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Boundary Regularity and Compactness
for Overdetermined Problems

IVAN BLANK - HENRIK SHAHGHOLIAN

Abstract. Let D be either the unit ball By (0) or the half ball Bl+ 0), let f be a
strictly positive and continuous function, and let u and 2 C D solve the following
overdetermined problem:

Au(x) = xo () f(x) in D, 0€dQ, u=|Vu|=0 in Q°,

where x, denotes the characteristic function of 2, Q¢ denotes the set D \ €2, and

the equation is satisfied in the sense of distributions. When D = BT(O), then we
impose in addition that

u(x)=0 on { (x', x,) | x, =0}.

We show that a fairly mild thickness assumption on Q¢ will ensure enough com-
pactness on u to give us “blow-up” limits, and we show how this compactness
leads to regularity of 9€2. In the case where f is positive and Lipschitz, the meth-
ods developed in Caftarelli, Karp, and Shahgholian (2000) lead to regularity of
d€2 under a weaker thickness assumption.

Mathematics Subject Classification (2000): 35R35.

1. — Introduction

In this paper we study the regularity properties of solutions to certain
overdetermined problems which are similar to the obstacle problem, but which
do not have a sign assumption. Specifically, we assume that we are given an
open set 2 C D, where D is the open unit ball B;(0) C R”, or the half ball
Bf(O), and we assume that we are given a function u which satisfies:

Au(x) = xo(x) f(x) in D,
(1.1) u=|Vul=0 in Q°=D\Q,
0 € 0d9.

Pervenuto alla Redazione il 21 gennaio 2003 e in forma definitiva il 15 ottobre 2003.
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Here f is a positive continuous function. In the case where D is a half ball,
we impose the additional assumption on the boundary:

(1.2) u(x)=0 on {(x, x)|x,=0}.

We want to examine the smoothness of d€2. (Note that by standard elliptic
estimates, we know that u € W2P (D) for all p < oo, and therefore by the
Sobolev Embedding Theorem, we have u € C'“*(D) for all « < 1. See [GT].)

These problems have been studied in many recent papers with either con-
stant f or with u > 0. (See for example [B], [CKS], and [SU].) These types of
problems have also arisen in various problems of mathematical physics. In the
case without the fixed boundary this type of problem comes up in geophysics
and inverse potential theory (see [I], [M], and [St]). Problems where a free
boundary comes into contact with a fixed boundary appear in filtration, and
motion by mean curvature with nonconvex obstacles.

Before we can state our results, we need some definitions. We will fix
0 <A < u and we will assume that all constants are automatically allowed to
depend on A, w, and n in addition to any other dependence which is indicated.
(In other words, if we state that a constant depends on only «, for example,
then it is actually allowed to depend on «, A, u, and n.) Any nonnegative
increasing continuous function o defined on the nonnegative real numbers with
0(0) = 0 is called a modulus of continuity. If o is a modulus of continuity,
then we define P,(M, o) to be the set of functions u which satisfy

1. Equation (1.1) with D = B,, and a continuous function f which satisfies

A=f=n and |f () = fODI < a(llx = yID,

(the f and the 2 from Equation (1.1) are allowed to depend on u)
2. lul <M in D.

For such a function # we will say that the function “f” and the domain “Q”
correspond to u, and refer to 2 as the nonzero set for u and its complement will
be called the zero ser. We define P (M, o) like P,(M, o) but with D := B,
and with Equation (1.2) also assumed. For the situation on the half ball we
distinguish different parts of the boundary of Q as follows:

XB(u) := 92N {x, =0} the fixed boundary,
(1.3) FB(u) :=02N{x, > 0}\ 0By the free boundary, and
IB(u) := XB(u) N FB(u) the interface.

We will assume that the origin is part of the free boundary or the interface in
all of the sets of functions we define for the sake of simplicity of notation, but
the equations themselves are translation invariant.
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For a bounded set S C R", we define its minimum diameter (denoted
m.d.(S)) to be the infimum among the distances between pairs of parallel hy-
perplanes enclosing S. We use the minimum diameter to define two “thickness”
conditions which we will use repeatedly.

DerINITION 1.1 ((€, r)-Thickness). We will say that a point x of the free
boundary is (e, r)-thick if

(1.4) inf m.d.({2°U D} N Bg(x)) -

r>s>0 Ky

(Better terminology might be that the zero set is (€, r)-thick at x, but we prefer
brevity.)

DEerINITION 1.2 ((€, r)-Pthickness). We will say that an x of the interface
is (e, r)-Pthick if

(1.5) inf PO u=0) (RN B())

r>s>0 Ky

’

where Proj,(S) is the orthogonal projection of a set S into the plane 7, and
our minimum diameter in (1.5) is taken with respect to n —2 dimensional planes
in {x, =0}

For ¢ > 0, we define P?(M, o,€) to be the u € P.(M, o) such that O is
(e, r/4)-thick, and we define 739’+(M, o,¢€) to be the u € PH(M, o) such that
0 is (e, r/4)-Pthick.

THEOREM 1.3 (Quadratic growth). If either u € P?(M, o,€)oruc P?’Jr (M, o, ¢),
then there exists a constant y which depends on only M, o, and € such that for any
X € By (or Bfr/4 as appropriate)

(1.6) lu(x)| < yllx||%

REMARK 1.4 (First generalization). Our proof of the theorem above will
not use the continuity or the positivity of f. It only requires f € L°°.

REMARK 1.5 (Second generalization). Our proof of the theorem above
will also not make full use of the minimum diameter condition. We need the
minimum diameter condition for other parts of this work, but there is a weaker
sufficient condition for the quadratic bound which can be found in the appendix
at the end of this paper.

We define 73, (M, o0, €) to be the set of functions u € P,(M, o) whose free
boundary points within r/2 of the origin are all (e, r/4)-thick.

THEOREM 1.6 (Nonnegativity near 2°). Ifu € 731 (M, o, €), then there exists
a constant « depending on M, o, and € such that u > 0 in an o neighborhood of
a2 N Bl/4.
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ReEmaRrk 1.7 (Necessity of thickness for nonnegativity). Examples where
u becomes negative can be found in the literature. Examples where Q¢ has
codimension of at least two can be given explicitly by 2x> — y? in R* or (for
the contact problem) by x?+xy in the set {x > 0}. On the other hand, in [KN]
(387-390) there are local examples (of codimension one) where 92 is given
by the curves

(1.7) n=+2x? 0<x <1

where y = 4k + 3. These examples can be adapted for the problem where there
is contact with a fixed boundary, and a description of a way to produce such
an adaptation can be found in [SU].

After these theorems have been established, we will be able to invoke the
results of the first author in [B] to conclude the following corollary. Before we
state it, however, we define some notions of flatness. Let § C R" be a compact
set, and let y > 0. Then S is y —Reifenberg flat if there exists a constant R > 0
such that for every x € S and every r € (0, R] we have a hyperplane L(x,r)
containing x such that

(1.8) D(L(x,r)N B, (x), SN B,(x)) <2ry.

Here D denotes the Hausdorff distance: If A, B C R", then

(1.9) D(A, B) := max{ supd(a, B) , supd(b, A) }.
acA beB

We also define the following quantity, which we call the modulus of flatness, to
get a more quantitative and uniform measure of flatness:

D(L(x,p)NB , SNB
(1.10) 0(r) :== sup (sup (L&, p) ) p(x))) .

O<p<r \xeS§ P

Finally, we will say that S is a Reifenberg vanishing set, if

(1.11) lim 6(r) = 0.

Reifenberg flatness was introduced by Reifenberg in 1960 (see [R]), and has
appeared in the work of Kenig and Toro relating boundary regularity to the
regularity of the Poisson kernel (see [KT] and [T]). In particular, they introduced
the notion of a Reifenberg vanishing set (see [KT]).

CorOLLARY 1.8 (Boundary regularity). Ifu € 731 (M,0,€), then dQ N Byy4 is
a Reifenberg vanishing set with o as its modulus of flatness, and in particular we
can conclude the following:

1. Foranyx € 0Q2 N Byjs
Q°N By 1
(1.12) 1imﬂ =_.
s—0 |Bs| 2

2. If o is a Holder modulus, then 9€2 N By 4 is cle,
3. If o is a Dini modulus (i.e. fol (o(r)/r)dr < 00), then 32 N Byy4 is c'.
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Incidently, even in the case where we assume that u > 0, we still need
a thickness assumption on Q¢ to get regularity. Schaeffer constructed counter-
examples in [Sc] when no thickness is assumed, and Caffarelli’s celebrated
results in [C1] and [C2] showed that for Holder continuous and positive f,
Q¢ would be either C'% or “cusp-like” at any given point of its boundary.
(In fact y = 4k + 1 in Equation (1.7) admits nonnegative solutions.) For
functions f which are not Dini continuous the counter-example due to the first
author in [B] shows that given our assumptions above, our conclusions are
sharp. (Whether the hypotheses we have above can be weakened is a subject
of further investigation.)

From Theorem 1.3 combined with the characterization of global solutions
found in [SU] we obtain the following corollary by a simple blow-up argument.
(The theorem from [SU] which we are referring to is stated as Theorem 2.2 in
the next section, and several other theorems we cite are also also stated there
for the reader’s convenience.)

CoroLLARY 1.9 (Free and fixed boundaries touch tangentially). If u €
P?’+(M , 0, €), then there exists a modulus of continuity \, and a positive constant
y which depend on only M, o, and €, such that

(1.13) IQN B, C{ &', x) 1x, < (XWX}

REMARK 1.10. The proof of this corollary does not use more than the
fact that the fixed boundary, { x, = 0}, is a C' manifold. In [SU] the fixed
boundary has to be C? in order to prove the necessary compactness, but here
we can assume only C! as we get our compactness from the assumption on
thickness of the zero set Q2°.

In [SU] the fact that the free boundary touches the fixed boundary tangen-
tially leads to a proof that dQ is C! in a neighborhood of the point of contact.
In the current situation, the counter-example in [B] can be adapted to show
that even though the free boundary touches the fixed boundary tangentially, it
will not in general be C' in a neighborhood of zero if the Laplacian is not
Dini continuous. The counter-example from [B] is a function which satisfies
Aw = x,, f for a nonnegative continuous function f, and a set £ which has
density 1/2 on every point of its boundary, but which “spins” an infinite num-
ber of times around zero. It can be constructed by taking u(x) := (X]Jr)2 and
taking a o which does not satisfy the Dini condition, and then rotating u(x) in
alternating dyadic annuli by an amount proportional to o of the inner radius.
It can then be shown by a short computation that the Laplacian of u(x) will
deviate from constant by an amount proportional to the rotation. It can also be
shown that failing the Dini condition is then exactly equivalent to an infinite
total rotation. In particular (since w > 0), Caffarelli’s free boundary regularity
alternative of [C1] and [C2] does not hold in its classical form. To adapt the
example to suit our purposes, it needs to be iterated at a sequence of boundary
points which converge to zero. The following picture shows how to construct
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X, = Y(x')
Boundary()

. The boundary rotates an infinite
number of times around the
center of each circle, and the
centers of the circles converge
to the origin.

the counter-example for the current situation using the counter-example from
[B], and the details of the computation are essentially contained in [B].

In the Dini case we establish C' contact between the fixed and free bound-
aries with a very mild smoothness condition. We let §(x) denote the distance
from a free boundary point x to the fixed boundary, XB(u). (Note that in
general we expect §(x) > x,.) We define one final class of functions before
we state our corollary. Let 73;r (M, o, €) be the set of functions u € PH(M, o)
such that all x € FB(u) N B, are (e, §(x)e)-thick, and all x € I1B(u) N B,),
are (e, r/4)-Pthick.

COROLLARY 1.11 (C! contact in the Dini case). Suppose u 73r+ M,o,¢€),
and o is a Dini modulus of continuity. Then the boundary of Q is C' in a neighbor-
hood of the origin, where the C' norm of the local parametrization and the size of
the neighborhood will depend on M, o, and €.

REMARK 1.12. The presence of the §(x) term in the thickness assumption
allows this condition to degenerate as we approach the fixed boundary. Allowing
R"\ Q = QU D¢ instead of just Q¢ = BT(O)\Q in Equation (1.4) is necessary
for the fixed boundary case because Corollary 1.9 guarantees that otherwise this
equation would never be satisfied by free boundary points sufficiently close to
the fixed boundary.
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2. — Preliminary results

We collect here several results from [B], [CKS], and [SU] which are es-
sential to this paper. We begin with two fundamental classification theorems.

THEOREM 2.1 ([CKS])). If there exists an M > 0 such that
Au= o inR", m.d.({fu=[Vu| =0}NB,) > 0foranr >0,

(2.1)
u=|Vu| =0inQ°, |ux) <M+ |x]?)inR",

then u > 0 in R", and D,.u > 0 in Q, for any direction e, i.e. QF is convex.
Moreover, if

d. = |Vu| =0} N B,
(2.2) limsupm ({u = [Vul ) ) >0

r—00 r

’

then u(x) = (max{x;, 0})?/2 in some coordinate system.

THEOREM 2.2 ([SU]). Let R, := R" N {x; > 0}, and let T1 := {x; = 0}. If
there exists an M > O such that

Au =y, nRY, u=1|Vu| =0 inRL\ Q,

Q

(2.3)
u=>0 onTl, lu@@) <M1+ [x]>) in R",

then
2

QN {x; > 0} = ¢ implies u(x) = % + ax1x + bx;

for some real numbers a, b in some rotated coordinate system of 1, and

(1 —a)4)?

Q2N {x; > 0} # ¢ implies u(x) = 7

forana > 0.

Observe that if 0 € I B(u) then we can conclude that

%2
u(x) = L4 axixs .
2
We turn now to local results we use. Essentially what we need is the
following theorem which combines parts of Theorems 7.1 and 7.2 of [B]:
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TuEOREM 2.3 ([B]). If u € Pi(M,0,€) and u > 0, then 9Q N By is a
Reifenberg vanishing set with o as its modulus of flatness, and in particular we can
conclude the following:

1. Forany x € 02 N By

Q°NB 1
2.4) lim ﬂ = —.
=0 |B] 2
2. If o is a Hélder modulus, then 92 N By 4 is che.
3. If o is a Dini modulus (i.e. fol (o(r)/r)dr < 00), then 32N Byy4 is ch.
Notice that this theorem is exactly Corollary 1.8, but with the additional
assumption that u > 0. (This assumption, of course, leads to a quadratic bound
on the function u, and also makes it much easier to construct solutions which
can be used as barriers.)

3. — Compactness

PrOOF OF THEOREM 1.3. We first deal with the case when u € P)(M, o, €).
Fix €, M, and n, and define the following notation:

Sj(u) := sup |u| and S, (u):=supul.
By—j Br

We claim that there exists a constant y such that

G.1) Sit1(u) < max{ y2 5 So(u) }

4 4T g

for all j and for all u € P?(M, o, €). In this case, if we let M = max{y, M},
then we have S,(u) < Mr2, which is all we need. So we will suppose that
Equation (3.1) does not hold. In this case, there exists a sequence {u;} C
P?(M ,0,¢€), and a sequence of integers {k;} such that

.~ —2k;
J2 S () So(u))
(3.2) Skj+1(uj) > max { 4 s 41 s ey 4kj+1

Note that since |u;| < M, we can conclude that we must have k; — oo. Now
define
uj (2_kj x)

(3.3) vi(x) = Ser ()
]
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and observe that in szj we have

(3.4) |Av,|5m—>o,
J
and in Bym (for 0 <m < k;) we have
Ski—m (uj)
(3.5) 0 ()] < T < gmy?
Skj+1(uj)

Thus, for ||x|| > 1 we have |v;(x)| < C||x||?, but we also have the following
nondegeneracy: ||vj||Loos, ) = 1. After a rotation of coordinates we have
v; — vp with Avg = 0, vo(0) = [Vrp(0)] = 0, and vo(%l) =1. So vy is a
harmonic polynomial of degree 2, and in some system of coordinates we have

(3.6) vo() = ex}  with Y o =0.
i=l i=l

Since vy is nontrivial, one of the «;’s must be nonzero. Since the sum of
the «; is zero, we must therefore have at least 2 nonzero «;. Using this fact
and the expression above, we see that Vvy must vanish on a set which is the
intersection of at least two orthogonal hyperplanes. (Because it must vanish on
two hyperplanes and not one, we get the improvements alluded to in Remark
1.5 and explained fully in the appendix.) On the other hand,

(3.7) m.d.({vo = |Vv| =0} N By) > €,

since limsup Q°(v;) C {vo = [Vuvg| = 0} which gives us the desired con-
tradiction. (The limsup of sets §; € R" is defined by § := limsupS; if
Xg = limsup x . This definition makes sense, since the limsup of characteris-

tic functions is still a characteristic function.)

The case when u € 77?’+(M , 0, €)1s very similar. In order to conclude that
we have a quadratic harmonic polynomial in this case after the blow up, it is
useful to reflect it in an odd fashion across the plane { x, = 0}, and use the
fact that |Au| < || f|ls in B;. The contradiction comes from Equation (1.5) for
Q¢ (vo). O

As a consequence, we obtain “blow-up” limits, and a uniform rate of
convergence to these limits. First we define a rescaling:

(3.8) ug(x) := Szu(x/s)

and note that by Theorem 1.3 all of the “P” classes are closed under this
rescaling for s > 1.



796 IVAN BLANK - HENRIK SHAHGHOLIAN

ProrosiTION 3.1 (Convergence to global solutions). Suppose that u eP?(M, 0,€)
or PP’*(M ,o,€)with f and Q denoting the corresponding Laplacian and nonzero
set. Then there exists a function uq defined on either R" or the half-space R’
according to our assumption about u (with a nonzero set C2y) whose growth is no
worse than quadratic, and which satisfies:

1. Aug = f(O)XQO’
2. up = |Vuo| = 0in Q, and
3. 0 € 99y,

and there exists a sequence {si} — 00 such that ug, — uo uniformly in CY% on any
compact set.

The proof is standard so we omit it. (For a reference, see [F] pages 163
and 164.) By noting that either

md(Qg N BR) -

lim inf €e>0
R— o0
o d.(Proj QENB
liminf L P0=01 (0 0 BR)
R—00 R

and invoking either Theorem 2.1 or Theorem 2.2 according to which case we
are considering, the following proposition is immediate.

CoroLLARY 3.2. With ug as in the previous proposition, after a rotation of
coordinates we have
f(©0)

2
Now to prove Corollary 1.9 by contradiction, simply assume that the contact

is not tangential. In that case, by doing a blow-up we can contradict the
classification of the last corollary.

up(x) = (2.

ProrosizioNE 3.3 (Convergence of nonzero sets). There exists a modulus of
continuity W which depends on M, o, and € such that for any u € Plo(M, 0, €)
(where ug(x) = s*u(x/s) and Q is the corresponding nonzero set) we have the
estimate:

(3.9) |QﬂBl/s| 1’_|QsﬂBl| 1‘<1/f<1)
' Bl 2|~ '

| B1/s] 2 s

ProOOF. Suppose such a ¥ does not exist. Then there exists a sequence of
Ui € P?(M, o, €), a sequence of real numbers s; — oo, and a § > 0 such that

if vp(x) ;= s,fuk(x /sx), and Qk is the corresponding nonzero set, then

QN By 1

(3.10)
| B 2

>4
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Now take a subsequence of the v such that f;(0) converges. Again for sim-
plicity, we assume that it converges to 1. Now by the same argument as in
the proof of Proposition 3.1 we can produce a global solution u#y such that
vk — ug. We will have a constant M such that ug € Pr(Mr2, o = = () for all
r > 0 (having 0 =0 is just a simple way to force the Laplacian to be constant
in the set 2), and since lim sup QC C Qf, uo will inherit the following property
from the vy : The zero set w111 satisfy

m.d.(% N Br) _

3.1 lim inf >e>0.

R—o0

Now by using Equation (3.11) and applying Theorem 2.1 again, we can conclude
that in the right coordinate system ug(x) = %(x;r )2. Finally, we can now get
a contradiction with Equation (3.10) above by using standard nondegeneracy
statements based on the weak maximum principle. (See Equation (4.1) of

[CKS] for example.) O
REMARK 3.4. In fact, the argument above shows more: If we let QT :=
{u>0}and Q :={u <0}, then with the same hypotheses as above we
will have:
QTN B, 1 NB,| 1
_ |, |—/————=|, and |——
|B,| 2 | B, | 2 | B, |

all bounded by 1 (r). To produce the proofs of these statements merely change
Equation (3.10) above to suit the new situation.

4. — Nonnegativity

ProoF oF THEOREM 1.6. The crucial observation in the proof of this theorem,
is that if u € Pi(M,0,¢)and y € 92N By,4 then

@.1) i(x) =16 u G + y) e PY(4M, 0, €)

and so we can apply Proposition 3.3 in a manner independent of # and indepen-
dent of y. We wish to argue by contradiction, and note that by the translation
just mentioned, it will suffice to assume that there exists a sequence of func-
tions {uy} C 731 (M, 0,¢€) and a sequence of points {x;} C Qi (where € is the
nonzero set for u;) with

1. up(xx) <0, and
2. Xk — 0e BQk.
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Now we claim, that if we take k sufficiently large, then there exists a
sequence {yx} C 9€2; with the following properties:

1. dist(xg, 0S2) = dist(xg, yx) so yx is one of the points in 9€2; which is
“closest” to xj,

2. dist(yx, 0) < € which will be a very small constant independent of k, and

3. if rp :=dist(xg, yx), then

B, nel 1]
42) | Bry 72 (yk) ko1 <c.
|Brk/2| 2

The first two properties are fairly straightforward if k is sufficiently large.
The fact that € is still independent of u; and k, and € is also still as small
as we like even after the assertion of the third property follows from Equation
(4.1) and from the fact that i is independent of u in Proposition 3.3.

Now we make some rescalings and rename some things. We call i the
function in 793(4M , 0, €) obtained by rescaling x; to e; and y; to 0, so we can
obtain i;(x) as a rotation of the function wy(x) which we define by

1
wi(x) = W”k()’k — I'iXx).

We now have i (e;) = r; 2ui(x;) < 0. Since y; € 92, we now have 0 € 9,
where € is the nonzero set of ;. At this point we have the following picture:

The dotted horizontal lines are in a region which must lie in Qi and the
vertical striped region is a subset of 2} and has measure within € of %lBl 2l
After taking a limit (and using Theorem 2.1 again) we converge to ug(x) =
y(xf’)2 (for some constant ), which contradicts the fact that ug(e;) <0. O

To prove Corollary 1.8 we observe that near the boundary we now have a
solution of the obstacle problem. In particular, we can invoke the results from
[B] immediately. (For a recent treatment of the obstacle problem see [C3] and
[B].)

Before we prove Corollary 1.11, we prove a preliminary lemma.
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Lemma 4.1 (Convergence of normals at the fixed boundary). Let u €
73,+(M, o, €)and let o be a Dini modulus. Then there exists a pgo = po(M, o0,€) > 0
and a modulus of continuity w, which also depends only on M, o, and €, such that
if n(x) is the interior unit normal at x (the normal must exist by Corollary 1.8), then

(4.3) lIn(x) — el = w1(8(x))

(recall that §(x) is the distance from x to the fixed boundary, 92 N {x,, = 0}), and
0S2(u) N By, is a graph in the e, direction.

Proor. It suffices to prove Equation (4.3). To this end, we fix { > 0 and
show that once §(x) is sufficiently small (where x is a point in a free boundary
in our class, P,"(M, o, €)) we have

(4.4) lIn(x) —enll < ¢.

We take a sequence {uy} € ﬁj(M, o, €), and a sequence {x*} € dQ(u;) which
converges to zero, and we denote the corresponding sequence of normals by
{nt}. Let y* be one of the points of X B := {x, = 0} N3 (1) which is closest
to x¥. Define

g (8 (xF)x + ¥4

(4.5) Up() i= =50

and define

k k
(4.6) b=t =
8(xk)
Note that the normal to the free boundary at X* is still ny, note that |X* =1,
and note that if we extend Uy to be 0 in {x, < 0}, then it is a solution of the
local problem in a ball of radius one around X*.

Our rescaling has eliminated the §(x) term which appears in our assump-
tions, and so we have a uniform thickness of our zero set in a neighborhood
of X*. Because of the uniform thickness we have, we can apply Theorem 1.6
to conclude that Uy > 0 in a uniform neighborhood of X*, and at that point,
Theorem 7.2 of [B] shows that if x is a free boundary point in a small (but
uniform) neighborhood around X* and » is its normal vector, then

ad 1
4.7) I —mill <€ 3 0 (B2™) < C/o M g

m=0

By Corollary 1.9 we know that X% < v(8(xx)), where v is the modulus of
continuity given in that corollary. On the other hand, we know that the free
boundary cannot touch x, = 0 within B;(X¥). This fact along with Equation
(4.7) leads to an estimate of the form |[|ny — e,|| < ¢, if 6(x;) is sufficiently
small. O



800 IVAN BLANK - HENRIK SHAHGHOLIAN

ProoF oF THEOREM 1.11. Fix € > 0. Choose d sufficiently small to ensure
that (with w; as given in the previous lemma) w;(d) < €/2. If x and y are
two points on the free boundary, with §(x) and §(y) less than d, and n(x) and
n(y) are the corresponding normal vectors, then by the previous lemma we get

(4.8) [In(x) —nWIl < [In(x) —enll + [len —n(y)|| < €/2+€/2.

Now if §(x) and §(y) are both greater than d/2, then by assumption we
have a uniform thickness estimate, and therefore we can apply Theorem 7.2 of
[B] to conclude that we have a uniform modulus of continuity of the normal
vectors which we will call w,. Let  be chosen small enough so that w,(n) < €.
If x and y are free boundary points, and

(4.9) llx — yIl < min{d/2, n}

then either 6(x) and §(y) will both be less than d and Equation (4.8) will apply,
or §(x) and 8(y) will both be more than d/2 and we can use w, to get the
desired result. O

Appendix

Now we discuss a variant of the minimum diameter condition which leads
to a weaker version of (e, r)-thickness which is still strong enough to ensure a
quadratic bound. One way of expressing minimum diameter of a set S, is to
find the smallest y such that after an orthonormal change of coordinates one
has
S C{xf = (/2%

Obviously this condition forces the set to be “thin” in one direction. The content
of Theorem 1.3 is that if the zero set is (e, r)-thick at zero, then there is a
quadratic bound. Recall that a point x of the free boundary is (e, r)-thick if

- m.d.({Q° U D} N By(x)) e

r>s>0 Ky

For the sake of the quadratic bound only, this condition (the inequality in the
definition of (e, r)-thickness) can be improved by replacing m.d. with the y
which is the minimum among the y’s where we have

SC{xf+x3 < (/2%

after an orthonormal change of coordinates. In other words, the sharper condition
forces the zero set to be thin in two directions. In terms of the fact that the proof
of Theorem 1.3 is still valid with our weaker assumptions, it is helpful to recall
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that the zero sets of nontrivial homogeneous quadratic harmonic polynomials
were linear subspaces which always had codimension of at least two. (By zero
set here we of course mean the set where the function and the gradient vanish.)

This condition is an improvement of the capacity density condition of [KS]
which also gives a quadratic bound. A set with capacity greater than € cannot be
arbitrarily thin in two different directions, or in other words, sets of codimension
two have capacity zero. If a set has small capacity, then one has control of
its size, but our minimum diameter condition involves a control of size which
is as strong as the control given by capacity, but also involves a control of
shape. (Thus, more sets will end up being “thick™ in this sense, and therefore
our criterion for the quadratic bound is weaker.)
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