

2
〉Ωε

N
.

Since all the terms on the right-hand side of the last inequality tend to zero
as ε→ 0 and depend only on the flow u inside Ωε

N , Theorem 7.2 holds. �
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