Pacific Journal of Mathematics

BOUNDARY POINTS OF JOINT NUMERICAL RANGES Muneo Chō and Makoto Takaguchi

BOUNDARY POINTS OF JOINT NUMERICAL RANGES

Muneo Chō and Makoto Takaguchi

Abstract

In this paper it is shown that the conical points of the joint numerical range belong to the joint spectrum. Moreover, we discuss the bare points and extreme points of the joint numerical ranges for the n-tuples of commuting normal operators and Toeplitz operators.

Introduction. The notion of the joint numerical range was first investigated by Halmos ([6], Prob. 166). Dash [4] tried to find how much of the knowledge about the numerical range in the single operator case carried over to the analogous situation in the case of an n-tuple of operators. Our purpose is to discuss the same subject as his. Dash [4] studied particularly about the convexity of the numerical range known as the Toeplitz-Hausdorff theorem. Here we shall, however, bring the boundary point of the numerical range into focus. In the case of a single operator, many authors have asserted the results referring to the relation between the numerical range and spectrum. Concerning these, Dash [4], Juneja [8], Abramov [1], Buoni and Wadhwa [3] have investigated the relation between the joint spectrum and joint numerical range. Abramov [1] has shown that the conical point of the closure of the joint numerical range of $A=\left(A_{1}, \cdots, A_{n}\right)$ belongs to the joint approximate point spectrum of A in the case of the family A consisting of self-adjoint operators. In §1, our result shall be given more clearly than Abramov's one even to the family of arbitrary operators, by means of Hildebrandt's technique [7]. In §2, we shall introduce a class of operator-families called joint normaloid. And, in §3, we shall discuss the bare points and extreme points of joint numerical ranges for the operator-families belonging to the joint normaloid.

Notation and definition. Throughout this paper, H will be a complex Hilbert space with the scalar product (,) and the norm $\|\cdot\|$, and all operators on H will be assumed to be linear and bounded. Let $A=\left(A_{1}, \cdots, A_{n}\right)$ be an n-tuple of operators on H. The joint numerical range of A is the subset $W(A)$ of the n-dimensional unitary space C^{n} such that

$$
W(A)=\left\{\left(\left(A_{1} x, x\right), \cdots,\left(A_{n} x, x\right)\right): x \in H,\|x\|=1\right\} .
$$

In the case of $n=1$, it is the usual numerical range of an operator.

We shall say that a point $z=\left(z_{1}, \cdots, z_{n}\right)$ of C^{n} is in the joint approximate point spectrum $\sigma_{\pi}(A)$ of A if there exists a sequence $\left\{x_{i}\right\}$ of unit vectors in H such that

$$
\left\|\left(z_{k}-A_{k}\right) x_{i}\right\| \longrightarrow 0(i \longrightarrow \infty), \quad k=1, \cdots, n .
$$

A point $z=\left(z_{1}, \cdots, z_{n}\right)$ will be called a joint eigenvalue of A if there exists a nonzero eigenvector x such that

$$
A_{k} x=z_{k} x, \quad k=1, \cdots, n
$$

And a point $z=\left(z_{1}, \cdots, z_{n}\right)$ will be said to be in the joint residual spectrum $\sigma_{r}(A)$ of A if there exists a nonzero vector x such that

$$
A_{k}^{*} x=\overline{z_{k}} x, \quad k=1, \cdots, n,
$$

where $\overline{z_{k}}$ denotes the complex conjugate of z_{k}. (Consult [5].)
Moreover, let $A=\left(A_{1}, \cdots, A_{n}\right)$ be an n-tuple of mutually commuting operators. And let $A^{\prime \prime}$ be the double commutant of A. Then we shall say that a point $z=\left(z_{1}, \cdots, z_{n}\right)$ of C^{n} is in the joint spectrum $\sigma(A)$ of A relative to $A^{\prime \prime}$ if

$$
\sum_{k=1}^{n} B_{k}\left(A_{k}-z_{k}\right) \neq I,
$$

for all $B_{1}, B_{2}, \cdots, B_{n}$ in $A^{\prime \prime}$, where I denotes the identity operator. (Consult [5].)

1. Conical points.

Definition 1. Let a closed subset K of \boldsymbol{C}^{n} be called a closed convex cone with vertex $(0, \cdots, 0)$ whenever K satisfies the following properties:

$$
\begin{gather*}
K+K \subset K, \tag{1}\\
\alpha K \subset K \text { for all } \alpha \geqq 0, \\
K \cap(-K)=\{(0, \cdots, 0)\} .
\end{gather*}
$$

If, for $F \subset C^{n}$ and $z=\left(z_{1}, \cdots, z_{n}\right) \in F$, there exists a closed convex cone K with vertex $(0, \cdots, 0)$ such that $F \subset K-z$, then we shall call the point z a conical point of F.

Theorem 1. Let $A=\left(A_{1}, \cdots, A_{n}\right)$ be an n-tuple of arbitrary operators. If $z=\left(z_{1}, \cdots, z_{n}\right)$ is a conical point of $\overline{W(A)}$ (throughout we shall use the bar symbol for closure), then z belongs to the joint approximate point spectrum $\sigma_{\pi}(A)$ of A. If, moreover, z is in $W(A)$, then z is a joint eigenvalue of A.

Proof. We may assume without loss of generality that the conical point z of $\overline{W(A)}$ is $(0, \cdots, 0)$. Then we can choose n linearly independent vectors $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}$ in \boldsymbol{C}^{n} and n constants $\theta_{1}, \cdots, \theta_{n}$ such that $0 \leqq \theta_{k}<\pi, k=1, \cdots, n$ and

$$
\overline{W(A)} \subset\left\{\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n}: 0 \leqq \arg \alpha_{k} \leqq \theta_{k}, k=1, \cdots, n\right\} .
$$

Let a set $\left\{\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n}\right\}$ of vectors in \boldsymbol{C}^{n} be a basis in \boldsymbol{C}^{n} such that the j th coordinate of \boldsymbol{e}_{k} is $\delta_{k j}, k=1, \cdots, n$, and $\boldsymbol{e}_{k}=\gamma_{1 k} \boldsymbol{a}_{1}+\cdots+$ $\gamma_{n k} \boldsymbol{a}_{n}, k=1, \cdots, n$. Putting

$$
B_{k}=\gamma_{k 1} A_{1}+\cdots+\gamma_{k n} A_{n}, \quad k=1, \cdots, n,
$$

it follows that
(*) $\overline{W\left(B_{1}, \cdots, B_{n}\right)} \subset\left\{\left(\beta_{1}, \cdots, \beta_{n}\right): 0 \leqq \arg \beta_{k} \leqq \theta_{k}, k=1, \cdots, n\right\}$.
We shall apply Hildebrandt's method [7, p. 232] to the argument follows. Let k be any fixed element in the index set $\{1, \cdots, n\}$. We put here

$$
e^{i i_{k}}=\lambda_{k}=\mu_{k}+i \nu_{k},
$$

where μ_{k}, ν_{k} are real numbers. Since we can, moreover, assume θ_{k} to be nonzero, ν_{k} is assumed to be nonzero. Therefore

$$
\begin{equation*}
i=\frac{1}{\nu_{k}}\left(\lambda_{k}-\mu_{k}\right) . \tag{**}
\end{equation*}
$$

Furthermore, we decompose B_{k} such that

$$
B_{k}=X_{k}+i Y_{k},
$$

where X_{k}, Y_{k} are self-adjoint. Substituting the formula (**) for i,

$$
B_{k}=X_{k}-\frac{\mu_{k}}{\nu_{k}} Y_{k}+\lambda_{k}\left(\frac{1}{\nu_{k}} Y_{k}\right) .
$$

Here, we put

$$
T_{k}=X_{k}-\frac{\mu_{k}}{\nu_{k}} Y_{k} \quad \text { and } \quad S_{k}=\frac{1}{\nu_{k}} Y_{k} .
$$

Then T_{k}, S_{k} are self-adjoint and $B_{k}=T_{k}+\lambda_{k} S_{k}$. Since $\left(B_{k} x, x\right)=$ ($\left.T_{k} x, x\right)+\lambda_{k}\left(S_{k} x, x\right)$ for every unit vector x, T_{k} and S_{k} are positive from (*).

Now, since $z=(0, \cdots, 0) \in \overline{W(A)},(0, \cdots, 0) \in \bar{W}(\bar{B})$ and then there exists a sequence $\left\{x_{i}\right\}$ of unit vectors such that $\left(B_{k} x_{i}, x_{i}\right) \rightarrow 0(k=1$, $\cdots, n, i \rightarrow \infty$). And, since ($T_{k} x_{i}, x_{i}$) and ($S_{k} x_{i}, x_{i}$) also converge to zero for every k, we have

$$
B_{k} x_{i} \longrightarrow 0(i \longrightarrow \infty), \quad k=1, \cdots, n .
$$

On the other hand, since the matrix \boldsymbol{M} :

$$
\boldsymbol{M}=\left[\begin{array}{ccc}
\gamma_{11} \cdot \cdots & \gamma_{1 n} \\
\vdots & \vdots & \vdots \\
\gamma_{n 1} & \cdot & \gamma_{n n}
\end{array}\right]
$$

is regular,

$$
\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{n}
\end{array}\right]=M^{-1}\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{n}
\end{array}\right] .
$$

Hence we have $A_{k} x_{i} \rightarrow 0(i \rightarrow \infty), k=1, \cdots, n$. Thus we get the proof of the first half of the theorem.

Next we assume that $z=(0, \cdots, 0) \in W(A)$. Then, there exists a unit vector x such that $\left(A_{k} x, x\right)=0, k=1, \cdots, n$. So, if we take x in place of the above sequence $\left\{x_{i}\right\}$, the proof of the latter half of the theorem follows in the same way as the first half.
2. Joint normaloid operator-families.

Definition 2. For any n-tuple $A=\left(A_{1}, \cdots, A_{n}\right)$ of operators, the following nonnegative numbers:

$$
\begin{aligned}
& \|A\|=\sup \left\{\left(\left\|A_{1} x\right\|^{2}+\cdots+\left\|A_{n} x\right\|^{2}\right)^{1 / 2}:\|x\|=1\right\}, \\
& w(A)=\sup \left\{\left(\left|\left(A_{1} x, x\right)\right|^{2}+\cdots+\left|\left(A_{n} x, x\right)\right|^{2}\right)^{1 / 2}:\|x\|=1\right\}, \\
& r(A)=\sup \left\{\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{1 / 2}: z \in \sigma(A)\right\}, \\
& r_{\pi}(A)=\sup \left\{\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{1 / 2}: z \in \sigma_{\pi}(A)\right\}
\end{aligned}
$$

are called the joint operator norm, joint numerical radius, joint spectral radius and joint approximate point spectral radius respectively, of A.

Definition 3. An n-tuple $A=\left(A_{1}, \cdots, A_{n}\right)$ of operators is said to belong to the joint normaloid or to be joint normaloid if $w(A)=$ $\|A\|$.

In order to show the following propositions we need the following results shown by Dash [5].

First, suppose that $A=\left(A_{1}, \cdots, A_{n}\right)$ is a commuting n-tuple of normal operators. Then there exists a measure space ($X ; \mu$) and a set of bounded measurable functions $\phi_{1}, \cdots, \phi_{n}$ in $L^{\infty}(X ; \mu)$ such that each A_{k} is unitary equivalent to the multiplication by ϕ_{k} on $L^{2}(X ; \mu)$,
$k=1, \cdots, n . \quad$ That is,

$$
A_{k} f=\dot{\phi}_{k} f \quad \text { for all } \quad f \in L^{2}(X ; \mu), \quad k=1, \cdots, n
$$

And the joint spectrum of A is the joint essential range of $\phi=$ $\left(\phi_{1}, \cdots, \phi_{n}\right)$, that is, the set of all the points $z=\left(z_{1}, \cdots, z_{n}\right)$ in C^{n} such that for every $\varepsilon>0$

$$
\mu\left(\left\{t \in X: \sum_{k=1}^{n}\left|\phi_{k}(t)-z_{k}\right|<\varepsilon\right\}\right)>0
$$

And the joint spectrum of A is equal to the joint approximate point spectrum of A, i.e., $\sigma(A)=\sigma_{\pi}(A)$.

Secondly, suppose that $\phi=\left(\phi_{1}, \cdots, \phi_{n}\right)$ is an n-tuple of bounded measurable function on the unit circle and $L_{\phi}=\left(L_{\phi_{1}}, \cdots, L_{\phi_{n}}\right)$ and $T_{\phi}=\left(T_{\phi_{1}}, \cdots, T_{\phi_{n}}\right)$ are the n-tuples of the Laurent operators on L^{2} and Toeplitz operators on H^{2} respectively induced by ϕ. That is, for each $k=1, \cdots, n$,

$$
L_{\phi_{k}} f=\phi_{k} f \text { for all } f \in L^{2}, \text { and } T_{\phi_{k}} f=P L_{\phi_{k}} f \text { for all } f \in H^{2}
$$

where P denotes the projection from L^{2} onto H^{2}. Then the joint spectrum of L_{ϕ} is a subset of the joint approximate point spectrum of T_{ϕ}, i.e., $\sigma\left(L_{\phi}\right) \subset \sigma_{\pi}\left(T_{\phi}\right)$. If, furthermore, all $T_{\phi_{k}}, k=1, \cdots, n$, are analytic, i.e., all ϕ_{k} belong to H^{∞}, then the joint spectrum of T_{ϕ} is the closure of the joint residual spectrum of it. (Consult Dash [5].)

Proposition 1. If $A=\left(A_{1}, \cdots, A_{n}\right)$ is a commuting n-tuple of normal operators, then $\|A\|=w(A)=r(A)$, and so A is joint normaloid.

Proof. Since $\sigma(A)=\sigma_{\pi}(A)$, it follows that $w(A) \geqq r(A)$. On the other hand, it follows that

$$
\|A\|^{2}=\sup \left\{\int_{k=1}^{n}\left|\phi_{k}(t)\right|^{2}|f(t)|^{2}(d \mu)(t):\|f\|=1\right\}
$$

and

$$
r(A)^{2}=\sup \left\{\sum_{k=1}^{n}\left|z_{k}\right|^{2}: \mu\left(\left\{t \in X: \sum_{k=1}^{n}\left|\phi_{k}(t)-z_{k}\right|<\varepsilon\right\}\right)>0 \text { for any } \varepsilon>0\right\},
$$

from the definition and the above Dash's results. Since

$$
\mu\left(\left\{t \in X: \sum_{k=1}^{n}\left|\phi_{k}(t)\right|^{2}>r(A)^{2}\right\}\right)=0,
$$

it follows that

$$
\int \sum_{k=1}^{n}\left|\phi_{k k}(t)\right|^{2}|f(t)|^{2}(d \mu)(t) \leqq r(A)^{2} \cdot \int|f|^{2} d \mu \leqq r(A)^{2}\|f\|^{2} .
$$

Hence $\|A\| \leqq r(A)$. So, the proof is complete.
Proposition 2. If $T_{\phi}=\left(T_{\phi_{1}}, \cdots, T_{\phi_{n}}\right)$ is an n-tuple of Toeplitz operators, then $\left\|T_{\phi}\right\|=w\left(T_{\phi}\right)=r_{\pi}\left(T_{\phi}\right)$, and so T_{ϕ} is joint normaloid. Moreover, if T_{ϕ} is an n-tuple of analytic Toeplitz operators, then $\left\|T_{\phi}\right\|=w\left(T_{\phi}\right)=r\left(T_{\phi}\right)$.

Proof. It holds that $\left\|T_{\phi}\right\| \leqq\left\|L_{\phi}\right\| \leqq r\left(L_{\phi}\right) \leqq r_{\pi}\left(T_{\phi}\right) \leqq w\left(T_{\phi}\right) \leqq$ $\left\|T_{\phi}\right\|$. So, the first half is proved. Moreover, if $T_{\phi_{1}}, \cdots, T_{\phi_{n}}$ are all analytic, then $\left.\sigma\left(T_{\phi}\right)=\overline{\sigma_{r}\left(T_{\phi}\right)} \subset \overline{W\left(T_{\phi}\right)}\right)$. Hence

$$
r_{\pi}\left(T_{\phi}\right) \leqq r\left(T_{\phi}\right) \leqq w\left(T_{\phi}\right),
$$

and so the latter half is proved, too.
3. The bare points and extreme points of the joint normaloid operator-family.

Definition 4. Let K be a bounded and connected set in C^{n}. The point α of K will be called an extreme point of K if no line segment joining any two points of K other than α contains α. And the point β of K will be called a bare point of K if there exists a spherical surface through β such that no points of K lie outside this spherical surface.

The set of the bare points of K is included in the set of extreme points of K and dense in it (cf. Berberian [2], p. 181).

Theorem 2. Let $A=\left(A_{1}, \cdots, A_{n}\right)$ be an n-tuple of operators such that $A-z=\left(A_{1}-z_{1}, \cdots, A_{n}-z_{n}\right)$ is joint normaloid for every point $z=\left(z_{1}, \cdots, z_{n}\right)$ in \boldsymbol{C}^{n}. If $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is an extreme point of $\overline{W(A)}$, then α belongs to the joint approximate point spectrum $\sigma_{\pi}(A)$ of A. If, moreover, α is a bare point of $W(A)$, then α is a joint eigenvalue of A.

Proof. Observing the joint approximate point spectrum is closed, it is sufficient for the proof to show that $\alpha \in \sigma_{\pi}(A)$ if α is a bare point of $\overline{W(A)}$. So, now, let α be a bare point of $\overline{W(A)}$. Then there exists a spherical surface S with the central point $z=\left(z_{1}, \cdots, z_{n}\right)$ such that no points of $\overline{W(A)}$ lie outside S and α is on S. Thus,

$$
\left(\sum_{k=1}^{n}\left|\alpha_{k}-z_{k}\right|^{2}\right)^{1 / 2}=w(A-z)=\|A-z\|
$$

and there exists a sequence $\left\{x_{i}\right\}$ of unit vectors such that

$$
\left(\left(A_{k}-z_{k}\right) x_{i}, x_{i}\right) \longrightarrow \alpha_{k}-z_{k}(i \longrightarrow \infty), \quad k=1, \cdots, n .
$$

Consequently,

$$
\begin{aligned}
& \sum_{k=1}^{n}\left\|\left(A_{k}-\alpha_{k}\right) x_{i}\right\|^{2}=\sum_{k=1}^{n}\left\|\left(A_{k}-z_{k}\right) x_{i}-\left(\alpha_{k}-z_{k}\right) x_{i}\right\|^{2} \\
& =\sum_{k=1}^{n}\left\|\left(A_{k}-z_{k}\right) x_{i}\right\|^{2}-2 \cdot \operatorname{Re} \sum_{k=1}^{n}\left(\overline{\alpha_{k}}-\overline{z_{k}}\right)\left(\left(A_{k}-z_{k}\right) x_{i}, x_{i}\right) \\
& \quad+\sum_{k=1}^{n}\left|\alpha_{k}-z_{k}\right|^{2} \longrightarrow 0 \quad(i \longrightarrow \infty) .
\end{aligned}
$$

Hence $\alpha \in \sigma_{\pi}(A)$. The latter half is also proved in the same way as the first half.

Remark. In the case of a single operator, if $A-z$ is normaloid for every complex number z, Hildebrandt [7] said A to belong to operator-class C_{3}.

Corollary 1. For any n-tuple $A=\left(A_{1}, \cdots, A_{n}\right)$ of operators, $w(A)=\|A\|$ if and only if $r_{\pi}(A)=\|A\|$.

Corollary 2. Let $A=\left(A_{1}, \cdots, A_{n}\right)$ be an n-tuple of commuting normal operators. If α is an extreme point of $\overline{W(A)}$, then $\alpha \in \sigma_{\pi}(A)$. If α is a bare point of $W(A)$, then α is a joint eigenvalue of A.

Corollary 3. Let $A=\left(A_{1}, \cdots, A_{n}\right)$ be an n-tuple of Toeplitz operators. If α is an extreme point of $\overline{W(A)}$, then $\alpha \in \sigma_{\pi}(A)$.

Dash [4] has shown that $W(A)$ is convex, if $A=\left(A_{1}, \cdots, A_{n}\right)$ is a commuting n-tuple of normal operators or an n-tuple of Toeplitz operators (see Thm. 2.5 and Thm. 2.6 in [4]). Now, we recall that $\sigma(A)=\sigma_{\pi}(A) \subset \overline{W(A)}$ if A is a commuting n-tuple of normal operators. And if T_{ϕ} is an n-tuple of analytic Toeplitz operators, then $\sigma\left(T_{\phi}\right)=$ $\overline{\sigma_{r}\left(T_{\phi}\right)} \subset \overline{W\left(T_{\phi}\right)}$. Consequently, we get the followings.

Corollary 4 ([4], Thm. 2.8). Let $A=\left(A_{1}, \cdots, A_{n}\right)$ be a commuting n-tuple of normal operators. Then we have

$$
\sum(\sigma(A))=\overline{W(A)},
$$

where $\sum(\sigma(A))$ denotes the convex hull of $\sigma(A)$.
Corollary 5 ([4], Thm. 2.10). Let $T_{\phi}=\left(T_{\phi_{1}}, \cdots, T_{\phi_{n}}\right)$ be an
n-tuple of Toeplitz operators. Then we have

$$
\sum\left(\sigma_{\pi}\left(T_{\dot{\phi}}\right)\right)=\overline{W\left(T_{\phi}\right)} .
$$

Corollary 6 ([4], Cor. 2.11). Let $T_{\phi}=\left(T_{\phi_{1}}, \cdots, T_{\phi_{n}}\right)$ be an n tuple of analytic Toeplitz operators. Then we have

$$
\left.\sum\left(\sigma\left(T_{\phi}\right)\right)=\overline{W\left(T_{\phi}\right.}\right) .
$$

In the case of single operators, Klein [9] has shown that the numerical range of a Toeplitz operator has no extreme points if it is nonconstant. Next, we shall generalize his result for the case of operator-families.

Proposition 3. Let $T_{\phi}=\left(T_{\phi_{1}}, \cdots, T_{\phi_{n}}\right)$ be an n-tuple of Toeplitz operators. Unless the joint numerical range of T_{ϕ} consists of only one point, it has no extreme points and so it is an open set.

Proof. Now, suppose that there exists an extreme point in $W\left(T_{\phi}\right)$ and that $z=\left(z_{1}, \cdots, z_{n}\right)$ is its point. Then there exists an $n \times n$ unitary matrix \boldsymbol{U} :

$$
\boldsymbol{U}=\left[\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 n} \\
\vdots & \vdots & \vdots \\
\alpha_{n 1} & \cdot & \alpha_{n n}
\end{array}\right]
$$

such that the point $\alpha_{11} z_{1}+\alpha_{12} z_{2}+\cdots+\alpha_{1 n} z_{n}$ in C is the extreme point of the numerical range of the operator $T \equiv \alpha_{11} T_{\phi_{1}}+\alpha_{12} T_{\phi_{2}}+$ $\cdots+\alpha_{1 n} T_{\phi_{n}}$ and T is nonconstant. So, since the operator T is also Toeplitz, it is impossible from Klein's results. Therefore, the joint numerical range of T_{ϕ} has no extreme points.

We would like to express our thanks to the referee for his useful comments.

References

1. Y. S. Abramov, On the geometric properties of the joint spectrum of a family of self-adjoint operators, Studia Math., 61 (1977), 55-62.
2. S. K. Berberian, Lectures in Functiona! Analysis and Operator Theory, SpringerVerlag, New York, 1974.
3. J. J. Buoni and B. L. Wadhwa, On joint numerical ranges, Pacific J. Math., 77 (1978), 303-306.
4. A. T. Dash, Joint numerical range, Glasnik Mat., 7 (1972), 75-81.
5. ——, Joint spectra, Studia Math., 45 (1973), 225-237.
6. P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.
7. S. Hildebrandt, Über den numerischen Wertebereich eines Operators, Math. Ann., 163 (1966), 230-247.
8. P. Juneja, On extreme points of the joint numerical range of commuting normal operators, Pacific J. Math., 67 (1976), 473-476.
9. E. M. Klein, The numerical range of a Toeplitz operator, Proc. Amer. Math. Soc., 35 (1972), 101-103.

Received August 6, 1979 and in revised form March 12, 1980.
Department of Mathematics
Faculty of Science
Hirosaki University
Hirosaki 036
Japan

PACIFIC JOURNAL OF MATHEMATICS

	EDITORS
DONALD BABBITT (Managing Editor)	J. DUGUNDJI
University of Galifornia	Department of Mathematics
Los Angeles, California 90024	University of Southern California
HUGO RoSSI	Los Angeles, California 90007
University of Utah	R. FINN AND J. MILGRAM
Salt Lake City, UT 84112	Stanford University
C. C. MOORE AND ANDREW OGG	Stanford, California 94305

University of California
Berkeley, CA 94720
ASSOCIATE EDITORS
R. Arens E. F. Beckenbach B. H. Neumann F. Wolf K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFONIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON
Pacific Journal of Mathematics
Vol. 95, No. 1 September, 1981
John Allen Beachy and William David Blair, On rings with bounded annihilators 1
Douglas S. Bridges, A constructive look at positive linear functionals on $\mathscr{L}(H)$ 11
Muneo Chō and Makoto Takaguchi, Boundary points of joint numerical ranges 27
W. J. Cramer and William O. Ray, Solvability of nonlinear operator equations 37
Lester Eli Dubins and Gideon Schwarz, Equidiscontinuity of Borsuk-Ulam functions 51
Maria Fragoulopoulou, Spaces of representations and enveloping 1.m.c. *-algebras 61
Robert F. Geitz and J. Jerry Uhl, Jr., Vector-valued functions as families of scalar-valued functions 75
Ross Geoghegan, The homomorphism on fundamental group induced by a homotopy idempotent having essential fixed points 85
Ross Geoghegan, Splitting homotopy idempotents which have essential fixed points 95
Paul Jacob Koosis, Entire functions of exponential type as multipliers for weight functions 105
David London, Monotonicity of permanents of certain doubly stochastic matrices 125
Howard J. Marcum, Two results on cofibers 133
Giancarlo Mauceri, Zonal multipliers on the Heisenberg group 143
Edward Wilfred Odell, Jr. and Y. Sternfeld, A fixed point theorem in c_{0} 161
Bernt Karsten Oksendal, Brownian motion and sets of harmonic measure zero 179
Andrew Douglas Pollington, The Hausdorff dimension of a set of normal numbers 193
Joe Repka, Base change lifting and Galois invariance 205
Gerald Suchan, Concerning the minimum of permanents on doubly stochastic circulants 213
Jun-ichi Tanaka, On isometries of Hardy spaces on compact abelian groups 219
Aaron R. Todd, Quasiregular, pseudocomplete, and Baire spaces 233

