
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Browne, Cameron B.
(2015)
Boundary Matching for Interactive Sprouts. In
Advances in Computer Games, July 2015, Leiden.

This file was downloaded from: https://eprints.qut.edu.au/107754/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://eprints.qut.edu.au/view/person/Browne,_Cameron.html
https://eprints.qut.edu.au/107754/

Boundary Matching for Interactive Sprouts

Cameron Browne

Queensland University of Technology,
Gardens Point, Brisbane, 4000, Australia

c.browne@qut.edu.au

Abstract. The simplicity of the pen-and-paper game Sprouts hides a
surprising combinatorial complexity. We describe an optimisation called
boundary matching that accommodates this complexity to allow move
generation for Sprouts games of arbitrary size at interactive speeds.

Keywords: Sprouts, Combinatorial game, Realtime, Optimisation

1 Introduction

Sprouts is a combinatorial pen-and-paper game devised by mathematicians Mich-
ael S. Paterson and John H. Conway in the 1960s [1], and popularised in a 1967
Scientific American article by Martin Gardner [2]. The game is played on a set
of n vertices, on which players take turns drawing a path from one vertex to
another (or itself) and adding a new vertex along that path, such that |vi| the
cardinality1 of any vertex vi never exceeds 3, and no two paths ever touch or
intersect (except at vertices). The game is won by the last player able to make
a move, so is strictly combinatorial in the mathematical sense.

Figure 1 shows a complete game of n=2 Sprouts between players 1 and 2.
Player 2 wins on the fourth move, as player 1 has no moves from this position.
A game on n vertices will have at least 2n moves and at most 3n− 1 moves.

1 2 1 2

Fig. 1. A game of n=2 Sprouts, won by player 2, who makes the last move.

It is conjectured that a game on n vertices is a win for player 1 if (n modulo
6) is 0, 1 or 2, and a win for player 2 otherwise [3]. This so called Sprouts
Conjecture [4] has not been proven yet, but has held for all sizes so far, which
include n = {1–44, 46–47, 53}.2

1 Number of paths incident with vertex vi.
2 http://sprouts.tuxfamily.org/wiki/doku.php?id=records

2 Boundary Matching for Interactive Sprouts

1.1 Motivation

There exist computer Sprouts solvers [3, 4] and interactive Sprouts position ed-
itors [5], but almost no Sprouts AI players beyond the 3Graph player [6] which
plays a perfect game up to n=8 vertices, and an iOS player [7] that apparently3

supports up to n=15 vertices.

This relative lack of Sprouts AI players is something of a mystery. The game
is well-known, interesting, looks simple, and has an intuitive topological aspect
that just cries out for fingers tracing paths on touch screens – so why are there
not more Sprouts apps? We identify the following barriers to implementation:

1. Complexity: The game’s state space complexity grows at a surprising expo-
nential rate, for even small game sizes [8].4

2. Geometry: It is non-trivial to synchronise free-form user input curves with
an underlying algebraic representation of the game.

This paper addresses the first issue by describing an optimisation called
boundary matching, which accommodates the game’s inherent combinatorial
complexity to reduce move generation time to interactive speeds even for large
game sizes (the issue of geometry will be left for another paper). Section 2 sum-
marises relevant computational representations for Sprouts, Section 3 describes
the boundary matching optimsation, Section 4 examines the performance of the
new approach, and Section 5 discusses its suitability for the task at hand.

2 Representation

Sprouts positions can be represented internally at three levels: set representation,
string representation and canonical representation, as per previous work [3]. We
briefly summarise these levels of representation, as necessary background for
describing the Boundary Matching algorithm in Section 3.

A
B C

D

EF G

H

I

J

K
L

M N O

P

Q

R

S

T
U

Fig. 2. Example position after ten moves in an n=11 game (from [4]).

3 The app did not work on any device tested.
4 Denis Mollison’s analysis of the n=6 game famously ran to 47 pages [1, p.602].

Boundary Matching for Realtime Sprouts 3

2.1 Set Representation

A Sprouts position is a planar graph obtained according to the rules of the game.
Closed paths resulting from moves divide the position into connected components
called regions. Each region contains at least one boundary that is a connected
component of the paths made by players and associated vertices. Each vertex
may be enclosed within its respective region, or exist on the region border to be
shared with adjoining regions.

For example, Figure 2 shows an example position after ten moves in an n=11
game (from [4]), and Figure 3 shows the five regions that make up this position.

0

1

2 3

4

Fig. 3. Region labelling of the position shown in Figure 2.

A vertex vi is alive if |vi| < 3, otherwise |vi| = 3 and the vertex is dead. For
example, vertices {A, B, D, E, G, H, J, L, N, O, P, Q, R, S, T, U} in Figure 2 are alive,
whereas vertices {C, F, I, K, M} are dead and play no further part in the game.

2.2 String Representation

We use a slightly simplified version of previous string representations, that we
believe is easier to read. Each vertex v is labelled with a unique uppercase char-
acter {‘A’, ... ‘Z’} in these examples. Each boundary B is represented by the
list of vertex labels encountered as the boundary is traversed. Each region R is
represented by the concatenation of the boundaries it contains, separated by the
character ‘,’. A position P is represented by the concatenation of the regions
it contains, separated by the character ‘;’. For example, the position shown in
Figure 2 might be described by the string:

AL;AL,BNMCMN;D,COFPGQFOCM;E,HRISJSIUKTKUIR,FQGP;KT

Subgames: It can be convenient to subdivide positions into independent sub-
games, that describe subsets of regions in which moves cannot possibly affect
other subgames. This occurs when all vertices on the border between two such
region subsets are dead. Subgames are denoted in the position string by the
separating character ‘/’. For example, the position shown in Figure 2 can be

4 Boundary Matching for Interactive Sprouts

subdivided as follows:

AL;AL,BNMCMN/D,COFPGQFOCM;E,HRISJSIUKTKUIR,FQGP;KT

Move Types: Before introducing the canonical representation, it is useful to
describe the two possible move types. Each move occurs within a region R:

1. Double-Boundary Moves: Moves from a vertex vi on boundary Bm to a vertex
vj on boundary Bn join the two boundaries within R. For example, the first
move in Figure 1 joins two singleton vertices to form a common boundary.

2. Single-Boundary Moves: Moves from a vertex vi on boundary Bm to a vertex
vj on the same boundary (vi may equal vj) partition the region R into two
new regions Ra and Rb. For example, the second move in Figure 1 creates
two regions, one inside and one outside the enclosed area.

See [4, p.4] for the exact computational steps required to perform these moves.

1

2 3

Fig. 4. Opening moves for the n=4 game. Representative invariants are indicated.

Figure 4 shows all possible opening moves for the n=4 game, by way of
example. The top row shows the six possible double-boundary moves, and the
remaining four rows show the 32 possible single-boundary moves. For any given
game size n, the number of opening moves On is given by:

On =
n(n− 1)

2
+ n2n−1 (1)

Boundary Matching for Realtime Sprouts 5

If O4=38 is a surprising number of opening moves for only four vertices,
consider that O10=5,165 opening moves and O20=10,485,950 opening moves(!)
The main problem is the exponential growth factor n2n−1, due to the number
of ways that the region can be partitioned by single-boundary moves.

Invariants: This problem of combinatorial explosion can be addressed by ob-
serving that many of the positions in a game of Sprouts are topologically equiv-
alent to others, and can be reduced to a much smaller set of invariant forms. For
example, each of the 38 positions shown in Figure 4 are topologically equivalent
to one of the three invariant forms indicated, which represent, respectively:

1. All double-boundary moves between one vertex and another.
2. All single-boundary moves that create partitions of {0} and {3} boundaries.
3. All single-boundary moves that create partitions of {1} and {2} boundaries.

We therefore only need to consider these three representative cases when
evaluating opening moves for the n=4 game. The number of invariant opening
forms O+

n for a game of size n is given by:5

O+
n =

⌈n
2

⌉
+ 1 (2)

For comparison, there are six invariant opening forms for the n=10 game
from the 5,165 actual opening moves, and only eleven invariant opening forms
for the n=20 game from the 10,485,950 actual opening moves. The following
section explains how to derive these invariant forms.

2.3 Canonical Representation

Canonical representation involves reducing the string representation of a given
position to its canonical (invariant) form. The steps are briefly described below,
using the string representation of Figure 2 as an example:

AL;AL,BNMCMN/D,COFPGQFOCM;E,HRISJSIUKTKUIR,FQGP;KT

1. Relabel singleton vertices as ‘0’:
AL;AL,BNMCMN/0,COFPGQFOCM;0,HRISJSIUKTKUIR,FQGP;KT

2. Relabel non-singleton vertices that occur exactly once as ‘1’:
AL;AL,1NMCMN/0,COFPGQFOCM;0,1RIS1SIUKTKUIR,FQGP;KT

3. Eliminate vertices that occur three times (i.e. dead vertices):
AL;AL,1NN/0,OPGQO;0,1RS1SUTUR,QGP;T

4. Eliminate boundaries with no remaining vertices and regions with < 2 lives:
AL;AL,1NN/0,OPGQO;0,1RS1SUTUR,QGP

5. Relabel vertices that occur twice in a row along a boundary as ‘2’:
AL;AL,12/0,2PGQ;0,1RS1SUTUR,QGP

5 Except for O+
1 = 1.

6 Boundary Matching for Interactive Sprouts

6. Relabel vertices that occurred twice but now occur once due to step 4 as ’2’:
AL;AL,12/0,2PGQ;0,1RS1SU2UR,QGP

7. Relabel vertices that occur twice within a boundary with lower case labels,
restarting at ‘a’ for each boundary:
AL;AL,12/0,2PGQ;0,1ab1bc2ca,QGP

8. Relabel vertices that occur in two different regions with upper case labels,
restarting at ‘A’ for each subgame:
AB;AB,12/0,2ABC;0,1ab1bc2ca,CBA

The resulting string is then processed to find the lexicographically minimum
rotation of each boundary within each region, with characters relabelled as ap-
propriate, and sorted in lexicographical order to give the final canonical form:

0,1ab1bc2ca,ABC;0,2ABC/12,AB;AB

Note that the boundaries within a region can be reversed without affecting
the result, provided that all boundaries within the region are reversed.

It would be prohibitively expensive to perform a true canonicalisation6 that
finds the optimal relabelling of uppercase characters for positions in larger games,
so we compromise by performing a fast pseudo-canonicalisation at the expense
of creating some duplicate canonical forms. See [3] and [4] for details.

3 Boundary Matching

Generating all possible moves for a given position, then reducing these to their
canonical forms, is a time consuming process for larger game sizes. Instead, we
use a technique called boundary matching (BM) to reduce the number of moves
that are generated in the first place.

BM works by deriving an invariant form for each boundary relative to its
region, and moving most of the invariant filtering further up the processing
pipeline, before the moves are actually generated. The basic idea is to identify
equivalent boundaries within a region, then simply avoid generating duplicate
moves from/to boundaries if such moves have already been generated from/to
equivalent boundaries in that pass.

3.1 Boundary Equivalence

We describe two regions as equivalent if they have the same invariant form, and
all live vertices along any member boundary adjoin the same external regions.
We describe two boundaries within a region as equivalent if they have the same
invariant form, and all regions shared by live vertices along each boundary are
equivalent.

6 We prefer to use the full term “canonicalisation” rather than the abbreviation
“canonisation”; we do not claim that the algorithms perform miracles.

Boundary Matching for Realtime Sprouts 7

For example, consider the position shown in Figure 5. in which region 1
contains the boundaries AK, BC, DF, GH, I and J. Singleton vertices I and J are
obviously equivalent boundaries within this region. Boundaries AK, BC and GH are
also equivalent within this region, as each adjoin equivalent regions that adjoin
back to only region 1. Boundary DF does not have any equivalents, as the region
it adjoins (region 3) has a different internal boundary structure.

A

B

C

D

E

F

G

H

I J
K

0

1

2 3 4

Fig. 5. Within region 1, I and J are equivalent, and AK, BC and GH are equivalent.

The exact steps for calculating region equivalences are not important here,
as a singleton optimisation (described shortly in Section 3.4) simplifies this step.

3.2 Efficient Move Generation

If each equivalent boundary type is assigned an index t = 1 . . . T , then a boundary
profile of each region is provided by the multiset of component boundary type
indices. For example, region 1 in Figure 5 would have the boundary profile {1,
1, 2, 2, 2, 3}, where T = 3 equivalent boundary types.

Double-Boundary Moves: It is only necessary to generate double-boundary
moves between unique pairs of equivalent types, where the actual boundaries to
be used are selected randomly from the appropriate equivalent subset.

Double-boundary moves would be generated between equivalence types {1,
1}, {1, 2}, {1, 3}, {2, 2} and {2, 3} in our example. While this provides some
improvement, the real savings come from single-boundary moves.

Single-Boundary Moves: It is only necessary to generate single-boundary
moves from a single representative of each equivalent boundary type, chosen
at random from the appropriate equivalent subset, to itself. Further, it is only
necessary to generate partitions of the remaining boundaries within the region,
according to the powerset of the region’s boundary profile (excluding the source
boundary itself).

8 Boundary Matching for Interactive Sprouts

For our example profile of {1, 1, 2, 2, 2, 3}, generating single-boundary moves
from a representative boundary of equivalence type 1 would generate moves
defined by the following partitions: {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,2}, {2,3},
{1,2,2}, {1,2,3}, {1,2,2,2}, {1,2,2,3}, {1,2,2,2,3}, where the actual boundaries
used in each partition are again chosen randomly from the equivalence set with
that index.

3.3 Algorithms

Given the boundary profiles for a region R, as outlined above, the algorithms for
generating representative double-boundary and single-boundary moves within
R using BM optimisation are presented in Listings 1 and 2, respectively. In
each case, the algorithms avoid duplication by only processing boundaries of
equivalence type t once in each role as source and/or destination boundary. The
actual moves themselves are generated as per usual (see Section 2.2) from each
pairing of live vertices along each selected from/to boundary pair.

Algorithm 1 Double-Boundary Moves with BM

1. for each boundary type t1 = 1 . . . T
2. select boundary b1 of type t1 at random
3. for each live vertex vi=1...I in b1
4. for each boundary type t2 = t1 . . . T
5. select boundary b2 of type t2 at random, such that b1 6= b2
6. for each live vertex vj=1 ... J in b2
7. generate double-boundary move from vi to vj

Algorithm 2 Single-Boundary Moves with BM

1. for each boundary type t = 1 . . . T
2. select boundary b of type t at random
3. for each live vertex vi=1 ... I in b
4. for each live vertex vj=i ... I in b
5. if i 6= j or |vi|+ |vj | < 2
6. generate single-boundary moves from vi to vj (i may equal j)
7. one partition for each powerset entry (excluding t)

3.4 Singleton Optimisation

The approach described above provides significant savings in terms of reducing
combinatorial complexity, by avoiding effectively duplicate permutations. How-
ever, we can further improve the runtime of the technique by realising that
singleton boundaries comprised of a single vertex are: easy to detect; easier to

Boundary Matching for Realtime Sprouts 9

Table 1. Opening move generation without canonicalisation.

Without BM With BM
n O+

n Moves s Moves s

1 1 1 <0.001 1 <0.001
2 2 4 <0.001 3 <0.001
3 3 15 <0.001 4 <0.001
4 3 38 0.002 5 <0.001
5 4 90 0.004 6 <0.001
6 4 207 0.010 7 <0.001
7 5 469 0.029 8 <0.001
8 5 1.052 0.060 9 <0.001
9 6 2,340 0.071 10 <0.001
10 6 5,165 0.067 11 <0.001
11 7 11,319 0.073 12 <0.001
12 7 24,642 0.172 13 <0.001
13 8 53,326 0.413 14 <0.001
14 8 114,772 0.941 15 <0.001
15 9 245,859 2.203 16 <0.001
16 9 524,387 5.261 17 <0.001
17 10 1,114,124 13.408 18 <0.001
18 10 2,358,850 25.110 19 <0.001
19 11 4,798,038 59.962 20 <0.001
20 11 10,473,050 217.342 21 <0.001

match than other boundary types; the most likely boundary type to match oth-
ers (on average); and the most common boundary type, at least in the early
stages of a game.

It has proven sufficient in our tests to assign all such singleton boundaries to
equivalence group 1, and assign each remaining boundary to its own equivalence
group without attempting to match it with other boundaries. A typical boundary
profile will therefore look something like: {1, 1, 1, 1, 2, 3, 4, . . . }, with the
occurrences of index 1 reducing as the game progresses and singleton vertices
are consumed. This has the same effect as an optimisation used by Lemoine and
Viennot in their “Glop” combinatorial game solver, which skips all singleton
groups except the last in any position during move generation.7

The singleton optimisation avoids the need for potentially costly boundary
matching calculations for more complex cases. It appears that the choice to not
match more complex boundaries is compensated by the speed benefit of only
matching singleton boundaries, at least for the cases tried so far.

4 Performance

The approaches outlined above were implemented in Java 7 for performance
testing. For the boundary matching tests, each boundary profile was ordered by

7 http://sprouts.tuxfamily.org/wiki/doku.php?id=home

10 Boundary Matching for Interactive Sprouts

index, converted to a string, and a hash map maintained to store the relevant
powerset that contains the single-boundary move partitions for each distinct
profile. Powersets are calculated on-the-fly as required whenever a previously
unseen profile is encountered. Hence it is useful to seed the table by playing out
a number of random games whenever the program changes to a new game size n,
so that more commonly needed powersets are pre-generated during initialisation
rather than during crucial AI thinking time. All timings were made on a single
thread of a standard 2 GHz Intel i7 machine.

Test #1: Opening Move Generation: The first test concerns the generation
of opening moves with and without BM optimisation. Table 1 shows the number
of opening moves generated for games of size n = 1 to 20, and the time required
to generate each legal move set, with and without BM optimisation.

The computational cost of move generation without BM increases exponen-
tially with n, whereas BM demonstrates linear performance that requires less
than a millisecond for legal move generation regardless of n. Note that canoni-
calisation is not applied in either case here; these figures indicate the raw move
counts generated by each approach before invariant filtering.

The move counts with BM matching are one less than twice the number of
invariant forms in each case, as each partition in the powerset contains a mirror
image that is its complement. Unoptimised move generation (i.e. without BM)
starts to get too slow for realtime play from around n=12 upwards.

s

m

 .25

 0

 0 10 20 30

 with BM

without BM

Fig. 6. Convergence of move generation timings over 100 × n=10 games.

Test #2: In-Game Move Generation: The second test concerns the relative
performance of the BM optimisation over the course of a game. Table 2 shows the
average branching factor (BF) for each move m over 100 randomly played n=10
games, and timings required to generate the legal move sets with and without
BM. Note that full canonicalisation is performed in this case, to give accurate

Boundary Matching for Realtime Sprouts 11

Table 2. Branching factors and timings over 100 × n=10 games.

Without BM With BM
m Samples BF ms ms

0 100 6.00 318.147 0.698
1 100 21.72 183.094 3.141
2 100 25.12 90.098 5.473
3 100 28.30 49.610 5.550
4 100 28.43 30.916 6.632
5 100 25.82 21.304 6.589
6 100 25.74 15.856 7.196
7 100 24.75 11.787 6.968
8 100 22.35 10.233 7.066
9 100 20.98 8.593 6.599
10 100 18.35 6.926 5.704
11 100 16.48 5.524 5.276
12 100 13.89 4.480 4.806
13 100 12.19 3.517 4.115
14 100 10.80 3.246 3.458
15 100 9.15 2.620 2.966
16 100 7.79 2.280 2.465
17 100 7.32 1.986 2.027
18 100 5.85 1.540 1.603
19 100 4.47 1.107 1.273

20 100 3.23 0.817 0.895
21 100 2.37 0.598 0.613
22 100 1.58 0.336 0.365
23 96 0.71 0.133 0.151
24 58 0.26 0.342 0.061
25 15 0.13 0.044 0.017
26 2 0.00 0.010 0.008
27 0 — — —
28 0 — — —
29 0 — — —

branching factors, so timings with and without BM are greater than in Test
#1. The ruled line at the m=20 mark indicates the point at which games reach
the 2n mark (recall that all games must last at least 2n moves) and typically
enter the end game. These results are shown in Figure 6, in which the solid line
indicates timings with BM and the dotted line indicates timings without BM.

Move generation with BM is performed in reasonably constant time through-
out the course of each game, despite an increase in branching factor in the early-
to-mid game,8 while move generation with BM takes much longer at the start
of each game, dropping quickly until the performance of the two approaches
is almost indistinguishable from the mid-game onwards. Similar tests on larger

8 The early, mid and end games could be described as approximately covering moves
1 . . . n-1, n . . . 2n-1 and 2n . . . 3n-1, respectively, on average.

12 Boundary Matching for Interactive Sprouts

game sizes reveal a similar convergent trend in timings throughout the course of
games, although the initial discrepancy becomes much greater as n increases.

5 Discussion

Boundary matching provides significant savings for opening move generation in
Sprouts, especially for larger game sizes. For games of n=15 and higher, a single
(unoptimised) legal move generation can take much longer than the desired AI
thinking time of a few seconds, making BM – or some optimisation like it –
necessary to achieve realtime response in such cases.

The benefit of BM optimisation quickly diminishes until there is little to
choose between optimised and unoptimised performance around the mid-game,
but it is the early moves that count. An AI player that relies on the lookup of
known positions from pre-calculated win/loss tables is more likely to encounter
known positions towards the end game, as the game decomposes into simpler sub-
games. It is in the opening stages that an AI player, without complete win/loss
lookup information for the game size being played, really needs to maximise its
lookahead penetration into the game tree.

A caveat with using BM is that the distribution of legal moves produced will
not necessarily be the same as that of a random sampling of the search space,
which can be a factor if Monte Carlo playouts are involved. For example, the
10,473,050 opening moves of the N=20 game are composed of n(n− 1)/2 = 190
double-boundary moves and n2n−1 = 10,485,760 single-boundary moves, in a
ratio of 0.000018. However, the BM optimisation will only produce 1 (invariant)
double-boundary move and 20 (invariant with mirror reflection) single-boundary
moves, in a ratio of 0.05. Random sampling can be biased to reflect this inequity
(but care must be taken that the noise of single-boundary permutations do not
entirely drown out double-boundary moves for larger game sizes) or random
moves for playouts can be made directly from the state representation, choosing
move type, region and from/to boundaries with the appropriate probabilities.

6 Conclusion

One of the immediate challenges facing the implementation of AI Sprouts play-
ers is the problem of move generation at interactive speeds for larger game sizes.
The BM optimisation offers a solution by allowing fast, near-constant time move
generation for arbitrary positions in games of arbitrary size, without any appar-
ent drawbacks apart from the potential for random playout bias. Future work
might include the investigation of AI search methods, utilising the BM optimisa-
tion, for playing the game at arbitrary sizes with minimal corpus knowledge. It
would also be worth investigating whether BM performance might be improved
through the inclusion of other simple patterns in addition to singletons.

Acknowledgments. This work was funded by a QUT Vice-Chancellor’s Re-
search Fellowship as part of the project Games Without Frontiers.

Boundary Matching for Realtime Sprouts 13

References

1. Berlekamp, E. R., Conway, J. H. and Guy, R. K.: Winning Ways for Your Mathe-
matical Plays (Second Edition, vol. 3). AK Peters, Natick (2001)

2. Gardner, M.: Mathematical Games: Of Sprouts and Brussels Sprouts; Games with
a Topological Flavour. Sci. Amer. 217 (1), 112–115 (1967)

3. Applegate, D., Jacobson, G. and Sleator, D.: Computer Analysis of Sprouts. Tech-
nical Report CMU-CS-91-144, Carnegie Mellon University Computer Science Tech-
nical Report (1991)

4. Lemoine, J. and Viennot, S.: Computer Analysis of Sprouts with Nimbers. Technical
Report, arXiv:1008.2320v1 (2011)

5. Department of Mathematics, University of Utah: The Game of Sprouts, http://
www.math.utah.edu/~pa/Sprouts

6. Reiß, S.: 3Graph, http://www.reisz.de/3graph_en.htm
7. Gehrig, D.: Sprouts – A Game of Maths!, https://itunes.apple.com/au/app/

spouts-a-game-of-maths!/id426618463?mt=8

8. Focardi, R. and Luccio, F. L.: A Modular Approach to Sprouts. Discr. Appl. Math.
144 (3), 303–319 (2004)

