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BOUNDARY OBSERVABILITY FOR THE SPACE SEMI-DISCRETIZATIONS

OF THE 1 – D WAVE EQUATION

Juan Antonio Infante
1

and Enrique Zuazua
1,∗

Abstract. We consider space semi-discretizations of the 1 − d wave equation in a bounded interval
with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability,
i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the
energy concentrated on the boundary as the net-spacing h → 0. We prove that, due to the spurious
modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound.
We prove however a uniform bound in a subspace of solutions generated by the low frequencies of the
discrete system. When h → 0 this finite-dimensional spaces increase and eventually cover the whole
space. We thus recover the well-known observability property of the continuous system as the limit of
discrete observability estimates as the mesh size tends to zero. We consider both finite-difference and
finite-element semi-discretizations.

Résumé. On considère l’approximation par différences finies et éléments finis en espace de l’équation
des ondes 1 − d avec des conditions aux limites de Dirichlet homogènes. On étudie le problème de
l’observabilité frontière, i.e., la possibilité d’estimer l’énergie totale des solutions par l’énergie concen-
trée sur un extrême du bord, uniformement lorsque h, le pas de la discrétisation, tend vers zéro. On
démontre que cette estimation uniforme n’a pas lieu à cause d’un comportement singulier des fonctions
propres à hautes fréquences. Néanmoins, on démontre une estimation uniforme dans des sous-espaces
convenables de solutions qui, lorsque h → 0, finissent par couvrir l’espace d’énergie tout entier. On
retrouve donc la propriété d’observabilité, bien connue pour le système continu, comme la limite des
estimations discrètes lorsque le pas en espace tend vers zéro.
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1. Introduction: Finite-difference semi-discretizations

Consider the 1− d wave equation utt − uxx = 0, 0 < x < L, 0 < t < T
u(0, t) = u(L, t) = 0, 0 < t < T
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < L.

(1.1)
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System (1.1) is well-posed in the energy space H1
0 (0, L)×L2(0, L). More precisely, for any (u0, u1) ∈ H1

0 (0, L)×
L2(0, L) there exists a unique solution u ∈ C

(
[0, T ];H1

0(0, L)
)
∩ C1

(
[0, T ];L2(0, L)

)
.

The energy of solutions is given by

E(t) =
1

2

∫ L

0

[
| ut(x, t) |

2 + | ux(x, t) |2
]
dx (1.2)

and it is conserved along time, i.e.

E(t) = E(0), ∀0 < t < T. (1.3)

It is by now well known that when T > 2L, the total energy of solutions can be estimated uniformly by
means of the energy concentrated on one extreme of the boundary, say, x = L. More precisely, for any T > 2L
there exists C(T ) > 0 such that

E(0) ≤ C(T )

∫ T

0

| ux(L, t) |2 dt (1.4)

for every finite energy solution of (1.1).
When the energy concentrated on the boundary is measured in both extremes x = 0 and L, the inequality

holds for all T > L.
In this paper we focus on inequality (1.4).
Inequalities of the form (1.4) are related to the boundary controllability of the wave equation. We refer to [9]

and [11] for a systematic analysis of these issues, both in the context of wave equations and plate models.
In this paper we analyze the analogue of (1.4) for several space semi-discretizations of the wave equation.
Let us consider first the finite-difference semi-discretization to illustrate the kind of problems we have in

mind.
Given N ∈ IN we set h = L/(N + 1) and introduce the net

x0 = 0 < x1 = h < · · · < xN = Nh < xN+1 = L (1.5)

with xj = jh, j = 0, · · · , N + 1.
We then introduce the following finite-difference semi-discretization of (1.1) u′′j (t) =

[uj+1(t)+uj−1(t)−2uj(t)]
h2 , 0 < t < T, j = 1, · · · , N

u0(t) = uN+1(t) = 0, 0 < t < T
uj(0) = u0

j , u
′
j(0) = u1

j , j = 0, · · · , N + 1.

(1.6)

In (1.6) ′ denotes derivation with respect to time.
System (1.6) is a system of N linear differential equations with N unknowns u1, · · · , uN , since, in view of

the boundary conditions, u0 ≡ uN+1 ≡ 0.
Obviously, uj(t) is an approximation of u(xj , t), u being the solution of (1.1), provided the initial data(

u0
j , u

1
j

)
, j = 0, · · · , N + 1 are an approximation of the initial data in (1.1).

The energy of system (1.6) is given by

Eh(t) =
h

2

N∑
j=0

[
| u′j(t) |

2 +

∣∣∣∣uj+1(t)− uj(t)

h

∣∣∣∣2
]

(1.7)

which is a discretization of the continuous energy E.
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It is easy to see that the energy Eh is conserved along time for the solutions of (1.6), i.e.

Eh(t) = Eh(0), ∀0 < t < T. (1.8)

The main goal of this paper is to analyze the following discrete version of (1.4):

Eh(0) ≤ C(T, h)

∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt. (1.9)

Remark 1.1. Let us discuss the choice of the approximation −uN(t)/h for the normal derivative ux(L, t).
Needless to say, Taylor’s expansion suggests that the simplest approximation for ux(L, t) is

u(L, t)− u(L− h, t)

h

or, with the notation above,

ux(L, t) ∼
uN+1(t)− uN (t)

h
·

Taking into account that, due to the Dirichlet boundary conditions, uN+1 = 0, we deduce that

ux(L, t) ∼
−uN (t)

h
·

On the other hand, as we shall see in Section 2.1, it follows that −uN/h→ ux(L) as h→ 0 for each eigenfunction
when the frequency is fixed. This indicates that −uN (t)/h is also a good approximation for the solutions of the
wave equation (1.1) (see also Remark 2.1). 2

In view of (1.4) one may expect that, when T > 2L, there exists C = C(T ) > 0 independent of h such that
(1.9) holds for every solution of (1.6) and for every 0 < h < 1.

The first result of this paper asserts that this is false:

Theorem 1.1. For any T > 0, we have

sup
u solution of (1.6)

[
Eh(0)∫ T

0 | uN(t)/h |2 dt

]
→∞ as h→ 0. (1.10)

As we shall see, this is due to the spurious modes that the numerical scheme introduces at high frequencies. This
was already observed by R. Glowinski et al. in [3–5], in connection with the exact boundary controllability of
the wave equation in several space dimensions and the numerical implementation of the so-called HUM method
(see J.L. Lions [11]). In these works two methods were proposed to cure this high frequency pathology: (a) A
Tychonoff regularization procedure for the quadratic functional to be minimized when computing the controls;
(b) A filtering technique to eliminate the short wave length components of the solutions of the discrete system.
The efficiency of both methods was exhibited in these works by various numerical experiments.

To prove Theorem 1.1 we analyze the spectrum of (1.6) and we use discrete multiplier techniques to derive
sharp observability inequalities for the eigenvectors of the eigenvalue problem associated to (1.6). In order to
prove the positive counterpart of Theorem 1.1, i.e. inequalities of the form (1.9) which are uniform as h → 0,
we use discrete multiplier techniques. As we mentioned above, in order for these inequalities to be uniform,
one has to rule out the high frequency spurious modes introduced by the numerical scheme. This will be done
by considering suitable classes of solutions of (1.6) generated by the low frequency eigenvectors of (1.6), or, in
other words, by a suitable truncation of the Fourier development of solutions of (1.6). Thus, our approach is
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very close to the filtering technique mentioned above (we refer to Glowinski [3] for a complete discussion of this
issue).

To make our statements precise, let us consider the eigenvalue problem associated with (1.6): −
[
ϕj+1 + ϕj−1 − 2ϕj

h2

]
= λϕj , j = 1, · · · , N

ϕ0 = ϕN+1 = 0.
(1.11)

Let us denote by λ1(h), · · · , λN (h) the N eigenvalues of (1.11):

0 < λ1(h) < λ2(h) < · · · < λN (h). (1.12)

These eigenvalues can be computed explicitly. We have (see [8], p. 456):

λk(h) =
4

h2
sin2

(
πkh

2L

)
, k = 1, · · · , N. (1.13)

The eigenfunction ϕk = (ϕk,1, · · · , ϕk,n) associated to the eigenvalue λk(h) can also be computed explicitly:

ϕk,j = sin

(
j
πhk

L

)
, j = 1, · · · , N. (1.14)

Solutions of (1.6) admit a Fourier development on the basis of eigenvectors of system (1.11). More precisely,
every solution u = (u1, · · · , uN) of (1.6) can be written as

u(t) =
N∑
k=1

[
ak sin

(√
λk(h)t

)
+ bk cos

(√
λk(h)t

)]
ϕk (1.15)

for suitable coefficients ak, bk ∈ IR, k = 1, · · · , N , that can be computed explicitly in terms of the initial data
in (1.6).

Before getting into the discussion of the observability of solutions of (1.6) it is interesting to analyze the
boundary observability of the eigenvectors. The following Lemma provides the answer:

Lemma 1.1. For any eigenvector ϕ = (ϕ1, · · · , ϕN ) of system (1.11) the following identity holds:

h

N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 =
2L

4− λh2

∣∣∣ϕN
h

∣∣∣2 . (1.16)

This identity provides an explicit relation between the total energy of the eigenvectors (the left hand side of
(1.16)) and the energy concentrated on the extreme x = L which is represented by the quantity | ϕN/h |2.

On the other hand, it is easy to check that

λh2 < 4 (1.17)

for all h > 0 and all the eigenvalues of (1.11). But, obviously, (1.17) does not exclude the blow up of the
constant in the right hand side of (1.16). In fact, one can check that

λN (h)h2 → 4 as h→ 0. (1.18)

Therefore blow-up occurs. This immediately yields the negative result of Theorem 1.1.
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In order to obtain a positive counterpart to Theorem 1.1 we have to introduce suitable subclasses of solutions
of (1.6). Given any 0 < γ < 4 we introduce the class Ch(γ) of solutions of (1.6) generated by eigenvectors of
(1.11) associated with eigenvalues such that

λh2 ≤ γ. (1.19)

More precisely,

Ch(γ) :=

u =
∑

λk(h)≤γh−2

[
ak sin

(√
λk(h)t

)
+ bk cos

(√
λk(h)t

)]
ϕk with ak, bk ∈ IR

 . (1.20)

According to Lemma 1.1, the energy of every eigenvector entering in Ch(γ) can be estimated uniformly in terms
of the energy concentrated on the boundary.

The following result guarantees that this is in fact the case for all solutions of (1.6) in the class Ch(γ) provided
the length T of the time interval is large enough:

Theorem 1.2. Assume that 0 < γ < 4. Then, there exists T (γ) ≥ 2L such that for all T > T (γ) there exists
C = C(T, γ) such that (1.9) holds for every solution of (1.6) in the class Ch(γ), uniformly as h→ 0.

Moreover,

(a) T (γ)↗∞ as γ ↗ 4 and T (γ)↘ 2L as γ ↘ 0.
(b) C(T, γ)↘ L

2(T−2L) as γ ↘ 0.

Remark 1.2. Theorem 1.2 asserts that the uniform observability inequality (1.9) holds in the class Ch(γ)
provided T is large enough. In fact, T (γ)→∞ as γ → 4. This is due to the fact that the gap between the roots
of consecutive eigenvalues vanishes as they approach the critical value. However, as γ → 0 the observability
time T (γ) converges to 2L, which is the observability time for system (1.1). Note that, according to this result,
the uniform observability inequality (1.9) holds for T > 2L for solutions of (1.6) of the form

u =
∑

λk(h)≤µ(h)

[
ak sin

(√
λk(h)t

)
+ bk cos

(√
λk(h)t

)]
ϕk (1.21)

with µ(h) such that

µ(h)h2 → 0 as h→ 0. (1.22)

This allows to recover the observability of the original system (1.1) as the limit as h→ 0 of the observability of
solutions of the form (1.21)-(1.22) of the semi-discrete system (1.6).

We also observe that the constant C(T, γ) of the observability inequality (1.9) converges to L/2(T − 2L),
which is the constant that one obtains by multiplier techniques for the observability of the continuous system
(1.1) (see [11]). 2

Remark 1.3. It is easy to see that system (1.6) is observable. Since it is a system of ode’s, we deduce that it
is observable for all T > 0 (see [10]). Therefore, for any h > 0 and T > 0 there exits C(T, h) > 0 such that
(1.9) holds for any solution of (1.6). However, in order to get a uniform (as h → 0) observability constant we
need to filter the high frequencies (i.e., to consider solutions in the class Ch(γ)) and to take T large enough. 2

Roughly speaking, Theorem 1.2 guarantees that the semi-discrete systems are uniformly observable as h→ 0
provided the high frequencies are filtered.

We shall give two proofs of Theorem 1.2. The first one is an adaptation of the classical multiplier techniques
that are used to prove the observability of wave and plate equations (see [9, 11]). The second one is based on
the classical inequality by Ingham [7] for non-harmonic Fourier series.
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One may think that these results are due to the particular finite-difference discretization we have considered.
But this is not the case. We also consider the finite-element space semi-discretization and obtain similar results,
both, in what concerns the negative result of Theorem 1.1 but also the positive one of Theorem 1.2.

It is also worth mentioning that the phenomena we have described here for the discretizations of the wave
equation have been found earlier in the context of the observability of the 1 − d wave equation with rapidly
oscillating periodic coefficients (see [1] and [2]). Roughly, in both cases, the interaction of waves with the
microstructure or the discrete mesh produces spurious high frequency vibrations that are not observed in the
limit continuous model.

The rest of the paper is organized as follows. Section 2 is devoted to the analysis of the finite-difference
approximation. In particular, we develop and prove the results stated in this introduction. Section 3 is dedicated
to the analysis of the finite-element discretization. In Section 4 we briefly compare finite-difference and finite-
element semi-discretizations.

2. Finite-difference semi-discretization

In this section we analyze in detail the problem of the observability of the finite-difference space semi-
discretization (1.6) of the wave equation (1.1) that we have discussed in the introduction.

First of all we perform a careful analysis of the spectrum. In particular we prove Lemma 1.1 and, as an
immediate consequence of it, Theorem 1.1. We then prove Theorem 1.2 in detail using multiplier techniques.
We also indicate how the same results can be recovered using well-known results on non-harmonic Fourier series.

2.1. Spectral analysis

Let us recall the system that eigenfunctions ϕ = (ϕ1, · · · , ϕN ) and eigenvalues λ of system (1.6) satisfy: −
[
ϕj+1 + ϕj−1 − 2ϕj

h2

]
= λϕj , j = 1, · · · , N

ϕ0 = ϕN+1 = 0.
(2.1)

This system is the eigenvalue problem of the matrix

A =
1

h2


2 −1 0 0
−1 2 −1
· · · · ·

−1 2 −1
0 −1 2

 .

The eigenvalues and eigenvectors of system (2.1) (or, of matrix A) can be computed explicitly. We have (see [8],
p. 456):

λk(h) =
4

h2
sin2

(
πkh

2L

)
, j = 1, · · · , N (2.2)

and

ϕk = (ϕk,j) = sin

(
jπhk

L

)
, k = 1, · · · , N, j = 1, · · · , N. (2.3)

Observe in particular that eigenvectors of the discrete system coincide with the eigenfunctions sin
(
πkx
L

)
of the

continuous one. On the other hand, for k fixed,

λk(h)→
π2k2

L2
, as h→ 0 (2.4)
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which is the kth eigenvalue of the continuous system.

Lemma 2.1. For any eigenvector ϕ with eigenvalue λ of (2.1) the following identity holds:

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 = λ

N∑
j=1

| ϕj |
2 . (2.5)

If ϕk and ϕ` are eigenvectors associated to eigenvalues λk 6= λ` it follows that

N∑
j=0

(ϕk,j − ϕk,j+1) (ϕ`,j − ϕ`,j+1) = 0. (2.6)

Proof. Multiplying in (2.1) by ϕj and adding for j = 1, · · · , N the identity (2.5) follows immediately. (Note
that (2.5) can be read as (Aϕ,ϕ) = λ(ϕ,ϕ)).

In order to get (2.6) we point out that, A being symmetric, eigenvectors associated with distinct eigenvalues
are orthogonal and A-orthogonal, i.e., (ϕk, ϕ`) = 0 and (Aϕk, ϕ`) = 0. Consequently

N∑
j=1

ϕk,jϕ`,j = 0 (2.7)

and

0 =
N∑
j=1

(ϕk,j+1 + ϕk,j−1 − 2ϕk,j)ϕ`,j =
N∑
j=1

(ϕk,j+1 + ϕk,j−1)ϕ`,j .

Therefore

N∑
j=1

ϕk,j+1ϕ`,j = −
N∑
j=1

ϕk,j−1ϕ`,j = −
N∑
j=1

ϕk,jϕ`,j+1.

In other words

N∑
j=1

[ϕk,j+1ϕ`,j + ϕk,jϕ`,j+1] = 0, (2.8)

which, in view of (2.7) is equivalent to (2.6). 2

The gap between consecutive eigenvalues plays an important role on the analysis of the boundary observability
problem, since eigenvalues that are very close produce time harmonics at x = L that are almost indistinguishible
for short intervals of time. For the continuous model we have

√
λk+1 −

√
λk =

(k + 1)π

L
−
kπ

L
=
π

L
· (2.9)

Thus, the gap, π
L

, is independent of the frequency.
However, as we shall see, the gap between consecutive eigenvalues in the discrete problem decreases at high

frequencies and it is of the order of h as h→ 0.
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We have

√
λk+1(h)−

√
λk(h) =

2

h

[
sin

(
πh(k + 1)

2L

)
− sin

(
πhk

2L

)]
=

2

h

[
sin

(
πhk

2L

)(
cos

(
πh

2L

)
− 1

)
+ sin

(
πh

2L

)
cos

(
πhk

2L

)]
≤

2

h

∣∣∣∣1− cos

(
πh

2L

)∣∣∣∣+
π

L
cos

(
πhk

2L

)
and, taking into account that (N + 1)h = L,

cos

(
πhk

2L

)
= cos

(
π

2
+

(k − (N + 1))hπ

2L

)
= sin

(
((N + 1)− k)hπ

2L

)
and that

2

h

∣∣∣∣1− cos

(
πh

2L

)∣∣∣∣ ≤ π2h

2L2

we deduce

√
λk+1(h)−

√
λk(h) ≤

π2h

2L2
+
π

L
sin

(
((N + 1)− k)hπ

2L

)
. (2.10)

Therefore, as soon as

N + 1− k ≤ j ⇔ k ≥ N + 1− j (2.11)

for some j ∈ IN we have

√
λk+1(h)−

√
λk(h) ≤

π2h

2L2
+
π2jh

2L2
=

π2

2L2
h(j + 1). (2.12)

This shows that the gap between the roots of the largest j eigenvalues corresponding to the indexes k =
N + 1− j, N + 2− j, · · · , N is of the order of h, with a multiplicative factor that increases as j increases.

In particular, the gap between the largest eigenvalues may be bounded above as follows

√
λN (h)−

√
λN−1(h) ≤

3π2

2L2
h→ 0, as h→ 0.

Reciprocally, it can be shown that the gap remains bounded below for the low eigenvalues. Indeed,

√
λk+1(h)−

√
λk(h) ≥

2

h
sin

(
πh

2L

)
cos

(
πhk

2L

)
−
π2h

2L2
=
[π
L
−O(h)

]
cos

(
πhk

2L

)
−
π2h

2L2
· (2.13)

The right hand side of this inequality converges to π
L

as h → 0 when k remains bounded, or even if k is
unbounded but hk is bounded above by δL with 0 < δ < 1. Recall that π/L is the gap between the roots of
the eigenvalues in the continuous model.
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2.2. Boundary observability of eigenvectors

The goal of this section is to prove the identity (1.16) of Lemma 1.1.
In view of the explicit values of the eigenvalues and eigenvectors in (2.2) and (2.3) this identity can be checked

easily. However, we shall prove it using multiplier techniques.
First of all, we normalize the eigenvector so that

h

N∑
j=1

|ϕj |
2 = 1. (2.14)

Now, (2.5) becomes

h

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 = λ. (2.15)

Thus,

λ =
2

h

N∑
j=1

|ϕj |
2 −

2

h

N∑
j=1

ϕjϕj+1

and so,

N∑
j=1

ϕjϕj+1 =
1

h
−
λh

2
· (2.16)

We multiply in (2.1) by j(ϕj+1 − ϕj−1)/2 and add for j = 1, · · · , N (note that this is a discrete version of the
multiplier xϕx). We obtain on the left hand side

−
1

h2

N∑
j=1

[ϕj+1 + ϕj−1 − 2ϕj] j
(ϕj+1 − ϕj−1)

2
= −

1

h2

N∑
j=1

j

2

[
|ϕj+1|

2 − |ϕj−1|
2
]

+
1

h2

N∑
j=1

j (ϕj+1 − ϕj−1)ϕj

=
1

h2

N∑
j=1

|ϕj |
2 −

N + 1

2h2
| ϕN |

2 −
1

h2

N∑
j=1

ϕjϕj+1

=
λ

2h
−
N + 1

2

∣∣∣ϕN
h

∣∣∣2 ,
by virtue of (2.14) and (2.16)

On the right hand side we have,

λ

N∑
j=1

jϕj

(
ϕj+1 − ϕj−1

2

)
= −

λ

2

N∑
j=1

ϕjϕj+1 = −
λ

2

(
1

h
−
λh

2

)
·

Therefore

λ

2h
−
N + 1

2

∣∣∣ϕN
h

∣∣∣2 = −
λ

2

(
1

h
−
λh

2

)
· (2.17)

In other words,

L

2

∣∣∣ϕN
h

∣∣∣2 =
(N + 1)h

2

∣∣∣ϕN
h

∣∣∣2 =
λ

2
+
λ

2
−
λ2h2

4
= λ

(
1−

λh2

4

)
· (2.18)
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Combining (2.18) and (2.15) we deduce that

h

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 =
2L

(4− λh2)

∣∣∣ϕN
h

∣∣∣2 ·
This completes the proof of Lemma 1.1. 2

Remark 2.1. In Remark 1.1 we have justified the choice of −uN(t)/h as an approximation of ux(L, t). In view
of the explicit form of the eigenvectors ϕk in (2.3) it is immediate to see that for any k ≥ 1 fixed

−
ϕk,N

h
→ ∂x

(
sin

(
kπx

L

))∣∣∣∣
x=L

as h→ 0

which is the normal derivative of the kth eigenfunction ϕk(x) = sin(kπxL ) of the continuous wave equation.
For fixed k ≥ 1, we can also pass to the limit in (1.16) of Lemma 1.1. We then obtain the identity∫ L

0

∣∣ϕkx(x)
∣∣2 dx =

L

2

∣∣ϕkx(L)
∣∣2 .

Observe however that identity (1.16) degenerates when λh2 → 4 as h → 0. This is also a typical fact in the
numerical approximation of wave equations which is due to the spurious high frequency oscillations that the
numerical scheme introduces (see [3]). 2

2.3. Proof of the non-uniform observability

This section is devoted to prove Theorem 1.1. As indicated in the Introduction, it is an immediate consequence
of Lemma 1.1. Indeed, let u be the solution of (1.6) associated to the Nth eigenvector, i.e.,

u = ei
√
λN (h)tϕN . (2.19)

According to Lemma 1.1 we have

∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt = T
∣∣∣ϕN,N

h

∣∣∣2 =
Th

2L

(
4− λN (h)h2

) N∑
j=0

∣∣∣∣ϕN,j − ϕN,j+1

h

∣∣∣∣2 · (2.20)

On the other hand

Eh(0) =
h

2

N∑
j=0

[
|ϕN,j − ϕN,j+1|

2

h2
+ λN (h) |ϕN,j|

2

]
(2.21)

= h

N∑
j=0

[
|ϕN,j − ϕN,j+1|

2

h2

]
·

In view of (2.20) and (2.21) we deduce that

Eh(0)∫ T

0

|uN(t)/h|2 dt

=
2L

T (4− λN (h)h2)
· (2.22)
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Moreover, in view of (2.2):

λN (h)h2 = 4 sin2

(
πNh

2L

)
= 4 sin2

(
π

2
−
hπ

2L

)
(2.23)

= 4 cos2

(
hπ

2L

)
→ 4 as h→ 0.

Combining (2.22) and (2.23), Theorem 1.1 follows. 2

2.4. Boundary observability of the discrete wave equation: the multiplier method

This section is devoted to prove Theorem 1.2 using the multiplier method. As we shall see in Section 2.5
below, the results of this section can be obtained more directly by means of Fourier series techniques. However,
we think that the development we present here of the discrete multiplier techniques is of independent interest
in view of its potential applications in the analysis of similar problems in several space dimensions.

First of all we establish some basic identities.

Lemma 2.2. (Conservation of energy) For any h > 0 and u solution of (1.6) we have

Eh(t) = Eh(0), ∀t ∈ [0, T ]. (2.24)

Proof. We multiply in (1.6) by u′j(t) and add for j = 1, · · · , N .
We have

N∑
j=1

u′′j u
′
j =

1

h2

N∑
j=1

(uj+1 + uj−1 − 2uj)u
′
j . (2.25)

On the other hand,

N∑
j=1

u′′j u
′
j =

1

2

d

dt

N∑
j=1

| u′j |
2, (2.26)

and

−
N∑
j=1

(uj+1 + uj−1 − 2uj)u
′
j =

1

2

d

dt

N∑
j=0

| uj − uj+1 |
2 · (2.27)

Combining (2.25–2.27) we deduce that

d

dt

N∑
j=0

[
| u′j |

2 +

∣∣∣∣uj − uj+1

h

∣∣∣∣2
]

= 0

which is equivalent to (2.24). 2

Lemma 2.3. For any h > 0 and u solution of (1.6) we have

h

2

N∑
j=0

∫ T

0

[
u′ju
′
j+1 +

∣∣∣∣uj+1 − uj
h

∣∣∣∣2
]
dt+Xh(t)

∣∣∣∣∣∣
T

0

=
L

2

∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt (2.28)
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with

Xh(t) = h

N∑
j=1

j

(
uj+1 − uj−1

2

)
u′j . (2.29)

Remark 2.2. Identity (2.28) is the discrete analogue of the well-known identity for the 1− d wave equation
(1.1) obtained by multipliers that reads as follows (see [11]):

1

2

∫ T

0

∫ L

0

[
| ut |

2 + | ux |
2
]
dxdt +X(t)

∣∣∣∣∣
T

0

=
L

2

∫ T

0

| ux(1, t) |2 dt (2.30)

with

X(t) =

∫ L

0

xux ut dx. (2.31)

Note that the main difference between (2.28)-(2.29) and (2.30)-(2.31) is that, in (2.28), we get

h

N∑
j=0

∫ T

0

u′ju
′
j+1dt

as a discretization of
∫ T

0

∫ L
0
u2
tdxdt, which is not a positive definite quantity. 2

Proof of Lemma 2.3. We multiply in (1.6) by j (uj+1 − uj−1) /2 which is a discrete version of the classical
multiplier xux for the wave equation. We obtain

N∑
j=1

∫ T

0

u′′j j
(uj+1 − uj−1)

2
dt =

1

h2

N∑
j=1

∫ T

0

(uj+1 + uj−1 − 2uj) j
(uj+1 − uj−1)

2
dt. (2.32)

We now develop the two terms in this identity. For the first one we have:

N∑
j=1

∫ T

0

u′′j j
(uj+1 − uj−1)

2
dt = −

N∑
j=1

∫ T

0

u′jj

(
u′j+1 − u

′
j−1

)
2

dt+
N∑
j=1

u′jj
(uj+1 − uj−1)

2

∣∣∣∣T
0

=
1

2

N∑
j=1

∫ T

0

u′ju
′
j+1dt+

N∑
j=1

u′jj
(uj+1 − uj−1)

2

∣∣∣∣∣∣
T

0

. (2.33)
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On the other hand,

N∑
j=1

∫ T

0

(uj+1 + uj−1 − 2uj) j
(uj+1 − uj−1)

2
dt =

1

2

N∑
j=1

∫ T

0

j
[
| uj+1 |

2 − | uj−1 |
2
]
dt

−
N∑
j=1

∫ T

0

juj(uj+1 − uj−1)dt

= −
N∑
j=1

∫ T

0

| uj |
2 +

(N + 1)

2

∫ T

0

| uN |
2 dt+

N∑
j=1

∫ T

0

ujuj+1dt

= −
1

2

N∑
j=0

∫ T

0

| uj − uj+1 |
2 dt+

(N + 1)

2

∫ T

0

| uN |
2 dt. (2.34)

Combining (2.32–2.34) we deduce that

h

2

N∑
j=0

∫ T

0

[
u′ju
′
j+1 +

| uj − uj+1 |2

h2

]
dt+Xh(t)

∣∣∣∣∣∣
T

0

=
(N + 1)h

2

∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt
=

L

2

∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt.
This concludes the proof of the Lemma. 2

Lemma 2.4. (Equipartition of energy) For any h > 0 and u solution of (1.6) the following identity holds:

−h
N∑
j=1

∫ T

0

| u′j |
2 dt+ h

N∑
j=0

∫ T

0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 dt+ Yh(t)

∣∣∣∣∣∣
T

0

= 0 (2.35)

with

Yh(t) = h

N∑
j=1

u′juj

∣∣∣∣∣∣
T

0

. (2.36)

Proof. We multiply in (1.6) by uj. Note that this is the discrete version of the classical multiplier u for the
wave equation. We obtain

N∑
j=1

∫ T

0

u′′j ujdt−
N∑
j=1

∫ T

0

(uj+1 + uj−1 − 2uj)

h2
ujdt = 0. (2.37)

On the other hand,

N∑
j=1

∫ T

0

u′′j ujdt = −
N∑
j=1

∫ T

0

| u′j |
2 dt+

N∑
j=1

u′juj

∣∣∣∣∣∣
T

0

(2.38)
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and, again,

N∑
j=1

(uj+1 + uj−1 − 2uj)uj = −
N∑
j=0

| uj − uj+1 |
2 . (2.39)

Combining (2.37–2.39) we deduce that (2.35) holds. 2

We may now proceed to the proof of Theorem 1.2.
In view of the conservation of energy, identity (2.28) may be rewritten as

TEh(0) +
h

2

N∑
j=0

∫ T

0

[
u′ju
′
j+1− | u

′
j |

2
]
dt+Xh(t)

∣∣∣∣∣
T

0

=
L

2

∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt. (2.40)

On the other hand

N∑
j=0

∫ T

0

[
u′ju
′
j+1− | u

′
j |

2
]
dt = −

1

2

N∑
j=0

∫ T

0

| u′j − u
′
j+1 |

2 dt. (2.41)

The right hand side of (2.41) can be estimated as follows. Let Λ be the largest eigenvalue in the Fourier
development of u. Then

u =
∑

|µk|≤
√

Λ

ake
iµktϕk (2.42)

with µk =
√
λk for k > 0 and µ−k = −µk. Therefore

u′ = i
∑

|µk|≤
√

Λ

akµke
iµktϕk. (2.43)

Thus

N∑
j=0

∣∣u′j − u′j+1

∣∣2 =
N∑
j=0

∣∣∣∣∣∣
∑

|µk|≤
√

Λ

akµke
iµkt

(
ϕk,j − ϕk,j+1

)∣∣∣∣∣∣
2

(2.44)

=
N∑
j=0

∑
|µk|≤

√
Λ

µ2
k | ak |

2
∣∣ϕk,j − ϕk,j+1

∣∣2
+

N∑
j=0

∑
|µk|≤

√
Λ

|µ`|≤
√

Λ
µk 6=µ`

µkµ`e
i(µk−µt)t (ϕk,j − ϕk,j+1) (ϕ`,j − ϕ`,j+1) .
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In view of the identities (2.5–2.6) the term in (2.44) can be rewritten as

N∑
j=0

| u′j − u
′
j+1 |

2 =
∑

|µk|≤
√

Λ

| ak |
2 λ2

kh
2
N∑
j=1

|ϕk,j |
2

≤ Λ
∑

|µk|≤
√

Λ

| ak |
2 λkh

2
N∑
j=1

|ϕk,j |
2

= Λh2
N∑
j=1

∣∣u′j∣∣2 .
Therefore

N∑
j=0

∫ T

0

[
u′ju
′
j+1 −

∣∣u′j∣∣2] dt ≥ −Λh2

2

N∑
j=1

∫ T

0

∣∣u′j∣∣2 dt. (2.45)

Combining (2.40) and (2.45) we deduce that

TEh(0)−
Λh2

4
h

N∑
j=0

∫ T

0

∣∣u′j∣∣2 dt+Xh(t)

∣∣∣∣∣∣
T

0

≤
L

2

∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt. (2.46)

In view of the equipartition of energy identity (2.35) it follows that

h

N∑
j=1

∫ T

0

∣∣u′j∣∣2 dt =

∫ T

0

Eh(t)dt +
1

2
Yh(t)

∣∣∣∣T
0

= TEh(0) +
1

2
Yh(t)

∣∣∣∣T
0

. (2.47)

Combining (2.46) and (2.47) we deduce that

T

(
1−

Λh2

4

)
Eh(0) + Zh(t)

∣∣∣∣T
0

≤
L

2

∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt (2.48)

with

Zh(t) = Xh(t)−
Λh2

8
Yh(t) (2.49)

= h

N∑
j=1

u′j

[
j

(uj+1 − uj−1)

2
−

Λh2

8
uj

]
,

for every solution of (1.6) in which Λ is the largest eigenvalue entering in its Fourier expansion.
The following provides an estimate on the term Zh:

Lemma 2.5. For any h > 0, t ∈ [0, T ] and u solution of (1.6) in which Λ is the upper bound on the eigenvalues
entering in its Fourier development, it follows that

| Zh(t) |≤

√
L2 −

Λh4

16
+

3Λh2

16λ1
Eh(0). (2.50)
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Proof. We do not make explicit the time dependence to simplify the notation. We have

| Zh |≤ h

 N∑
j=1

∣∣u′j∣∣2
1/2  N∑

j=1

∣∣∣∣j (uj+1 − uj−1)

2
+ ηuj

∣∣∣∣2
1/2

(2.51)

with η = −Λh2/8.
On the other hand

h

N∑
j=1

∣∣∣∣j (uj+1 − uj−1)

2
+ ηuj

∣∣∣∣2 = h

N∑
j=1

[
j2

4
|uj+1 − uj−1|

2 + η2u2
j + ηj (uj+1 − uj−1)uj

]

≤ h

N∑
j=0

[
j2

2
|uj+1 − uj |

2
+
j2

2
|uj − uj−1|

2
+ η2u2

j − ηujuj+1

]

≤ L2h

N∑
j=0

| uj − uj+1 |2

h2
− | η | h

N∑
j=1

(
u2
j − ujuj+1

)
+
[
η2+ | η |

]
h

N∑
j=1

u2
j

=

(
L2 −

| η | h2

2

)
h

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 +
[
η2+ | η |

]
h

N∑
j=1

u2
j

=

[
L2 −

| η | h2

2
+

(
η2+ | η |

)
λ1

]
h

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2

≤

[
L2 −

Λh4

16
+

3Λh2

16λ1

]
h

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 . (2.52)

In the last step we have used the fact that

h

N∑
j=1

u2
j ≤

1

λ1
h

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2
which is the discrete version of Poincaré’s inequality and can be deduced easily from (2.5–2.6). We have also
used that η2+ | η |≤ 3

2 | η | which is a consequence of the fact that | η |= Λh2/8 ≤ 1/2 as it is immediately seen
from (2.2).

Combining (2.51–2.52) we deduce that

| Zh | ≤

√
L2 −

Λh4

16
+

3Λh2

16λ1

h N∑
j=1

∣∣u′j∣∣2
1/2h N∑

j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2
1/2

(2.53)

≤

√
L2 −

Λh4

16
+

3Λh2

16λ1
Eh(0).

2

Using (2.48) and (2.50) we deduce thatT (1− Λh2/4)− 2

√
L2 −

Λh4

16
+

3Λh2

16λ1

Eh(0) ≤
L

2

∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt. (2.54)
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As a consequence of (2.54) and taking into account that Λ = γ/h2 in the class of solutions Ch(γ) of system (1.6)
we deduce that

Eh(0) ≤
L

2
(
T (1− γ/4)− 2

√
L2 + γ(3/λ1 − h2)/16

) ∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt
provided

T > 2

√
L2 −

γh2

16
+

3γ

16λ1

/
(1− γ/4).

Taking into account that λ1 ≥ π2/2L2 for h sufficiently small, the statement of Theorem 1.2 holds with

T (γ) =
2
√
L2(1 + 3γ/8π2)− γh2/16

1− γ/4
(2.55)

and

C(T, γ) =
L

2
(
T (1− γ/4)− 2

√
L2(1 + 3γ/8π2)− γh2/16

) · (2.56)

2.5. Boundary observability of the semi-discrete wave equation: non-harmonic Fourier
series

In this section we prove Theorem 1.2 using well known results from the theory of nonharmonic Fourier series.
To do that we need an estimate between the roots of consecutive eigenvalues entering in the Fourier devel-

opment of the solutions of (1.6) in the class Ch(γ). We have

Lemma 2.6. Assume that

γ = 4 sin2
(πε

2

)
(2.57)

for some 0 ≤ ε < 1. Then √
λj+1(h)−

√
λj(h) ≥

π

L
cos
(πε

2

)
(2.58)

for all eigenvalues in the range

λh2 ≤ γ. (2.59)

Remark 2.3. Note that every 0 ≤ γ < 4 can be written in the form (2.57) for some 0 ≤ ε < 1. Note also that
the gap given in (2.58) tends to π/L, the gap in the continuous wave equation, as ε → 0, i.e., as γ → 0. This
is consistent with the estimates of Section 2.2 in which we observed that the gap for large eigenvalues is of the
order of h. 2

Proof of Lemma 2.6. In view of the expression (2.2) the eigenvalues λ satisfy (2.59) with γ as in (2.57) if and
only if

(j + 1)h ≤ εL. (2.60)

Let us now compute the gap:√
λj+1(h)−

√
λj(h) =

2

h

[
sin

(
π(j + 1)h

2L

)
− sin

(
πjh

2L

)]
=
π

L
cos(ξ) (2.61)
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for some ξ ∈
[
πjh
2L ,

π(j+1)h
2L

]
. In view of (2.60), 0 ≤ ξ ≤ πε

2 and therefore cos ξ ≥ cos(πε/2). Thus (2.58) holds.
2

According to Ingham’s inequality [7] and in view of Lemma 2.6 it follows that for any 0 < ε < 1 and
T > 2L

cos(πε/2) there exist positive constants C1(T, ε), C2(T, ε) > 0 such that

C1(T, ε)
∑

|µk|h≤
√
γ(ε)

| ak |
2 ≤

∫ T

0

∣∣∣∣∣∣∣
∑

|µk|h≤
√
γ(ε)

ake
iµkt

∣∣∣∣∣∣∣
2

dt (2.62)

≤ C2(T, ε)
∑

λh2≤γ(ε)

| ak |
2,

with

γ(ε) = 4 sin2(πε/2). (2.63)

On the other hand, in the range of eigenvalues

λh2 ≤ γ(ε), (2.64)

according to the identity of Lemma 1.1 it follows that

h

N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 ≤ 2L

4− γ(ε)

∣∣∣ϕN
h

∣∣∣2 =
L

2 cos2(πε/2)

∣∣∣ϕN
h

∣∣∣2 (2.65)

for any eigenvector ϕ = (ϕ1, · · · , ϕN ) associated to an eigenvalue λ in the range (2.64).
Let us now consider a solution u of (1.6) in the class Ch(γ(ε)). It can be written as

u =
∑

|µk(h)|h≤
√
γ(ε)

ake
iµk(h)tϕk. (2.66)

According to (2.62) and (2.65) we deduce that, for T > 2L/ cos(πε/2),

∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt =

∫ T

0

∣∣∣∣∣∣∣
∑

|µk|h≤
√
γ(ε)

ake
iµk(h)tϕk,N

∣∣∣∣∣∣∣
2

≥ C1(T, ε)
∑

|µk|h≤
√
γ(ε)

| ak |
2| ϕk,N |

2 (2.67)

≥
C1(T, ε)L

2 cos2(πε/2)

∑
|µk|h≤

√
γ(ε)

| ak |
2 h

N∑
j=0

∣∣∣∣ϕk,j+1 − ϕk,j
h

∣∣∣∣2 . (2.68)
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Moreover,

Eh(0) =
1

2

∑
|µk|h≤

√
γ(ε)

| ak |2 λkh N∑
j=1

| ϕk,j |
2

+
1

2

∑
|µk|h≤

√
γ(ε)

| ak |2 h N∑
j=0

∣∣∣∣ϕk,j+1 − ϕk,j
h

∣∣∣∣2


=
∑

|µk|h≤
√
γ(ε)

| ak |2 h N∑
j=0

∣∣∣∣ϕk,j+1 − ϕk,j
h

∣∣∣∣2
 .

Therefore, as a consequence of (2.67) it follows that

Eh(0) ≤
2 cos2(πε/2)

LC1(T, ε)

∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt (2.69)

for any T > 2L/ cos(πε/2) and for any u ∈ Ch(γ(ε)).
Therefore, Theorem 1.2 holds with

T (γ) =
2L√

1− γ/4
(2.70)

and

C(T, γ) =
2(1− γ/4)

LC1(T, ε)
(2.71)

provided γ = γ(ε).
Observe that the estimate (2.70) obtained by Ingham’s inequality for the observability time is slightly better

than (2.55) obtained by multipliers. However both expressions coincide in the limit when h→ 0.
Note also that, according to (2.62), the reverse inequality also holds, i.e.,∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2dt ≤ C Eh(0). (2.72)

However, from the identity (2.28) it is easy to see that (2.72) holds for all h > 0, every solution u of (1.6) and
all T > 0 with C = C(T ) > 0 independent of h.

3. Finite-element semi-discretization

3.1. Problem formulation

Let us consider the finite-element space semi-discretization of the wave equation (1.1):{
2
3u
′′
j + 1

6u
′′
j+1 + 1

6u
′′
j−1 =

[uj+1+uj−1−2uj ]
h2 , 0 < t < T, j = 1, · · · , N

u0 = uN+1 = 0.
(3.1)

Let us recall that system (3.1) is obtained by a Galerkin approximation of the wave equation when the basis of
H1

0 (0, L) is built by means of finite elements

ej(x) =

[
1−
| x− xj |

h

]+

, j = 1, · · · , N (3.2)

with xj = jh.
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The Galerkin approximation of (1.1) is given by
u =

N∑
j=1

uj(t)ej(x)∫ L

0

u′′ekdx =

∫ L

0

uxek,xdx, 0 < t < T, ∀k = 1, · · · , N.

(3.3)

System (3.1) can be easily derived taking into account that
∫ 1

0

ejekdx =
h

6
if j = j + 1, j − 1,

∫ L

0

ejekdx = 0 if | k − j |≥ 2∫ L

0

| ej |
2 dx =

2h

3
,∀j = 1, · · · , N,

(3.4)


∫ L

0

ej,xek,xdx = −
1

h
if k = j − 1, j + 1;

∫ T

0

ej,xek,xdx = 0 if | k − j |≥ 2,∫ L

0

|ej,x|
2
dx =

2

h
·

(3.5)

The conserved energy for system (3.1) is given by

Eh(t) =
h

6

N∑
j=1

| u′j |
2 +

h

12

N∑
j=0

∣∣u′j + u′j+1

∣∣2 +
h

2

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 , (3.6)

i.e.,

Eh(t) = Eh(0), ∀ 0 < t < T (3.7)

for all h > 0 and for every solution of (3.1).
As in Section 2 above, the goal is to obtain observability inequalities of the form

Eh(0) ≤ C

∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt. (3.8)

Observe that we adopt −uN(t)/h as approximation of the normal derivative ux(L, t). We refer to Remarks 1.1
and 2.1 above for a detailed discussion of this issue.

Let us see first that the constant C in (3.8) may not be uniform when h → 0. For that we analyze the
eigenvectors of the system:{

−
[
ϕj+1+ϕj−1−2ϕj

h2

]
= λ

[
2
3ϕj + 1

6ϕj+1 + 1
6ϕj−1

]
, j = 1, · · · , N

ϕ0 = ϕN+1 = 0.
(3.9)

We denote by 0 < λ1 < λ2 < · · · < λN the eigenvalues of (3.9) and by
{
ϕk
}N
k=1

the associated eigenvectors.

Lemma 3.1. For any h > 0 and any eigenvector of system (3.9) the following identity holds:

h

N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 =
6 + λh2

12− λh2
L
∣∣∣ϕN
h

∣∣∣2 . (3.10)
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Moreover, as we shall see λ ≤ 12h−2 for any h > 0 and any eigenvalue and

λN (h)h2 → 12 as h→ 0. (3.11)

Therefore, as in the case of the finite-difference it follows that:

Theorem 3.1. For any T > 0,

sup
u solution of (3.1)

 Eh(0)∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt
→∞ (3.12)

as h→ 0.

In order to prove uniform observability results, for any 0 < γ < 12 we introduce the class of solutions of (3.1)
in which only the terms of the Fourier development corresponding to λh2 ≤ γ do not vanish. More precisely,

Ch(γ) =

u solution of (3.1) : u =
∑

|µ|h≤
√
γ

ake
iµk(h)tϕk

 , (3.13)

where, as in the previous section µk(h) =
√
λk(h) when k ≥ 1 and µ−k(h) = −µk(h).

The following holds:

Theorem 3.2. For any 0 < γ < 12 there exists T (γ) > 0 such that for any T > T (γ) there exists a positive
constant C(T, γ) such that

Eh(0) ≤ C(T, γ)

∫ T

0

[∣∣∣∣uN (t)

h

∣∣∣∣2 +
|u′N(t)|2

6

]
dt (3.14)

for any solution u of (3.1) in the class Ch(γ). Moreover,

(a) T (γ)↗∞ as γ ↗ 12 and T (γ)↘ 2L as γ ↘ 0,
(b) C(T, γ)→ L/[2(T − 2L)] as γ ↘ 0.

Note that an extra term
∫ T

0
| u′N (t) |2 dt appears on the right hand side of the observability inequality

(3.14). This was not the case in the context of the finite-difference semi-discretization. We shall see that, by

using Ingham’s inequality, this extra term can be absorved by the term
∫ T

0
| uN(t)/h |2 dt by increasing the

observability constant.
As in Section 2, the observability inequality (3.14) can be directly proved by Ingham’s inequality. However

we shall derive it using multipliers.
The rest of this section is organized as follows. First we analyze the spectrum of the system. Then we derive

observability identity (3.10) for the eigenvectors. Then we prove Theorem 3.2 by multipliers. Finally, using

Ingham’s inequality we absorve the term
∫ T

0 | u
′
N (t) |2 dt from the right hand side of (3.14).

3.2. Spectral analysis

Eigenvalues and eigenvectors of the system (3.9) are those of the matrix M−1A, where A is the matrix in
Section 2 and M is the matrix

M =


2/3 1/6 0
1/6 2/3 1/6
· · · · ·

1/6 2/3 1/6
0 1/6 2/3

 .
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In order to compute the spectrum, consider a nonsingular matrix P such that P−1AP = D, D being a diagonal
matrix. Taking

J =


0 1 0
1 0 1
· · · · ·

1 0 1
0 1 0


we have A = 1

h2 (2I − J) and then

P−1JP = 2I − h2D.

Now, since M = 1
3 (2I + 1

2J), then

P−1MP = I −
h2

6
D,

which is a diagonal matrix. Thus, matrix M−1A and A have the same eigenvectors and, consequently, the
eigenfunctions of the system (3.9) are those of the system (2.1). Moreover,

λk(M−1A) =
λk(A)

1− h2

6 λk(A)
=

6

h2

[
sin2(kπh2L )

3
2 − sin2(kπh2L )

]
=

6

h2

[
1− cos(kπh

L
)

2 + cos(kπh
L

)

]
· (3.15)

As we mentioned above

λN (h)h2 → 12. (3.16)

Indeed,

λN (h)h2 = 6

[
1− cos(Nπh/L)

2 + cos(Nπh/L)

]
= 6

[
1− cos(π − hπ/L)

2 + cos(π − hπ/L)

]
= 6

[
1 + cos(hπ/L)

2− cos(hπ/L)

]
→ 12, as h→ 0.

It is also easy to see that, for j fixed,

λj(h)→

(
πj

L

)2

, as h→ 0. (3.17)

Indeed,

lim
h→0

λj(h) = 2 lim
h→0

1− cos(jπh/L)

h2
=
jπ

L
lim
h→0

sin(jπh/L)

h
=

(
jπ

L

)2

·

Let us now analyze the gap between the roots of the eigenvalues. We have

√
λj+1(h)−

√
λj(h) =

√
6

h

[(
1− cos ((j + 1)πh/L)

2 + cos ((j + 1)πh/L)

)1/2

−

(
1− cos(jπh/L)

2 + cos(jπh/L)

)1/2
]

=

√
6π

L

[
1

2

(
2 + cos(ξ)

1− cos(ξ)

)1/2(
3 sen ξ

(2 + cos ξ)2

)]
= 3

√
3

2

π

L

(1 + cos ξ)1/2

(2 + cos ξ)3/2

≥

√
3

2

π

L

(
1 + cos ξ

2 + cos ξ

)1/2

(3.18)

for some ξ ∈ [jπh/L, (j + 1)πh/L].
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Assume we consider eigenvalues corresponding to the indexes (j + 1)h ≤ εL with 0 < ε < 1. Then ξ ≤ επ
and therefore cos ξ ≥ cos(επ). Going back to (3.18) we deduce the following Lemma:

Lemma 3.2. For any 0 < ε < 1 the gap between the roots of consecutive eigenvalues associated to indexes such
that

(j + 1)h ≤ εL (3.19)

satisfies

√
λj+1(h)−

√
λj(h) ≥

π

L

(
3 (1 + cos(επ))

2 (2 + cos(επ))

)1/2

· (3.20)

Observe that the lower bound on the gap vanishes as ε → 1. However, it converges to π/L when ε → 0.
In this sense the results are the same as those obtained in the previous section for the finite-difference semi-
discretization.

We have an analogous result to Lemma 2.1:

Lemma 3.3. For any eigenvector ϕ with eigenvalue λ of (3.9) the following identity holds:

N∑
j=0

∣∣∣∣ϕj − ϕj+1

h

∣∣∣∣2 = λ

N∑
j=1

(
2

3
| ϕj |

2 +
1

3
ϕjϕj+1

)
= λ

N∑
j=1

[
1

3
| ϕj |

2 +
1

6
| ϕj + ϕj+1 |

2

]
· (3.21)

Proof. Identity (3.21) can be derived easily multiplying in (3.9) by ϕj and adding for j = 1, · · · , N . (Note that
(3.21) can be read as (Aϕ,ϕ) = λ(Mϕ,ϕ) ). 2

Let us now prove identity (3.10) in Lemma 3.1. By virtue of (1.16) in Lemma 1.1 we have

h

N∑
j=0

∣∣∣∣ϕj+1 − ϕj
h

∣∣∣∣2 =
2L

4− ρh2

∣∣∣ϕN
h

∣∣∣2
with ρ eigenvalue of the matrix A associated to ϕ. Then,

ρ =
λ

1 + h2

6 λ

and so,

2L

4− ρh2
=

2 + 2h2

6 λ

4 + 4h2

6 λ− λh2
L =

6 + h2λ

12− λh2
L.

As an immediate consequence of the identity (3.10) and (3.16) we deduce that Theorem 3.1 holds.

3.3. Boundary observability of the semi-discrete wave equation

The main goal of this section is to prove Theorem 3.2. To do that we first prove some basic identities.

Lemma 3.4. (Conservation of energy) For any h > 0 and any solution of (3.1) it follows that

Eh(t) = Eh(0), ∀0 < t < T. (3.22)
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Proof. Multiplying in (3.1) by u′j we deduce that

N∑
j=1

(
2

3
u′′j +

1

6
u′′j+1 +

1

6
u′′j−1

)
u′j =

N∑
j=1

(uj+1 + uj−1 − 2uj)

h2
u′j. (3.23)

The right hand side term of (3.23) can be treated as in section 2. This yields

N∑
j=1

(
uj+1 + uj−1 − 2uj

h2

)
u′j =

1

2

d

dt

N∑
j=0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 · (3.24)

The left hand side term can be handeled as follows:

N∑
j=1

(
2

3
u′′j +

1

6
u′′j+1 +

1

6
u′′j−1

)
u′j =

2

3

N∑
j=1

u′′j u
′
j +

1

6

N∑
j=1

(
u′′j+1u

′
j + u′′j−1u

′
j

)
=

1

3

d

dt

N∑
j=1

| u′j |
2 +

1

6

d

dt

N∑
j=1

u′ju
′
j+1

=
1

6

d

dt

N∑
j=1

| u′j |
2 +

1

12

d

dt

N∑
j=1

∣∣u′j + u′j+1

∣∣2 . (3.25)

Combining (3.23–3.25) we deduce that dEh(t)
dt = 0 which is equivalent to (3.22). 2

Lemma 3.5. For any h > 0 and any solution u of (3.1) the following identity holds:

TEh(0)−
h

12

N∑
j=0

∫ T

0

∣∣u′j − u′j+1

∣∣2 dt+Xh(t)

∣∣∣∣∣
T

0

=
L

2

∫ T

0

[∣∣∣∣uN (t)

h

∣∣∣∣2 +
|u′N (t)|2

6

]
dt (3.26)

with

Xh(t) = h

N∑
j=1

j (uj+1 − uj−1)

(
1

3
u′j +

1

12
u′j+1 +

1

12
u′j−1

)
. (3.27)

Proof. We multiply in (3.1) by j (uj+1 − uj−1) /2. It follows that

N∑
j=1

∫ T

0

[
2

3
u′′j +

1

6
u′′j+1 +

1

6
u′′j−1

]
j

(
uj+1 − uj−1

2

)
dt

−
N∑
j=1

∫ T

0

[
uj+1 + uj−1 − 2uj

h2

]
j

(
uj+1 − uj−1

2

)
dt = I1 − I2 = 0. (3.28)

Let us develop the two terms in (3.28). The second one I2 can be treated as in the proof of Lemma 2.2. It
follows that

I2 = −
1

2

N∑
j=0

∫ T

0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 dt+
(N + 1)

2

∫ T

0

∣∣∣∣uN (t)

h

∣∣∣∣2 dt. (3.29)
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On the other hand, in view of (2.33),

I1 =
N∑
j=1

∫ T

0

[
2

3
u′′j +

1

6
u′′j+1 +

1

6
u′′j−1

]
j

(uj+1 − uj−1)

2
dt

=
1

3

N∑
j=1

∫ T

0

u′ju
′
j+1dt+

2

3

N∑
j=1

u′jj
(uj+1 − uj−1)

2

∣∣∣∣∣∣
T

0

+
1

12

N∑
j=1

∫ T

0

(
u′′j+1 + u′′j−1

)
j (uj+1 − uj−1) dt

=
1

3

N∑
j=1

∫ T

0

u′ju
′
j+1dt+

1

3

N∑
j=1

u′jj (uj+1 − uj−1)

∣∣∣∣∣∣
T

0

−
1

12

N∑
j=1

∫ T

0

j
(∣∣u′j+1

∣∣2 − ∣∣u′j−1

∣∣2) dt+
1

12

N∑
j=1

(
u′j+1 + u′j−1

)
j (uj+1 − uj−1)

∣∣∣∣∣∣
T

0

=
1

3

N∑
j=1

∫ T

0

u′ju
′
j+1dt+

1

6

N∑
j=1

∫ T

0

∣∣u′j∣∣2 dt− N + 1

12

∫ T

0

|u′N(t)|
2
dt

+
N∑
j=1

j (uj+1 − uj−1)

[
1

3
u′j +

1

12
u′j+1 +

1

12
u′j−1

]∣∣∣∣∣∣
T

0

. (3.30)

Combining (3.28–3.30) we deduce that

L

2

∫ T

0

[∣∣∣∣uN (t)

h

∣∣∣∣2 +
|u′N(t)|2

6

]
dt =

h

2

N∑
j=0

∫ T

0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 dt+
h

3

N∑
j=1

∫ T

0

u′ju
′
j+1dt

+
h

6

N∑
j=1

∫ T

0

∣∣u′j∣∣2 dt+Xn(t)

∣∣∣∣∣∣
T

0

(3.31)

= TEh(0) +
h

3

N∑
j=0

∫ T

0

[
u′ju
′
j+1 −

∣∣u′j + u′j+1

∣∣2
4

]
dt+Xh(t)

∣∣∣∣∣∣
T

0

.

Finally we observe that

N∑
j=0

∫ T

0

[
u′ju
′
j+1 −

∣∣u′j + u′j+1

∣∣2
4

]
dt = −

N∑
j=0

∫ T

0

∣∣u′j − u′j+1

∣∣2
4

dt. (3.32)

Combining (3.31) and (3.32) we obtain (3.26). 2
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Lemma 3.6. (Equipartition of energy) For any h > 0 and any solution u of (3.1) the following identity
holds:

h

∫ T

0

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 dt = h

∫ T

0

N∑
j=0

[
1

3

∣∣u′j∣∣2 +
1

6

∣∣u′j + u′j+1

∣∣2] dt− Yh(t)

∣∣∣∣∣∣
T

0

(3.33)

with

Yh(t) = h

N∑
j=1

(
2

3
u′j +

1

6
u′j+1 +

1

6
u′j−1

)
uj. (3.34)

Proof. We multiply in (3.1) by uj. It follows that

h

N∑
j=1

∫ T

0

(
2

3
u′′j +

1

6
u′′j+1 +

1

6
u′′j−1

)
ujdt = h

N∑
j=1

∫ T

0

[
uj+1 + uj−1 − 2uj

h2

]
ujdt. (3.35)

We have

h

N∑
j=1

∫ T

0

(
2

3
u′′j +

1

6
u′′j+1 +

1

6
u′′j−1

)
ujdt = h

N∑
j=1

(
2

3
u′j +

1

6
u′j+1 +

1

6
u′j−1

)
uj

∣∣∣∣∣∣
T

0

−h
N∑
j=1

∫ T

0

(
2

3
u′j +

1

6
u′j+1 +

1

6
u′j−1

)
u′jdt (3.36)

= Yh(t)

T

0

− h
N∑
j=1

∫ T

0

(
2

3
| u′j |

2 +
1

3
u′ju
′
j+1

)
dt

= Yh(t)

T

0

− h
N∑
j=1

∫ T

0

(
1

3
| u′j |

2 +
1

6
| u′j + u′j+1 |

2

)
dt.

On the other hand,

h

N∑
j=1

∫ T

0

(
uj+1 − uj−1 − 2uj

h2

)
ujdt = −h

N∑
j=0

∫ T

0

∣∣∣∣uj − uj+1

h

∣∣∣∣2 dt. (3.37)

Combining (3.35–3.37) we deduce (3.33). 2

Let us now estimate the term
N∑
j=0

∫ T

0

∣∣u′j − u′j+1

∣∣2 dt in (3.26). Let Λ be the largest eigenvalue entering in

the Fourier development of the solution u of (3.1), i.e.,

u =
∑

|µk|≤
√

Λ

ake
iµktϕk (3.38)

with µk =
√
λk for k > 0 and µk = −µ−k when k < 0. Therefore

u′ = i
∑

|µk|≤
√

Λ

akµke
iµktϕk.
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Thus, using Lemmas 2.1 and 3.3 we have:

N∑
j=0

∣∣u′j − u′j+1

∣∣2 =
N∑
j=0

∣∣∣∣∣ ∑
|µk|≤

√
Λ

akµke
iµkt (ϕk,j − ϕk,j+1)

∣∣∣∣∣
2

=
N∑
j=0

∑
|µk|≤

√
Λ

| ak |
2 µ2

k |ϕk,j − ϕk,j+1|
2

+
N∑
j=0

∑
|µk|≤

√
Λ

|µ`|≤
√

Λ
µk 6=µ`

µkµ`akā`e
i(µk−µ`)t (ϕk,j − ϕk,j+1) (ϕ`,j − ϕ`,j+1)

=
N∑
j=0

∑
|µk|≤

√
Λ

λk | ak |
2 |ϕk,j − ϕk,j+1|

2

= h2
N∑
j=1

∑
|µk|≤

√
Λ

λ2
k | ak |

2

(
1

3
| ϕk,j |

2 +
1

6
(ϕk,j + ϕk,j+1)

2

)

≤ h2Λ
N∑
j=1

∑
|µk|≤

√
Λ

λk | ak |
2

(
1

3
| ϕk,j |

2 +
1

6
(ϕk,j + ϕk,j+1)

2

)

= h2Λ
N∑
j=0

[
1

3
| u′j |

2 +
1

6

∣∣u′j + u′j+1

∣∣2] . (3.39)

In the last step we have used the fact that

N∑
j=0

[
1

3
ϕk,jϕ`,j +

1

6
(ϕk,j + ϕk,j+1) (ϕ`,j + ϕ`,j+1)

]
= 0

if ϕk and ϕ` are eigenvectors associated to eigenvalues λk 6= λ`, which is a consequence of (2.6).
On the other hand, combining the conservation of energy identity (3.22) and the equipartition of energy

(3.33) we deduce that

h

∫ T

0

N∑
j=0

(
1

3

∣∣u′j∣∣2 +
1

6

∣∣u′j + u′j+1

∣∣2) dt = TE(0) +
Yh(t)

2

∣∣∣∣T
0

· (3.40)

Combining (3.31–3.32) with (3.39–3.40) we deduce that

T

(
1−

Λh2

12

)
E(0) + Zh(t)

∣∣∣∣T
0

≤
L

2

∫ T

0

[∣∣∣∣uN(t)

h

∣∣∣∣2 +
|u′N (t)|2

6

]
dt (3.41)

with

Zh(t) = Xh(t)−
Λh2

24
Yh(t). (3.42)



434 J.A. INFANTE AND E. ZUAZUA

The following holds:

Lemma 3.7. For any h > 0 and any solution u of (3.1) it follows that

|Zh(t)| ≤

√
L2 −

Λh4

48
+

3Λh2

16λ1
, ∀0 < t < T. (3.43)

Proof. To simplify the notation we do not make explicit the dependence on t. We have

Zh(t) = Xh(t)−
Λh2

24
Yh(t)

= h

N∑
j=1

(
j

(uj+1 − uj)

2
−

Λh2

24
uj

)(
2

3
u′j +

1

6
u′j+1 +

1

6
u′j−1

)

= h

N∑
i,j=1

mijaibj

with

ai = i
(ui+1 − ui)

2
−

Λh2

24
ui; bi = u′i

and mij the entries of matrix M .
Therefore

| Zh |≤

h N∑
i,j=1

mijaiaj

1/2h N∑
i,j=1

mijbibj

1/2

. (3.44)

On the other hand,

h

N∑
i,j=1

mijbibj = h

N∑
j=1

[
2

3

∣∣u′j∣∣2 +
1

6

(
u′j+1 + u′j−1

)
u′j

]
= h

 N∑
j=0

1

3

∣∣u′j∣∣2 +
1

6

∣∣u′j + u′j+1

∣∣2 (3.45)

and

h

N∑
i,j=1

mijaiaj ≤ h

N∑
j=1

| ai |
2 =

h

4

N∑
j=1

[
j (uj+1 − uj−1)−

Λh2

12
uj

]2

(3.46)

≤
h

4

N∑
j=1

[
2j2 |uj+1 − uj |

2
+ 2j2 | uj − uj−1 |

2 +
Λ2h4

144
u2
j −

Λh2

6
juj (uj+1 − uj−1)

]

≤ L2h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 +
Λ2h5

576

N∑
j=1

| uj |
2 +

Λh3

24

N∑
j=1

ujuj+1

≤ L2h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 − ηh2

2
h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 +
(
η2 + η

)
h

N∑
j=1

| uj |
2

≤

(
L2 −

ηh2

2
+

3(η2 + η)

λ1

)
h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 ≤ (L2 −
ηh2

2
+

9η

2λ1

)
h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2 .
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We have used the notation η = Λh2/24, the fact that η ≤ 1/2 and also that

1

3
h

N∑
j=1

| uj |
2≤

1

λ1
h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2
which is a consequence of (3.21).

Combining (3.44–3.46) we deduce that

| Zh | ≤

h N∑
j=1

(
1

3
| u′j |

2 +
1

6

∣∣u′j + u′j+1

∣∣2)1/2 (L2 −
ηh2

2
+

9η

2λ1

)
h

N∑
j=0

∣∣∣∣uj+1 − uj
h

∣∣∣∣2
1/2

≤

√
L2 −

ηh2

2
+

9η

2λ1
Eh(0)

which is equivalent to (3.43). 2

Let us now set Λ = γ/h2. Combining (3.41) and (3.43) we obtainT (1− γ/12)− 2

√
L2 −

γh2

48
+

3γ

16λ1

Eh(0) ≤
L

2

∫ T

0

[∣∣∣∣uN (t)

h

∣∣∣∣2 +
|u′N (t)|2

6

]
dt. (3.47)

Therefore, the statement of Theorem 3.2 holds with

T (γ) =

2

√
L2 + γ

16

(
3
λ1
− h2

3

)
1− γ/12

and

C(T, γ) =
L

2

(
T (1− γ/12)− 2

√
L2 + γ

16

(
3
λ1
− h2

3

)) ·
3.4. Boundary observability of the semi-discrete wave equation: improved estimates

The goal of this section is to get rid of the term
∫ T

0
| u′N(t) |2 dt on the right hand side of (3.14).

Note that the solution u of (3.1) can be written as

u =
∑

ake
iµktϕk

and therefore
u′N(t) = i

∑
akµke

iµktϕk,N .

Thus ∫ T

0

|u′N(t)|
2
dt =

∫ T

0

∣∣∣∑ akµke
iµktϕk,N

∣∣∣2 dt. (3.48)

We now restrict our analysis to the solutions in the class Ch(γ) that are generated by the eigenvectors associated
to eigenvalues

λ ≤ γ/h2 (3.49)
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with 0 < γ < 12. Restriction (3.49) is equivalent to

(j + 1)h ≤ ε(γ)L (3.50)

for a suitable 0 < ε(γ) < 1. We shall return later to the explicit computation of ε(γ).
Then, according (3.20) the gap between the roots of consecutive eigenvalues in the range (3.49) is given by

π

L

(
3 (1 + cos(επ))

2 (2 + cos(επ))

)1/2

· (3.51)

Then, by means of Ingham’s inequality [7] we deduce that, provided,

T > 2L

(
2 (2 + cos(επ))

3 (1 + cos(επ))

)1/2

(3.52)

it follows that

∫ T

0

∣∣∣∣∣∣
∑

|µk|≤
√
γ/h

akµke
iµktϕk,N

∣∣∣∣∣∣
2

≤ C2(T, ε(γ))
∑

|µk|≤
√
γ/h

| ak |
2 λk | ϕk,N |

2

≤ C2(T, ε(γ))γ
∑

|µk|≤
√
γ/h

| ak |
2
∣∣∣ϕk,N
h

∣∣∣2

≤
C2(T, ε(γ))γ

C1(T, ε(γ))

∫ T

0

∣∣∣∣∣∣
∑

|µk|≤
√
γ/h

ake
iµkt

ϕk,N

h

∣∣∣∣∣∣
2

dt

=
γC2(T, ε(γ))

C1(T, ε(γ))

∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt. (3.53)

Combining Theorem 3.2 and (3.53) it follows that:

Theorem 3.3. For any 0 < γ < 12 and

T > max

(
T (γ), 2L

(
2 (2 + cos(επ))

3 (1 + cos(επ))

)1/2
)

(3.54)

it follows that

Eh(0) ≤

[
C(T, γ) +

γC2(T, ε(γ))

6C1(T, ε(γ))

] ∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt (3.55)

for any solution u of (3.1) in the class Ch(γ).

Remark. The time of observability in Theorem 3.3 is the maximum between the time T (γ) in Theorem 3.2 and
the time (3.52) needed to apply Ingham’s inequality to the eigenvalues corresponding to the class of solutions
Ch(γ). The observability constant in (3.55) is the addition of the constant C(T, γ) of Theorem 3.2 and the

constant needed to absorve the term
∫ T

0 | u
′
N(t) |2 dt by Ingham’s inequality as in (3.53).

Note that ε(γ)→ 0 as γ → 0 while the constants C1(T, ε) and C2(T, ε) in Ingham’s inequality converge to 1.
Thus, according to Theorem 3.2, the observability constant in (3.55) converges to L/[2(T − 2L)] as γ → 0.
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Observe that an inequality of the form (3.55) can also be obtained directly by Ingham’s inequality. However
we have preferred to obtain the weaker form of observability inequality in Theorem 3.2 by multipliers since this
method can be more easily adapted to other situations. 2

Let us now compute ε(γ). According to the explicit value of the eigenvalues obtained in (3.15) we have to
estimate j so that

6 (1− cos ((j + 1)πh/L)) ≤ γ (2 + cos((j + 1)πh/L)) ,

or, taking into account that (j + 1)h ≤ εL, we have to estimate ε > 0 such that

6(1− cos(επ)) ≤ γ(2 + cos(επ)),

or, equivalently,

6− 2γ ≤ (γ + 6) cos(επ),

i.e.,

ε(γ) =
1

π
arc cos

(
6− 2γ

γ + 6

)
· (3.56)

Obviously ε(γ)→ 0 as γ → 0 and ε(γ)→ 1 as γ → 12.
According to (3.52) and (3.56) the time needed to apply Ingham’s inequality is:

2L

((1 + cos(ε(γ)π))/2)1/2
= 2L

(
12 + 2γ

12− γ

)1/2

·

4. Comparison

In this section we briefly compare the observability results we have obtained for the finite-difference and the
finite-element semi-discretizations.

We focus on inequalities of the form

Eh(0) ≤ C

∫ T

0

∣∣∣∣uN(t)

h

∣∣∣∣2 dt (4.1)

both, for solutions of system (1.6) and (3.1).
We consider only the estimates of the form (4.1) that may be obtained directly by means of Ingham’s

inequalities. For, we consider solutions of (1.6) and (3.1) generated by the eigenvectors with indexes

1 ≤ j, (j + 1)h ≤ εL (4.2)

with 0 < ε < 1, for which the observability inequalities are known to be uniform as h → 0. Thus, we are
considering subspaces of solutions of dimension

d =

[
εL

h

]
− 1. (4.3)

Let us first compare the observability time that is required in both cases. We recall that the minimal observability
time depends on the gap between the roots of consecutive eigenvalues. In the case of finite-differences, as shown
in Lemma 2.6, the gap is of the order of

π cos(πε/2)/L. (4.4)
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This leads to an observability time

T1 = 2L/ cos(πε/2). (4.5)

In the case of the finite-element approximation the gap is (see (3.18))

π

L

(
3 (1 + cos(επ))

2 (2 + cos(επ))

)1/2

(4.6)

and the observability time

T2 = 2L

(
2 (2 + cos(επ))

3 (1 + cos(επ))

)1/2

. (4.7)

Let us see that T1 > T2. Indeed,

T1 > T2 ⇔ cos2(πε/2) <
3 (1 + cos(επ))

2 (2 + cos(επ))
(4.8)

or in other words, if and only if,
(2 + cos(επ)) < 3

which is obviously true.
This indicates that the observability time for the finite-difference semi-discretization is larger than for the

finite-element one.
This is in agreement with the analysis of the phase velocity of the semi-discretizations of the wave equation

in [12], Section 2.10.

The authors acknowledge C. Fabre for fruitful comments on the first version of this paper.

References
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