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The most successful equations for the modeling of ocean wave phenomena are the free–
surface Euler equations. Their solutions accurately approximate a wide range of physical
problems from open–ocean transport of pollutants, to the forces exerted upon oil platforms
by rogue waves, to shoaling and breaking of waves in nearshore regions. These equations
provide numerous challenges for theoreticians and practitioners alike as they couple the dif-
ficulties of a free boundary problem with the subtle balancing of nonlinearity and dispersion
in the absence of dissipation. In this paper we give an overview of, what we term, “Boundary
Perturbation” methods for the analysis and numerical simulation of this “water wave prob-
lem.” Due to our own research interests this review is focused upon the numerical simulation
of traveling water waves, however, the extensive literature on the initial value problem and
additional theoretical developments are also briefly discussed.
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1 Introduction

The most successful equations for the modeling of ocean wave phenomena are the free–

surface Euler equations. Their solutions accurately approximate a wide range of physical

problems from open–ocean transport of pollutants, to the forces exerted upon oil platforms

by rogue waves, to shoaling and breaking of waves in nearshore regions. These equations

provide numerous challenges for theoreticians and practitioners alike as they couple the dif-

ficulties of a free boundary problem with the subtle balancing of nonlinearity and dispersion

in the absence of dissipation. In this paper we give an overview of, what we term, “Boundary

Perturbation” methods for the analysis and numerical simulation of this “water wave prob-

lem.” Due to our own research interests this review is focused upon the numerical simulation

of traveling water waves, however, the extensive literature on the initial value problem and

additional theoretical developments are also briefly discussed.

In addition to Boundary Perturbation (BP) methods, a wide array of other techniques have

been applied to the analysis of the Euler equations. After the early work on the linearized

problem (see Lamb [43] for a complete discussion), the first successful and sustained effort to
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capture nonlinear effects was probably the derivation and analysis of the long–wave Boussi-

nesq and Korteweg–de Vries (KdV) equations for the two dimensional (one vertical and one

horizontal) problem. For a complete history of the derivation of these and other equations, and

for a detailed account of the Inverse Scattering method for the solution of these completely

integrable equations, see, e.g., the monograph of Ablowitz & Segur [1]. Another avenue of re-

search on water waves has been built upon the close connection between the two–dimensional

Euler equations and complex analysis [43]. Subsequently, the tools of harmonic analysis and

dynamical systems have been brought to bear on the problem for both theoretical analysis and

numerical simulations.

Regarding numerical simulation, there is a vast literature concerning free–surface fluid

flows. For these flows, attention has focused on boundary integral/element methods (BIM/

BEM) and “high–order spectral” (HOS) methods. Both approaches posit unknown surface

quantities and, due to this reduction in dimension, they are generally preferred to volumetric

methods. In fact, for the two–dimensional problem almost all research has been focused on

BIM due to this dimension–reducing property coupled with the convenient complex variables

formulation and the availability of spectrally accurate quadrature rules. However, in three

dimensions, the lack of a complex variables analogy and the difficulty of devising high–order

quadratures has meant that a wide variety of methods have been analyzed. A comprehensive

overview of the field up to the mid–1990’s is given in Tsai & Yue [80]; notable among recent

contributions are the BIM/BEM of Beale [4]; Grilli, Guyenne, and Dias [35]; Xue, Xu, Liu,

and Yue [85]; and Liu, Xue, and Yue [46].

For traveling free–surface flows, Dias and Kharif [30] provide a thorough overview of

much of the current theory and numerics. Of particular interest for the simulation of the full

Euler equations are: Schwartz [75] who studied two–dimensional traveling patterns via com-

plex variable theory, the BIM of Schwartz & Vanden-Broeck [76], and the three–dimensional

HOS simulations of Rienecker and Fenton [69]; Meiron, Saffman, and Yuen [48]; Roberts

and Schwartz [72]; Saffman and Yuen [73]; and Bryant [11].

Regarding Boundary Perturbation methods, they typically fall into one of two categories:

Those that directly simulate the Euler equations (where the irregular, moving boundary is

viewed as a perturbation of the quiescent state), and those that consider the Hamiltonian re-

formulation of Zakharov [86] (and perturb surface integral operators such as the “Dirichlet–

Neumann operator,” see § 2.3). Among the former are the traveling wave computations of

Roberts, Schwartz, & Marchant [72, 70, 71, 47], and Nicholls & Reitich [60, 61]. Among the

latter, the initial value problem has been studied by Watson & West [81]; West, Brueckner,

Janda, Milder, & Milton [82]; and Milder [49] using surface integral operators related to the

Dirichlet–Neumann operator. On the other hand, Craig & Sulem [26]; Craig, Schanz, & Sulem

[74, 25]; de la Llave & Panayotaros [29]; Guyenne & Nicholls [36]; and Craig, Guyenne,

Hammack, Henderson, & Sulem [20] used the Dirichlet–Neumann operator directly. Regard-

ing traveling waves, Zakharov’s formulation has received the attention of Nicholls [51, 52],

and Craig & Nicholls [24] who wished to model waveforms displayed in, e.g., the wave–tank

experiments of Hammack, Henderson, and Segur [37, 38].

Regarding theoretical developments with Boundary Perturbations, Reeder & Shinbrot [64,

65, 68]; Craig & Nicholls [23]; and Nicholls & Reitich [60] have shown existence and analyt-

icity properties of branches and surfaces of traveling wave solutions. For the initial value prob-

lem, Boundary Perturbations applied to the formulation of Zakharov have been very fruitful

in the derivation of long–wave approximations of the Euler equations (Craig, Sulem, & Sulem
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[15]; Craig & Groves [18]; Craig, Guyenne, Nicholls, & Sulem [22]; and Craig, Guyenne, &

Kalisch [21]), and the examination of integrability properties of the Euler equations (Craig &

Worfolk [27]; Craig & Groves [19]; and Craig [17]).

The organization of the paper is as follows: In § 2 we recall the Euler equations of free–

surface ideal fluid mechanics and, in particular, in § 2.1 the equations for the initial value

problem and in § 2.2 the equations for the traveling wave problem. In § 2.3 we present the

surface integral formulation of Zakharov [86], and, following Craig & Sulem [26], introduce

the Dirichlet–Neumann operator to the water wave equations. In sections § 2.4, § 2.5, and

§ 2.6 we recall the “Operator Expansions,” “Field Expansions,” and “Transformed Field Ex-

pansions” Boundary Perturbation methods for computing the Dirichlet–Neumann operator.

In § 3 we discuss Boundary Perturbation techniques and results for the initial value problem,

while in § 4 we do the same for the traveling wave problem. Finally, in § 5 we present a

novel, rapid and stable method for the computation of Dirichlet–Neumann operators which

we advocate as a new and important direction in the development of Boundary Perturbation

methods for not only the Euler equations, but also other free boundary and boundary value

problems. In § 5.3 we present some preliminary numerical results to substantiate our claims.

2 Governing Equations

The Euler equations of free–surface fluid mechanics [43] constitute a highly successful model

for ocean wave phenomena. In this section we state these equations, both for evolving and

traveling waveforms, and recall their reformulation, due to Zakharov [86], as a Hamiltonian

system in terms of boundary quantities. We follow Craig & Sulem’s [26] observation that to

make this formulation completely explicit one can introduce a “Dirichlet–Neumann operator,”

and then we describe three Boundary Perturbation algorithms for the numerical simulation of

this operator.

2.1 The Initial Value Problem

Consider a d–dimensional (d = 2, 3) ideal (inviscid, irrotational, incompressible) fluid occu-

pying the domain

Sh,η := {(x, y) ∈ R
d−1 × R | − h < y < η(x, t)},

meant to represent a fluid of mean depth h (which can be infinite) with time dependent free

surface η. The irrotational and incompressible nature of the flow dictates that the fluid velocity

inside Sh,η can be expressed as the gradient of a potential, u = ∇ϕ. The Euler equations

govern the evolution of the potential and the surface shape under the effects of gravity and

surface tension by:

∆ϕ = 0 in Sh,η (1a)

∂yϕ = 0 at y = −h (1b)

∂tϕ +
1

2
|∇ϕ|

2
+ gη − σκ(η) = 0 at y = η (1c)

− ∂tη + ∂yϕ −∇xη · ∇xϕ = 0 at y = η, (1d)
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where g and σ are the constants of gravity and capillarity, respectively, and κ is the curvature:

κ(η) := divx

⎡

⎣

∇xη
√

1 + |∇xη|
2

⎤

⎦ .

The well–posedness theory of these equations is highly non–trivial which can be demonstrated

by an inspection of the linearization of (1) about the quiescent state (η = ϕ = 0). The

linearized solutions satisfy

∆ϕ̄ = 0 in Sh,0

∂yϕ̄ = 0 at y = −h

∂tϕ̄ + [g − σ∆x]η̄ = 0 at y = 0

− ∂tη̄ + ∂yϕ̄ = 0 at y = 0.

Consider the classical, horizontally periodic boundary conditions (characterized by period

lattice Γ ⊂ R
d−1 and conjugate lattice Γ′, i.e. wavenumbers), then the solutions can be

written as

ϕ̄(x, y, t) =
∑

k∈Γ′

ak(t)
cosh(|k| (y + h))

cosh(|k|h)
eik·x, η̄(x, t) =

∑

k∈Γ′

dk(t)eik·x,

where

(

ak(t)
dk(t)

)

= Φk(t)

(

ak(0)
dk(0)

)

,

and the k–th block of the semi–group, Φ, is given, for k �= 0, by

Φk(t) :=

(

cos(ωkt) αk sin(ωkt)
−(1/αk) sin(ωkt) cos(ωkt)

)

,

ωk :=

√

(g + σ |k|
2
) |k| tanh(h |k|), αk := (g + σ |k|

2
)/ωk.

The weakly dispersive nature of the operator Φ, particularly acute when σ = 0, coupled to the

difficulties of the free–boundary formulation of (1) are precisely why its well–posedness the-

ory is so challenging. However, significant progress has been made using the tools of integral

equations and complex analysis by Reeder & Shinbrot [77, 66, 67], Kano & Nishida [40, 41],

Craig [16], and Wu [83, 84]. To the author’s knowledge the most general and complete result

on well–posedness for the water wave problem is that of Lannes [44] who shows, for arbitrary

depth and dimension (using the same method of proof), that the problem is well–posed for

initial data in the Sobolev class Hs for s > M , M = M(d).
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2.2 Traveling Waves

A distinguished class of solutions to (1) are those translating without change in form with

velocity c ∈ R
d−1, i.e. the traveling waves. Traveling wave solutions of (1) must satisfy

∆ϕ = 0 in Sh,η (2a)

∂yϕ = 0 at y = −h (2b)

[c · ∇x]ϕ +
1

2
|∇ϕ|

2
+ gη − σκ(η) = 0 at y = η (2c)

− [c · ∇x]η + ∂yϕ −∇xη · ∇xϕ = 0 at y = η. (2d)

Using bifurcation theory, several general theorems on existence and smoothness of traveling

wave solutions can be proven with the velocity c as the bifurcation parameter(s). Again,

solutions of the linearized equations give valuable insights into both the character of solutions

and the challenges present in establishing rigorous theorems. The linearized version of (2) is:

∆ϕ̃ = 0 in Sh,0 (3a)

∂yϕ̃ = 0 at y = −h (3b)

[c · ∇x]ϕ̃ + (g − σ∆x)η̃ = 0 at y = 0 (3c)

− [c · ∇x]η̃ + ∂yϕ̃ = 0 at y = 0. (3d)

Solutions of (3a) & (3b) can be written, again for periodic boundary conditions, as

ϕ̃(x, y) =
∑

k∈Γ′

ãk
cosh(|k| (y + h))

cosh(|k|h)
eik·x, η̃(x) =

∑

k∈Γ′

d̃keik·x,

while (3c) & (3d) mandate that, for k �= 0,

Ak

(

ãk

d̃k

)

:=

(

ic · k g + σ |k|
2

|k| tanh(h |k|) −ic · k

) (

ãk

d̃k

)

= 0.

Clearly, the determinant function

Λσ(c, k) := (c · k)2 − (g + σ |k|
2
) |k| tanh(h |k|) = (c · k)2 − ω2

k

plays a crucial role in the analysis, and for c and k such that Λσ(c, k) �= 0, only trivial

solutions, ãk = d̃k = 0, exist. To find non–trivial solutions bifurcating from this trivial

branch of solutions we select, for each k1 ∈ Γ′, the unique (up to sign) velocity c1 such that

Λσ(c1, k1) = 0,

which gives rise to solutions of (3) of the form

η̃(x) = ρ1(c1k1) cos(k1x + θ1) (4a)

ϕ̃(x, y) = ρ1(g + σk2
1)

cosh(|k1| (y + h))

cosh(|k1|h)
sin(k1x + θ1), (4b)
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where, after a suitable translation, we can set θ1 = 0.

The bifurcation theoretic strategy to finding solutions of (2) is to seek nonlinear solutions

near these linear solutions, (4). These results depend crucially on the dimension, d, and the

presence or absence of surface tension, σ. For two–dimensional configurations (d = 2) there

is a unique (up to sign) c1 for each k1 ∈ Γ′ such that Λσ(c1, k1) = 0. Without surface tension

this is a problem of simple bifurcation [28] and was resolved in the pioneering papers of

Levi–Civita [45] (infinite depth) and Struik [79] (finite depth). For two dimensional problems

with surface tension this is, again, typically simple bifurcation, however, the phenomenon of

resonance can arise if, for a fixed c1, another wavenumber, k2 ∈ Γ′, satisfies Λσ(c1, k2) = 0.

For these “Wilton ripples” the analysis of Reeder & Shinbrot has been developed [68, 64].

The three–dimensional case is more complicated and, consequently, more interesting. First

of all, the solution set Λσ(c1, k1) = 0 for a given k1 ∈ Γ′ is now a line (up to sign) in the

space of velocities so that the null space is infinite dimensional, though characterized by a

single parameter. To identify a single solution from which to bifurcate, we choose a second,

linearly independent, wavenumber k2 ∈ Γ′ and find the unique (up to sign) velocity c0 such

that

Λσ(c0, k1) = 0, Λσ(c0, k2) = 0. (5)

From this velocity bifurcates a surface of solutions with linear behavior

η̃(x) = ρ1(c0 · k1) cos(k1 · x + θ1) + ρ2(c0 · k2) cos(k2 · x + θ2) (6a)

ϕ̃(x, y) = ρ1(g + σ |k1|
2
)
cosh(|k1| (y + h))

cosh(|k1|h)
sin(k1 · x + θ1)+

+ ρ2(g + σ |k2|
2
)
cosh(|k2| (y + h))

cosh(|k2|h)
sin(k2 · x + θ2), (6b)

where we can, once again, set θ1 = θ2 = 0 upon a suitable translation. Generically, for a

c0 which solves (5), if k ∈ Γ′ is not equal to a multiple of k1 or k2, then Λσ(c0, k) �= 0
and we have a (straightforward but non–trivial) generalization of simple bifurcation [65, 23,

60]. However, for any value of σ ≥ 0 there is the possibility of additional wavenumbers

k3, . . . , kp such that Λσ(c0, kj) = 0. Again, this is a phenomenon of resonance which greatly

complicates theoretical results and, in three dimensions, is potentially stronger without surface

tension than with it. By this we mean that, for σ > 0, p must be finite, while for σ = 0 we

may encounter p = ∞ or, equally badly, Λσ ≪ 1 for infinitely many kj . Please see [23] for a

complete discussion of these issues involving “small divisors.”

From the solutions (6) the analysis of Reeder & Shinbrot [65], Craig & Nicholls [23], and

Nicholls & Reitich [60] all proceed. Reeder & Shinbrot [65] demonstrated the existence and

parametric analyticity of branches of capillary–gravity waves in the absence of resonance,

while Craig & Nicholls [23] constructed bifurcation surfaces in the presence of “finite” res-

onance (p < ∞) with capillarity. Nicholls & Reitich [60] also investigated capillary–gravity

waves (without resonance) to show joint parametric and spatial analyticity of wave profiles

using a method which suggests a rapid, high–order, stable numerical method; this method was

implemented and discussed in [61].
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2.3 A Surface Integral Formulation and the Dirichlet–Neumann Operator

A simplification and reduction in dimension can be achieved for the water wave problem

upon the realization that, given the surface deformation η(x, t) and the Dirichlet trace of the

potential at the surface ξ(x, t), the full potential, ϕ(x, y, t), can be recovered anywhere inside

the domain Sh,η via an appropriate integral formula [32]. Of course other surface quantities

could be used, however, the Dirichlet data is distinguished by the discovery of Zakharov [86]

that the pair (η, ξ) are, in fact, canonical variables in a Hamiltonian formulation of the water

wave problem. The Hamiltonian presented by Zakharov is somewhat implicit in nature as the

quantity ξ does not make an explicit appearance, however, this was rectified by Craig & Sulem

[26] with the introduction of the Dirichlet–Neumann operator (DNO) to the formulation.

Of course DNO arise in a large number of diverse contexts (e.g. electromagnetics and

acoustics, solid mechanics, very viscous flows, etc.). For this reason we keep the presentation

quite general and note that advances and discoveries made in the context of water waves

typically have implications for a wide range of fields. The “DNO Problem” which arises in

ideal free–surface fluid mechanics is:

∆v = 0 y < η(x) (7a)

v(x, η(x)) = ξ(x) (7b)

∂yv → 0 y → −∞, (7c)

for a fluid of infinite depth. The case of finite depth is easily considered by replacing (7c) with

∂yv(x,−h) = 0, (7d)

and we will, for simplicity, consider periodic boundary conditions. From this, the DNO, which

maps Dirichlet data ξ to an (unnormalized) normal derivative of v at η, is defined by

G(η)[ξ] := [∇v · Nη]y=η = [∂yv −∇xη · ∇xv]y=η , (8)

where Nη := (−∇xη, 1)T . The choice of this particular normal is two–fold: First, as we

shall see, it accommodates a particularly simple restatement of the water wave problem. Sec-

ond, and more importantly, this DNO (with normal Nη) is self–adjoint which permits the

implementation of a rapid Boundary Perturbation scheme for its numerical simulation.

In terms of this DNO the Hamiltonian for the water wave problem can be written [26]:

H(η, ξ) :=
1

2

∫

P (Γ)

ξ G(η)[ξ] + gη2 + 2σ

(

√

1 + |∇xη|
2
− 1

)

dx. (9)

Zakharov [86] showed that the initial value problem (1) can be written equivalently as

∂tη = δξH(η, ξ), ∂tξ = −δηH(η, ξ),
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where δ denotes functional variation, or (see [26]),

∂tξ = −gη + σdivx

⎡

⎣

∇xη
√

1 + |∇xη|
2

⎤

⎦

−
1

2
(

1 + |∇xη|
2
)

{

|∇xξ|
2
− (G(η)[ξ])2 − 2G(η)[ξ]∇xξ · ∇xη

+ |∇xξ|
2
|∇xη|

2
− (∇xξ · ∇xη)

2
}

(10a)

∂tη = G(η)[ξ]. (10b)

In a similar fashion, the traveling wave equations (2) can be written [51] as

F1(η, ξ, c) = 0, F2(η, ξ, c) = 0,

where

F1(η, ξ, c) := [c · ∇x]ξ + gη − σdivx

⎡

⎣

∇xη
√

1 + |∇xη|
2

⎤

⎦

+
1

2
(

1 + |∇xη|
2
)

{

|∇xξ|
2
− (G(η)[ξ])2 − 2G(η)[ξ]∇xξ · ∇xη

+ |∇xξ|
2
|∇xη|

2
− (∇xξ · ∇xη)

2
}

(11a)

F2(η, ξ, c) := −[c · ∇x]η + G(η)[ξ]. (11b)

While there are clearly many challenges, both analytical and numerical, to be addressed when

using either (10) or (11) as a mathematical model, typically the greatest difficulty encountered

arises from the DNO. On the theoretical side, due to the highly “non–standard” form of this

order–one pseudodifferential operator, many useful PDE techniques (e.g. integration by parts)

must be significantly altered or abandoned altogether. On the numerical side, the nontrivial

shape of the domain coupled, again, with its non–standard form make standard treatments

(e.g. finite difference and finite element methods) difficult to devise.

Despite this, a good deal is known about the properties of the DNO. Of particular interest,

in the present context of Boundary Perturbation methods, is the following theorem which has

been studied by many authors. To state a representative result precisely [57], we consider a

boundary deformation of the form η(x) = εf(x) for some (small) parameter ε.

Theorem 2.1 Given an integer s ≥ 0, if f ∈ Cs+2(P (Γ)) and ξ ∈ Hs+3/2(P (Γ)) then

the Taylor series

G(η)[ξ] = G(εf)[ξ] =

∞
∑

n=0

Gn(f)[ξ]εn, (12)

converges strongly as an operator from Hs+3/2(P (Γ)) to Hs+1/2(P (Γ)) for ε sufficiently

small. That is, there exist constants K = K(s, d) and C = C(s, d) such that

‖Gn(f)‖Hs+1/2 ≤ K ‖ξ‖Hs+3/2 Bn
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for B > C |f |Cs+2 .

This result was first proven by Coifman & Meyer [14], using the theory of Calderón[12],

for the case d = 2 when f is merely Lipschitz. This integral equation based approach was

extended to three dimensions (for f ∈ C1) by Craig, Schanz, and Sulem [25], and to arbitrary

dimensions by Craig and Nicholls [23, 50]. Theorem 2.1 was proven by Nicholls & Reitich

[55, 57] using a quite different method, based upon domain transformation, which inspired

the numerical algorithm outlined in § 2.6. This method has been subsequently generalized to

the Helmholtz equation by Nicholls & Nigam [53, 54] for applications arising in electromag-

netics, and refined by Hu & Nicholls [39] to admit Lipschitz profiles in arbitrary dimensions,

thereby extending the original result of Coifman & Meyer to higher dimension.

For numerical simulations the importance of the expansion (12) and Theorem 2.1 goes

beyond the theoretical, and has quite important practical implications as they form the theo-

retical foundation for “Boundary Perturbation” (BP) techniques for computing DNO. In § 2.4,

§ 2.5, and § 2.6 we outline three algorithms for computing the Gn from (12), and we recall

that these three BP algorithms for the computation of DNO have quite different properties

in regard to numerical conditioning and computational complexity [56]. In § 5 we demon-

strate how these can be combined into a new algorithm which possesses the strengths of both

while ameliorating their weaknesses. Clearly, such an advance will have a huge impact on

the numerical simulation of water waves in specific, and boundary value and free boundary

problems in general.

2.4 Computation of Dirichlet–Neumann Operators: Operator Expansions

In the current exposition of Boundary Perturbation (BP) methods for computing DNO we will

restrict ourselves to the setting of an ocean of infinite depth (h = ∞) and periodic boundary

conditions. Of course formulas for the finite depth case (h < ∞) can also be derived (please

see, e.g., [26, 55, 56]), but are somewhat more cumbersome.

The “Operator Expansions” (OE) strategy [82, 49, 26] to approximating DNO deals exclu-

sively with the operator, G, and seeks its action on the basis functions eip·x. The OE approach

begins with the observation that

ϕp(x, y) := eip·x+|p|y (13)

satisfies (7a) & (7c). We now insert this “test function” into the definition of the DNO, (8),

G(η)
[

eip·x+|p|η
]

= [|p| − ∇xη · (ip)] eip·x+|p|η.

Recalling that we have set η = εf , and expanding the DNO and exponentials in powers of ε,

we find:

(

∞
∑

n=0

Gn(f)εn

) [

∞
∑

n=0

fn

n!
|p|

n
eip·x

]

= [|p| − ε∇xf · (ip)]

[

∞
∑

n=0

fn

n!
|p|

n
eip·x

]

.

At order zero in ε we discover that

G0

[

eip·x
]

= |p| eip·x,
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and, provided that ξ can be represented by its Fourier series,

ξ(x) =
∑

p∈Γ′

ξ̂pe
ip·x, (14)

define the following order–one Fourier multiplier

G0[ξ] = G0

⎡

⎣

∑

p∈Γ′

ξ̂pe
ip·x

⎤

⎦ =
∑

p∈Γ′

ξ̂pG0

[

eip·x
]

=
∑

p∈Γ′

|p| ξ̂pe
ip·x =: |D| ξ,

where D := (1/i)∇x. Equating at order n in ε we obtain

Gn(f)
[

eip·x
]

=
fn

n!
|p|

n+1
eip·x −

fn−1

(n − 1)!
∇xf · (ip) |p|

n−1
eip·x

−

n−1
∑

l=0

Gl(f)

[

fn−l

(n − l)!
|p|

n−l
eip·x

]

.

Using the Fourier multiplier notation |D| and the fact that any sufficiently smooth ξ can be

represented as a sum of complex exponentials we derive

Gn(f)[ξ] =
fn

n!
|D|

n+1
ξ −

fn−1

(n − 1)!
∇xf · ∇x |D|

n−1
ξ

−
n−1
∑

l=0

Gl(f)

[

fn−l

(n − l)!
|D|

n−l
ξ

]

.

Finally, |D|
2

= D · D so that the first two terms can be combined to yield

Gn(f)[ξ] = D ·

[

fn

n!
D |D|

n−1
ξ

]

−

n−1
∑

l=0

Gl(f)

[

fn−l

(n − l)!
|D|

n−l
ξ

]

. (15)

Now (15) specifies a numerical algorithm once we define how the convolution products are

computed; this, of course, is done via Fast Fourier Transform (FFT) acceleration. We now

take up a careful accounting of the computational complexity of this method, and, for this, let

us consider the d = 2 dimensional case with Nx Fourier modes and N perturbation orders.

Clearly, the bottleneck in the computation of (15) is the term

Xn,l := Gl(f) [Yn,l] ,

Yn,l :=
fn−l

(n − l)!
|D|

n−l
ξ.

Of course, the cost of computing Yn,l (for (n, l) fixed) is O(Nx log(Nx)). However, the naive

approach to forming the Xn,l is to apply Gl to Yn,l from (15), and involves computing Gm for

all 0 ≤ m < l. This scheme will have computational complexity O(N !), however, this enor-

mous cost can be greatly reduced by storing the Gl as matrices (which act upon discretized
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complex exponentials) and simply performing a matrix–vector product to find Xn,l. The cost

of computing Gn[eip·x], given all Gl as matrices, is O(nN2
x); this must be completed for Nx

discrete complex exponentials and 0 ≤ n ≤ N orders so the total computational complexity

is O(N2N3
x) while the storage is O(NN2

x).
However, dramatic computational savings can be realized upon utilization of the self–

adjointness property of the DNO. Noting the self–adjointness of D and |D|, we compute

G∗
n, which equals Gn,

Gn(f)[ξ] = G∗
n(f)[ξ]

= (|D|
n−1

)∗D∗ ·

[

fn

n!
D∗ξ

]

−
n−1
∑

l=0

(|D|
n−l

)∗
fn−l

(n − l)!
G∗

l (f) [ξ]

= |D|
n−1

D ·

[

fn

n!
Dξ

]

−
n−1
∑

l=0

|D|
n−l fn−l

(n − l)!
Gl(f) [ξ] . (16)

Here we notice that the operator Gl always acts upon the same argument, ξ, thus we can

store Gl(f)[ξ], rather than the entire operator Gl, and compute Gn in time proportional

to O(nNx log(Nx)). Consequently the total complexity for all orders 0 ≤ n ≤ N is

O(N2Nx log(Nx)), while the storage is merely O(NNx).

2.5 Computation of Dirichlet–Neumann Operators: Field Expansions

In contrast to the Operator Expansions method, which works directly with the operator G, the

“Field Expansions” (FE) approach [5, 31] begins with an expansion of the field v, which also

depends analytically on ε [55, 57], and then produces the Gn from the expansion terms, vn.

To start,

v = v(x, y; ε) =

∞
∑

n=0

vn(x, y)εn,

which, upon insertion into (7), demands that

∆vn = 0 y < 0 (17a)

vn(x, 0) = Hn(x) (17b)

∂yvn → 0 y → −∞, (17c)

at every order n where

Hn(x) = δn,0ξ(x) −

n−1
∑

l=0

fn−l

(n − l)!
∂n−l

y vl(x, 0),

and δn,k is the Kronecker delta. We recall that solutions vn of (17a) & (17c) can be written as

vn(x, y) =
∑

p∈Γ′

ap,neip·x+|p|y. (18)

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 30, No. 1 (2007) 55

Given that ξ(x) can be expressed by its Fourier series (14), (17b) delivers a recursion formula

for the ap,n:

ap,n = δn,0ξ̂p −

n−1
∑

l=0

∑

q∈Γ′

Cn−l,p−q |q|
n−l

aq,l, (19)

where the Cl,p are defined by

f(x)l

l!
=:

∑

p∈Γ′

Cl,pe
ip·x.

Simply stated, the FE algorithm is (19) from which velocity potential information can be

recovered, in particular the normal derivative at the surface, i.e. the DNO.

To compute the DNO we note that

∞
∑

n=0

Gn(f)[ξ]εn = G(εf)[ξ] = [∂yv − (ε∇xf)∇xv]y=εf

=

∞
∑

n=0

∑

p∈Γ′

(|p| − (ε∇xf) · (ip))ap,neip·x+|p|εf .

From this we deduce that

Gn(f) =

n
∑

l=0

fn−l

(n − l)!

∑

p∈Γ′

|p|
n−l+1

ap,le
ip·x

−

n−1
∑

l=0

fn−l−1

(n − l − 1)!
∇xf ·

∑

p∈Γ′

(ip) |p|
n−l−1

ap,le
ip·x. (20)

In using (19) & (20) for the numerical simulation of DNO the algorithm is completely deter-

mined once we specify that the convolutions are computed by FFT acceleration. Thus, for a

simulation in d = 2 dimensions using Nx collocation points and N perturbation orders, the

computational complexity both for (19) and (20) is O(N2Nx log(Nx)) while the storage is

O(NNx).

2.6 Computation of Dirichlet–Neumann Operators: Transformed Field Ex-

pansions

While the Operator Expansions (16) and Field Expansions (19) & (20) algorithms each pro-

vide a rapid, easily implemented scheme for the simulation of DNO, they do have shortcom-

ings. For a wide range of profiles, f , and sizes, ε, both algorithms provide robust, high–order

results (see, e.g., [26, 5, 6, 7, 8, 9, 10]), however, as the roughness of f and/or the magnitude

of ε is increased subtle cancellations in the OE and FE formalisms become apparent. This has

been studied in great detail in the work of Nicholls & Reitich [55, 56, 57, 58, 59, 60, 61] and

we recall some results and consequences of these studies in this section.

We note that neither the OE nor FE algorithms can be used to construct an analyticity

proof for the DNO; as we have shown [55], such a strategy is thwarted by the cancellations
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mentioned above which are destroyed upon use of standard PDE tools such as the triangle

inequality in a Sobolev space. To overcome this numerical ill–conditioning we [55] sought

out a direct, Boundary Perturbation proof for the analyticity of the DNO. We identified such

a method by augmenting the FE approach with a preliminary transformation, producing the

“Transformed Field Expansion” (TFE) algorithm. Before discussing the details, we restate

the problem (7) on a truncated domain which not only allows for a unified statement of results

for finite and infinite depth, but also delivers a much faster numerical algorithm.

Consider a hyperplane y = −a strictly below the surface of the ocean (a > |η|L∞ ), yet

above the bottom of the ocean (a < h). Our goal is to equivalently state (7) on the truncated

domain Sa,η. With this in mind we consider the augmented DNO problem

∆v = 0 − a < y < η(x) (21a)

v(x, η(x)) = ξ(x) (21b)

∂yv(x,−a) = ∂yw(x,−a) (21c)

v(x,−a) = w(x,−a) (21d)

∆w = 0 − h < y < −a (21e)

∂yw(x,−h) = 0, (21f)

where, clearly, the solutions (v, w) of (21) “match” those of (7) in that the v are equal on Sa,η,

while v = w on −h < y < −a. We now gather (21d)–(21f) as

∆w = 0 − h < y < −a

w(x,−a) = ζ(x)

∂yw(x,−h) = 0,

where ζ(x) stands for v(x,−a), and notice that these equations have the exact solution

w(x, y) =
∑

p∈Γ′

ζ̂p
cosh(|p| (y + h))

cosh(|p| (h − a))
eip·x.

Equation (21c) requires the normal derivative ∂yw thus we construct a second DNO:

T [ζ] : = ∂yw(x,−a)

=
∑

p∈Γ′

|p| tanh(|p| (h − a))ζ̂pe
ip·x

= |D| tanh((h − a) |D|)ζ,

and (21a)–(21c) can now be stated entirely in terms of v as

∆v = 0 − a < y < η(x) (22a)

v(x, η(x)) = ξ(x) (22b)

∂yv(x,−a) − T [v(x,−a)] = 0. (22c)

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 30, No. 1 (2007) 57

Equation (22) now provides the restatement of (7) on the truncated domain Sa,η via a “trans-

parent boundary condition” at y = −a [60, 61].

We now discuss the TFE method for computing the Gn in the Taylor expansion of the

DNO. Consider the (non–conformal) change of variables,

x′ = x, y′ = a

(

y − η

a + η

)

, (23)

which maps Sa,η to Sa,0. We find that the transformed potential

u(x′, y′) = v(x′, ((a + η(x′))/a)y′ + η(x′)),

must satisfy

∆′u = F (x′, y′; u) − a < y′ < 0

u(x′, 0) = ξ(x′)

∂y′u(x′,−a) − T [u(x′,−a)] = Q(x′; u),

where the precise forms of F and Q are given in [55, 56, 57]. In these papers it was shown

that the transformed potential, u, is also analytic in ε so that we may make, upon dropping

primes, the expansion

u(x, y; ε) =
∞
∑

n=0

un(x, y)εn.

It is not hard to show that the un must satisfy

∆un = Fn(x, y) − a < y < 0 (24a)

un(x, 0) = δn,0ξ(x) (24b)

∂yun(x,−a) − T [un(x,−a)] = Qn(x), (24c)

where the Fn and Qn are again given in [55, 56, 57]. From this the n–th term in the expansion

of the DNO can be found from

Gn(f)[ξ] = ∂yun(x, 0) −
f

h
Gn−1(f)[ξ] −∇xf · ∇xun−1(x, 0)

−
f

h
∇xf · ∇xun−2(x, 0) + |∇xf |

2
∂yun−2(x, 0).

Complete details with a full discussion of implementation issues and numerical results can

be found in [56]. From this we recall that, in contrast to the OE and FE procedures, and

due to the inhomogeneous nature of the Poisson equation (24a), we are unable to solve (24)

without a discretization of the y–variable. We can partially ameliorate this difficulty with the

use of a fast, Chebyshev spectral method [34, 13] at a cost O(Ny log(Ny)) per order n and

wavenumber k, where Ny is the number of Chebyshev polynomials utilized. Also, with the

domain truncated at y = −a we can choose a quite small in the hope that Ny need not be

chosen very large. However, the total execution time is O(NNx log(Nx)Ny log(Ny)) and the

total storage is O(NNxNy).
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Despite this disadvantaged operation count, as compared with other BP methods, the in-

creased accuracy and stability of the TFE method renders it the most compelling option in

many applications. We will return to these points in § 5 as they provide the impetus for one

“future direction” we foresee in BP methods for water waves and other boundary value and

free boundary problems: The combination of the FE and TFE algorithms to produce a rapid

and stable high–order method.

3 Boundary Perturbation Methods for the Initial Value Problem

Several authors have investigated Boundary Perturbation techniques for the approximation of

the water wave initial value problem (1). These generally fall into one of the two categories:

Those that deal directly with the full Euler equations (1), and those that approximate the

surface formulation (10) of Zakharov [86] and Craig & Sulem [26].

Examples of Boundary Perturbation approaches to (1) are the work of Fenton & Rienecker

[33] who studied solitary wave interactions of the full Euler equations, and Dommermuth &

Yue [31]. In these methods one assumes that the quantities η and ϕ depend analytically on the

small parameter ε (representing the height/slope of the wave) and insert the Taylor expansions

η(x, t; ε) =

∞
∑

n=1

ηn(x, t)εn, ϕ(x, y, t; ε) =

∞
∑

n=1

ϕn(x, y, t)εn,

directly into (1). These are then equated at orders of ε, and a modal expansion of the ηj and

ϕj results in a set of time–dependent coefficients that must be evolved. For derivatives of

ηj and tangential derivatives of ϕj this is straightforward, however, for normal derivatives of

the velocity potential the modes are coupled in a complicated way. Of course this is to be

expected as this operation is simply the DNO discussed in § 2.3.

Zakharov’s Hamiltonian formulation of the water wave problem [86] was pursued by Wat-

son & West [81], and West, Brueckner, Janda, Milder, and Milton [82] to produce a numerical

algorithm based upon Boundary Perturbation of the Hamiltonian (9). While the language

of the DNO was not used, the operators |D| and convolutions (written as commutators) are

clearly evident. Craig & Sulem [26], Schanz [74], and Guyenne & Nicholls [36] all use (10)

as their starting point and approximate the DNO, rather than the Hamiltonian, by its truncation

GN (η)[ξ] :=

N
∑

n=0

Gn(η)[ξ].

Craig & Sulem [26] considered the two–dimensional case in the absence of capillarity, while

Schanz [74] generalized to three dimensions in the presence of surface tension. Guyenne &

Nicholls [36] studied two–dimensional gravity waves over plane slopes (bathymetry) which

required a generalization of the DNO to include bottom topography. Please see Smith [78];

Craig, Guyenne, Nicholls, and Sulem [22]; and Nicholls and Taber [63] for more details on

this extension. Recently, Craig, Guyenne, Hammack, Henderson, and Sulem [20] used this

approach to revisit the problem of solitary wave interactions and compared the results with

those of wave–tank experiments. Finally, we point out the work of de la Llave & Panayotaros

[29] on the simulation of gravity waves on the sphere. Of course, the water wave equations

do not provide a useful model for the ocean on the surface of the earth, however, it is an

interesting and non–trivial extension of this approach to spherical geometries.
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4 Boundary Perturbation Methods for Traveling Waves

As we mentioned in the Introduction, with the availability of convenient and spectrally accu-

rate integral equations methods, little effort has been expended upon the investigation of trav-

eling two–dimensional water waves using Boundary Perturbation techniques (however, see

[24] for some two–dimensional BP results). For this reason we will focus, for the rest of this

section, upon the problem of simulating genuinely three–dimensional traveling waveforms. In

this setting Boundary Perturbation methods have been applied to not only the original Euler

equations (2), but also the surface formulation (11) and the transformed Euler equations (26).

In the case of the original Euler equations (2) the work of Roberts [70], Roberts & Pere-

grine [71], and Marchant & Roberts [47] is definitive in the absence of surface tension (it

appears, however, that the subtleties of the existence theory for pure gravity waves in three di-

mensions was not properly appreciated by these authors, see § 2.2). We also note the closely

related work of Roberts & Schwartz [72] which also considered the computation of three–

dimensional traveling waves, but did not utilize a BP approach. All of these BP methods

postulate Taylor expansions of the form

η(x; ε) =

∞
∑

n=1

ηn(x)εn, ϕ(x, y; ε) =
∞
∑

n=1

ϕn(x, y)εn, c(ε) =
∞
∑

n=0

cnεn (25)

and insert these directly into (2). Equating at orders of ε one recovers, at order one, the lin-

ear solutions (6) provided that c0 satisfies (5) for two wavenumbers k1 and k2. At higher

orders, the perturbative procedure delivers a linear inhomogeneous PDE to be solved for the

unknowns (ηn, ϕn, cn−1). The linear operator in this PDE is (3) which is, of course, singu-

lar precisely by the choice of c0; however, the parameter cn−1 can be chosen to verify the

associated solvability condition, and several parameterizations of the bifurcation curve are

available which select a unique solution. We refer the interested reader to [60] for a complete

specification of this method using the particular notations used in the present paper. Once

again, the real issue with this method is the evaluation of normal derivatives of the velocity

potential at the free surface. Roberts et al chose to implement an algorithm similar to that of

the FE method presented in § 2.5, however, the details are complicated by the fact that one

must evaluate these quantities not simply at a profile which depends linearly on ε (η = εf )

but rather in a nonlinear, though analytic, fashion, c.f. (25). Consequently, this algorithm has

computational complexity O(N3N2
1 N2

2 ) for a simulation involving N perturbation orders and

N1 × N2 spatial collocation points. In addition, this method, much like the FE algorithm, is

severely ill–conditioned for N large (please see [60, 61] for demonstrations).

Of course the conditioning properties of methods based on (11) depend strongly upon the

implementation of the DNO: High–order numerics based upon OE and FE implementations

will be rather unstable, while those using the TFE method will enjoy much greater stability,

at perhaps a slightly higher computational cost (see § 2.4, § 2.5, and § 2.6). The computations

of Nicholls [50, 51], and Craig & Nicholls [24] were based on an OE implementation of the

DNO, but were performed at a relatively low perturbation order, N = 5. These simulations

utilized Boundary Perturbations solely in the computation of the DNO and otherwise used

numerical continuation [42, 2] to find solutions of (11) along the branch using a predictor–

corrector algorithm.

In quite recent work, Nicholls & Reitich [61] numerically approximated the transformed re-

cursions for traveling water waves derived in [60] using a Fourier/Chebyshev spectral method.
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The derivation of these equations is quite similar to that presented in § 2.6 and, in fact, the

change of variables (23) is identical. This transformation is applied to (2) (modified to in-

clude a “transparent boundary condition,” c.f. (22)) and results, for the unknowns η, c, and

the transformed potential

u(x′, y′) = ϕ(x′, (a + η(x′))y′/a + η(x′)),

in the following system of equations (upon dropping primes):

∆u = F (x, y; u) − a < y < 0 (26a)

∂yu(x,−a) − Tu(x,−a) = J(x; u) (26b)

[c0 · ∇x] u + [g − σ∆x] η = Q(x; u) at y = 0 (26c)

− [c0 · ∇x] η + ∂yu = R(x; u) at y = 0, (26d)

where the forms of F , J , Q, and R are given in [61].

Following the Field Expansions philosophy we posit the expansions

η(x; ε) =
∞
∑

n=1

ηn(x)εn, ϕ(x, y; ε) =

∞
∑

n=1

ϕn(x, y)εn, c(ε) =

∞
∑

n=0

cnεn.

These (ηn, un, cn−1) are governed by

∆un = Fn(x, y) − a < y < 0 (27a)

∂yun(x,−a) − Tun(x,−a) = Jn(x) (27b)

[c0 · ∇x] un + [g − σ∆x] ηn = Qn(x) − [cn−1 · ∇x] u1 at y = 0 (27c)

− [c0 · ∇x] ηn + ∂yun = Rn(x) + [cn−1 · ∇x] η1 at y = 0, (27d)

where the Fn, Jn, Qn, and Rn can be found in [61]. Here η1 and u1 are linear solutions (c.f.

(6)) provided c0 satisfies (5) and, again, the linear operator (3) appears on the left–hand side

of (27). As with the approach of Roberts et al [70, 47], the velocity cn−1 is used to satisfy

the solvability condition required by the singular nature of the system (27), while several

parameterizations of the bifurcation curve can be given which produce a unique solution at

every order; please see [61] for details.

On the theoretical side, Reeder & Shinbrot [68] proved the existence of solution branches

to (26) and parametric (i.e. with respect to ε) analyticity using the perturbative approach

outlined above. Their strategy required that not only σ > 0 but also the absence of resonance

(see § 2.2). Craig & Nicholls [23] extended these results with an application of the Lyapunov–

Schmidt theory to (11) and noted that solutions come in surfaces rather than simply branches.

Their analysis still required σ > 0 but permitted “finite” resonance (provided that p < ∞,

see § 2.2). Nicholls & Reitich [60] extended the method of Reeder & Shinbrot by not only

verifying, quite directly, that solutions do come in surfaces, by making expansions of the form

η(x; ε1, ε2) =
∑

n1+n2≥1

ηn1,n2
(x)εn1

1 εn2

2 ,

but also by showing that the velocity potential and traveling wave surface are jointly analytic

with respect to both parameters (ε1, ε2) and spatial variables (x, y).
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On the computational side, Nicholls & Reitich [61] showed that the TFE recursions for

water waves (27) could be converted into a rapid, high–order, stable numerical method for

computing traveling water waves. Not only does this method enjoy the stability properties of

the TFE method for DNO (as compared to the OE and FE implementations), but also, and

in contrast to the situation for computing DNO, it has a greatly reduced operation count in

comparison to the Roberts algorithm. In fact, we showed that the computational complexity

is

O(NN1N2 log(Ny)Ny + N2N1N2Ny)

to be compared with O(N3N2
1 N2

2 ) for Roberts [70] and Marchant & Roberts [47]. With this

efficiency and high–order stability we are now able to produce extremely accurate simulations

of highly nonlinear waveforms as we now demonstrate.

For this we revisit the calculations of Nicholls & Reitich [61] and specialize to the geometry

of the “short–crested waves” (SCW) [70]. A short–crested wave is a traveling waveform that is

not only periodic in the direction of propagation, but also periodic in the orthogonal horizontal

direction. The period in the propagation direction is set to L/ sin(θ) while the period in the

orthogonal direction is L/ cos(θ). If we choose the x1–axis as the direction of propagation

and non–dimensionalize by setting L = 2π, the solutions will be periodic with respect to the

lattice

Γθ = {γ = j1a + j2b | a = (2π)/ sin(θ), b = (2π)/ cos(θ); j1, j2 ∈ Z}, (28)

i.e. η(x + γ) = η(x) for all γ ∈ Γθ. We also consider the case of water of infinite depth

(h = ∞), and in all calculations the numerical parameters were set to N1 = N2 = 64
(Fourier modes in the horizontal directions), Ny = 48 (Chebyshev coefficients in the vertical

direction), and N = 31 (perturbation orders).

For each of three values of θ = 45o, 60o, 75o we selected two values of the parameter

ε which were meant to prescribe “moderately nonlinear,” and “highly nonlinear” profiles.

We summarize these choices and our results in Table 1. Furthermore, in Figures 1–12 we

reproduce plots of these solutions from [61]. From this it is easy to see how the waves become

more nonlinear (with sharper, narrower crests and wider, shallower troughs) as ε is increased.

Also, notice how the “shape” of the wave deforms from diamond–like to rectangular as θ
is increased, in nice agreement with the experimental results of Hammack, Henderson, and

Segur [37, 38].

5 Future Directions: Rapid and Stable High–Order Methods

As we have seen, Boundary Perturbation methods provide a fast, stable, and highly accurate

method for the simulation of water waves. However, the stabilized methods we advocate here

can be slightly disadvantaged in terms of computational complexity in comparison with other

schemes (e.g. for the computation of DNO). One direction of future research is to address this

concern with the development of methods with the speed of the FE recursions which retain

the stability and accuracy properties of the TFE procedure. We now present a novel algorithm

based upon the FE philosophy, but inspired by the success of the TFE scheme, to achieve

precisely these requirements. For this discussion of “future directions” we restrict ourselves

to the computation of DNO, however, it should be clear how to extend these ideas to more

general situations.
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Table 1 Summary of traveling wave calculations.

Figure θ ε |η(x; ε)|L∞ Plot Type

Figure 1 45o 0.21 0.224997 Surface

Figure 2 45o 0.43 0.487929 Surface

Figure 3 45o 0.21 0.224997 Contour

Figure 4 45o 0.43 0.487929 Contour

Figure 5 60o 0.21 0.228521 Surface

Figure 6 60o 0.42 0.491571 Surface

Figure 7 60o 0.21 0.228521 Contour

Figure 8 60o 0.42 0.491571 Contour

Figure 9 75o 0.2 0.226086 Surface

Figure 10 75o 0.41 0.542079 Surface

Figure 11 75o 0.2 0.226086 Contour

Figure 12 75o 0.41 0.542079 Contour

Fig. 1 Surface plot of ocean profile with

θ = 45
o and ε = 0.21.

Fig. 2 Surface plot of ocean profile with

θ = 45
o and ε = 0.43.

5.1 Stabilized Field Expansions

The success of the TFE method for computing DNO in a stable, high–order fashion is that

the change of variables enforces that all derivatives be taken inside the problem domain. By

contrast, the FE recursions require the differentiation of the field at y = 0 which is sometimes

across the boundary of the problem domain. With this in mind we consider a number b >
|η|L∞ and the family of surfaces which are strictly interior to the domain,

σδ(x; b) := (1 − δ)(−b) + δη(x) = −b + δ(η(x) + b);
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Fig. 3 Contour plot of ocean profile with

θ = 45
o and ε = 0.21.
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Fig. 4 Contour plot of ocean profile with

θ = 45
o and ε = 0.43.

Fig. 5 Surface plot of ocean profile with

θ = 60
o and ε = 0.21.

Fig. 6 Surface plot of ocean profile with

θ = 60
o and ε = 0.42.
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Fig. 7 Contour plot of ocean profile with

θ = 60
o and ε = 0.21.
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Fig. 8 Contour plot of ocean profile with

θ = 60
o and ε = 0.42.

note that σ0 = −b and σ1 = g(x), i.e. σδ provides a homotopy from the hyperplane y = −b
to the ocean surface y = η. We will now consider δ as our expansion parameter and expand
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Fig. 9 Surface plot of ocean profile with

θ = 75
o and ε = 0.2.

Fig. 10 Surface plot of ocean profile with

θ = 75
o and ε = 0.41.
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Fig. 11 Contour plot of ocean profile with

θ = 75
o and ε = 0.2.
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Fig. 12 Contour plot of ocean profile with

θ = 75
o and ε = 0.41.

the field

v = v(x, y; δ) =
∞
∑

n=0

vn(x, y)δn,

where, to find quantities at the ocean surface, we evaluate at δ = 1. To find the vn we look

to (7) and note that v satisfies both Laplace’s equation for y < σδ , and equation (7c). The
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Dirichlet condition (7b) implies

ξ(x) = v(x, σδ; δ)|δ=1

=

[

∞
∑

n=0

vn(x, σδ)δ
n

]

δ=1

=

[

∞
∑

n=0

vn(x,−b + δ(η + b))δn

]

δ=1

=

[

∞
∑

n=0

(

∞
∑

m=0

(η + b)m

m!
∂m

y vn(x,−b)δm

)

δn

]

δ=1

=

[

∞
∑

n=0

δn
n

∑

l=0

(η + b)n−l

(n − l)!
∂n−l

y vl(x,−b)

]

δ=1

.

Therefore we can write the analogue of (17b):

vn(x,−b) = δn,0ξ(x) −
n−1
∑

l=0

(η + b)n−l

(n − l)!
∂n−l

y vl(x,−b).

Since vn can be expressed as

vn(x, y) =
∑

p∈Γ′

dp,neip·x+|p|y,

c.f. (18), it is easy to show that

dp,n = e|p|b

⎧

⎨

⎩

δn,0ξ̂p −

n−1
∑

l=0

∑

q∈Γ′

Kn−l,p−qe
−|q|b |q|

n−l
dq,l

⎫

⎬

⎭

, (29)

where the Kl,p are defined by

(η + b)l

l!
=:

∑

p∈Γ′

Kl,pe
ip·x.

Defining the pseudodifferential operator SD as

SD[ψ] :=
∑

p∈Γ′

Spψ̂pe
ip·x =

∑

p∈Γ′

e−|p|bψ̂pe
ip·x,

and identifying its inverse

S−1
D [ψ] =

∑

p∈Γ′

S−1
p ψ̂pe

ip·x =
∑

p∈Γ′

e|p|bψ̂pe
ip·x,

we rewrite (29) as

dp,n = S−1
p

⎧

⎨

⎩

δn,0ξ̂p −
n−1
∑

l=0

∑

q∈Γ′

Kn−l,p−qSq |q|
n−l

dq,l

⎫

⎬

⎭

. (30)
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With this notation we point out some of the advantages and shortcomings of this “modified”

Field Expansions method,(30). Clearly, the operator SD is “infinitely smoothing” (mapping,

for instance, L2 functions to the class of real analytic functions) and we can hope that this

operator will “smooth away” errors magnified by the order (n− l) pseudodifferential operator

|D|
n−l

. However, the operator S−1
D must also be applied and this will, at all scales, exponen-

tially amplify truncation errors. To ameliorate this effect we introduce the modified operator

BF
D:

BF
D[ψ] :=

∑

p∈Γ′

BF
p ψ̂pe

ip·x, BF
p :=

{

e|p|b |p| ≤ F

0 |p| > F
,

and now define the Stabilized Field Expansions (SFE) method as

dp,n = BF
p

⎧

⎨

⎩

δn,0ξ̂p −

n−1
∑

l=0

∑

q∈Γ′

Kn−l,p−qSq |q|
n−l

dq,l

⎫

⎬

⎭

. (31)

In § 5.3 we will present some preliminary numerical results showing how this algorithm,

combined with the ideas of § 5.2 on Dirichlet–Interior Derivative Operators, can give greatly

enhanced numerical results, as compared to an FE implementation, with the same computa-

tional complexity.

5.2 Dirichlet–Interior Derivative Operators

Following the philosophy of [59], to compute the DNO we consider a family of “Dirichlet–

Interior Derivative Operators” (DIDO) which evaluate the “normal derivative,” ∇v ·Nη, at the

interior surface σδ introduced above. As discussed in [59], this operation should be largely

free from the severe cancellations present in formulas (19) & (20) since no derivatives of the

field are taken across the boundary y = η(x). Of course, to compute the actual DNO we must

evaluate at the surface y = η(x), i.e. at δ = 1.

We define our family of DIDO as

G̃(δ)[ξ] := [∇v · Nη]y=σδ
= [∂yv −∇xη · ∇xv]y=σδ

,

for every 0 ≤ δ ≤ 1. To compute these DIDO we expand

G̃(δ)[ξ] =
∞
∑

n=0

G̃n[ξ]δn,

and, using the SFE computations above, equate

∞
∑

n=0

G̃n[ξ]δn = [∂yv −∇xη · ∇xv]y=σδ

=

∞
∑

n=0

∑

p∈Γ′

(|p| − ∇xη · (ip))dp,neip·x−|p|b+|p|δ(η+b)δn.
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From this we deduce that

G̃n =
∑

p∈Γ′

n
∑

l=0

Kn−l(|p| − ∇xη · (ip))e−b|p| |p|
n−l

dp,l, (32)

where

Kl :=
(η(x) + b)l

l!
.

Notice that in this computation there is never a need to apply the operator S−1
D and, thus, no

need to use the approximating operator BF
D.

So, our new computational strategy of Stabilized Field Expansions and Dirichlet–Interior

Derivative Operators (SFE/DIDO) for computing Dirichlet–Neumann operators amounts to

using (31) to compute the coefficients dp,n followed by the utilization of (32) to recover the

normal derivative. The computational complexity of these two steps is identical to that of the

original FE method (19) & (20), namely O(N2Nx), while the storage is merely O(NNx). Of

course there are two parameters to choose, b and F , which will greatly affect the performance

of this new method. For instance, if b is chosen too close to zero then the method will behave

much like the FE algorithm and we have achieved nothing new. If b is chosen too large then the

“base” for our homotopy will be too far from the surface and we cannot expect good results. It

is the subject of current research by Nicholls & Reitich [62], in the setting of electromagnetic

and acoustic scattering, to provide guiding principles for the choice of these parameters.

5.3 Numerical Results

In this section we will show some preliminary results to illustrate the effectiveness of our new

SFE/DIDO algorithm (§ 5.1 and § 5.2) for computing DNO. For simplicity we will restrict

ourselves to the two dimensional setting (periodic on the interval [0, 2π]) for an ocean of

infinite depth (h = ∞). For this we will take advantage of a family of exact solutions of the

elliptic problem (7) which, for an arbitrary profile η = εf , can be used to specify Dirichlet

data and produces exact Neumann data. This family of solutions is

vp(x, y) := eip·x+|p|y,

for p ∈ Γ′, c.f. (13), which, given Dirichlet data,

ξp(x) := vp(x, η(x)) = eip·x+|p|η(x),

produces Neumann data

νp(x) := (∂y −∇xη · ∇x)vp(x, η(x)) = (|p| − ∇xη · (ip))eip·x+|p|η(x). (33)

For all results presented in this section we have set p = 3.

We now consider numerical implementations of (19) & (20), which we term the FE method,

and (31) & (32), which we denote the SFE/DIDO procedure. For each we will retain Nx

Fourier modes and N Taylor coefficients. For each mode k ∈ Γ′ in our computation, any

Taylor polynomials, e.g.

τk(ε) :=

N
∑

n=0

dk,nεn,
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are summed either directly (Taylor summation) or using Padé approximation (Padé summa-

tion) [3, 6, 7, 56].

In these experiments we will consider two interfaces, a “smooth” profile fs (sinusoidal),

and a “rough” profile fr which is C4 but not C5 [58, 59]:

fs(x) = cos(x), (34a)

fr(x) = (2 × 10−4)x4(2π − x)4 − c0, , (34b)

where c0 is chosen so that fr has zero mean. The second of these profiles has an infinite

Fourier series representation

fr(x) =

∞
∑

k=1

96(2k2π2 − 1)

125k8
cos(kx),

and, in order to minimize the effects of aliasing, we approximate it by its truncated Fourier

series:

fr,P (x) :=

P
∑

k=1

96(2k2π2 − 1)

125k8
cos(kx). (35)

For the smooth profile fs, in Figures 13–14 we display the relative error, measured in

L∞, in computing the normal derivative of the field at the boundary, i.e. the DNO, versus

perturbation order N . In these simulations we chose ε = 0.7, while the numerical parameters

were Nx = 256, N = 60, b = 0.0001, 0.01, 1, and F = 16 (Figure 13) or F = 4 (Figure 14).

First, we point out the remarkable stabilizing properties which the SFE/DIDO algorithm
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Fig. 13 Relative L∞ error in FE and SFE/DIDO computations of normal derivative at the boundary

for the smooth profile fs, (34a). Numerical parameters are Nx = 256, N = 60, b = 0.0001, 0.01, 1,

F = 16. For the calculation depicted on the left Taylor summation is utilized, while for that on the right

Padé summation is used.

possesses: The FE algorithm begins to diverge at N = 9 while the enhanced summation of

Padé approximation can only ever deliver accuracy of 10−4. However, our new SFE/DIDO

procedure produces solutions which are increasingly more accurate throughout all orders,

though they can be disadvantaged when b is chosen as large as one. Interestingly, the reduction

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 30, No. 1 (2007) 69

0 10 20 30 40 50 60
10

−20

10
−10

10
0

10
10

10
20

10
30

10
40

N

L
∞

 E
rr

o
r

Error (Taylor)

0 10 20 30 40 50 60
10

−15

10
−10

10
−5

10
0

N

L
∞

 E
rr

o
r

Error (Pade)

FE

SFE (b=0.01)

SFE (b=0.0001)

SFE (b=1)

FE

SFE (b=0.01)

SFE (b=0.0001)

SFE (b=1)

Fig. 14 Relative L∞ error in FE and SFE/DIDO computations of normal derivative at the boundary

for the smooth profile fs, (34a). Numerical parameters are Nx = 256, N = 60, b = 0.0001, 0.01, 1,

F = 4. For the calculation depicted on the left Taylor summation is utilized, while for that on the right

Padé summation is used.

in the “operator filter” F has the effect of producing slightly worse results for N small, while

producing results which are drastically better for N large; for instance, SFE/DIDO reaches

only 10−8 accuracy when F = 16, while it achieves full double precision accuracy when

F = 4 (provided, in these experiments, that b < 1).

Finally, for the rough profile fP
r , we display in Figures 15–16 the relative error, measured in

L∞, in computing the DNO versus perturbation order N . In this simulation we again choose

ε = 0.7, while the numerical parameters were Nx = 256, N = 60, b = 0.0001, 0.01, 1,

P = 40, and F = 16 (Figure 15) or F = 4 (Figure 16). Again, we point out the stable

0 10 20 30 40 50 60
10

−5

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

N

L
∞

 E
rr

o
r

Error (Taylor)

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N

L
∞

 E
rr

o
r

Error (Pade)

FE

SFE (b=0.01)

SFE (b=0.0001)

SFE (b=1)

FE

SFE (b=0.01)

SFE (b=0.0001)

SFE (b=1)

Fig. 15 Relative L∞ error in FE and SFE/DIDO computations of normal derivative at the boundary

for the rough profile f40

r
, (35). Numerical parameters are Nx = 256, N = 60, b = 0.0001, 0.01, 1,

F = 16. For the calculation depicted on the left Taylor summation is utilized, while for that on the right

Padé summation is used.

nature of the SFE/DIDO method, which produces consistently improved answers throughout

all perturbation orders. Again, this effect is largely independent of the parameter b, though

b = 1 is clearly disadvantaged in this case. Again, the role of F is significant and it is clear
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Fig. 16 Relative L∞ error in FE and SFE/DIDO computations of normal derivative at the boundary

for the rough profile f40

r
, (35). Numerical parameters are Nx = 256, N = 60, b = 0.0001, 0.01, 1,

F = 4. For the calculation depicted on the left Taylor summation is utilized, while for that on the right

Padé summation is used.

that future research [62] is necessary to not only provide guidance on the choice of b and F ,

but also give an explanation for the behavior of this new algorithm.
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