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BOUNDARY RELATIONS AND THEIR WEYL FAMILIES

VLADIMIR DERKACH, SEPPO HASSI, MARK MALAMUD, AND HENK DE SNOO

Abstract. The concepts of boundary relations and the corresponding Weyl
families are introduced. Let S be a closed symmetric linear operator or, more
generally, a closed symmetric relation in a Hilbert space H, let H be an auxiliary
Hilbert space, let

JH =

(
0 −iIH

iIH 0

)
,

and let JH be defined analogously. A unitary relation Γ from the Krĕın space
(H2, JH) to the Krĕın space (H2, JH) is called a boundary relation for the ad-
joint S∗ if ker Γ = S. The corresponding Weyl family M(λ) is defined as the

family of images of the defect subspaces N̂λ, λ ∈ C \ R, under Γ. Here Γ need
not be surjective and is even allowed to be multi-valued. While this leads to
fruitful connections between certain classes of holomorphic families of linear
relations on the complex Hilbert space H and the class of unitary relations
Γ : (H2, JH) → (H2, JH), it also generalizes the notion of so-called bound-
ary value space and essentially extends the applicability of abstract boundary
mappings in the connection of boundary value problems. Moreover, these new
notions yield, for instance, the following realization theorem: every H-valued
maximal dissipative (for λ ∈ C+) holomorphic family of linear relations is the

Weyl family of a boundary relation, which is unique up to unitary equivalence
if certain minimality conditions are satisfied. Further connections between
analytic and spectral theoretical properties of Weyl families and geometric
properties of boundary relations are investigated, and some applications are
given.

1. Introduction

Up until the seventies most papers about the extension theory of symmetric
operators in a Hilbert space were mainly based on von Neumann’s formula or a
simplified version of it when the symmetric operator has points of regular type
on the real line. Later an alternative approach was proposed by V.M. Bruck and
A.N. Kochubei (see [20] and the references therein), which is based on an abstract
version of Green’s identity. The basic object that arises here is the notion of a
boundary triplet, also called a boundary value space; see [20, 15, 16, 12].

Definition 1.1 ([20]). Let S be a closed densely defined symmetric operator in a
Hilbert space H. A triplet {H, Γ0, Γ1}, where H is a Hilbert space and Γi, i = 0, 1,
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5352 V. A. DERKACH ET AL.

are operators from domS∗ to H, is said to be an (ordinary) boundary triplet for
S∗, if:
(BT1) the abstract Green’s identity

(1.1) (S∗f, g) − (f, S∗g) = (Γ1f, Γ0g)H − (Γ0f, Γ1g)H

holds for all f, g ∈ dom S∗;
(BT2) the linear mapping Γ := {Γ0, Γ1} : domS∗ → H⊕H is surjective.

In [14, 15] the concept of a Weyl function was associated to an ordinary boundary
triplet as an abstract version of the so-called m-function appearing in boundary
value problems for differential operators.

Definition 1.2 ([14, 15]). Let Π = {H, Γ0, Γ1} be a boundary triplet for S∗. The
operator-valued function M(λ) defined by

(1.2) Γ1fλ = M(λ)Γ0fλ, fλ ∈ Nλ := ker(S∗ − λ), λ ∈ C \ R,

is called the Weyl function, corresponding to the boundary triplet Π.

The mappings Γ0 and Γ1 induce two selfadjoint extensions A0 and A1 of S,
given by domAi := ker Γi, i = 0, 1. It turns out that the Weyl function M(·) is an
operator-valued function with values in [H], which is holomorphic on ρ(A0). Here
the following notation is used: [X, Y] stands for the set of all bounded linear op-
erators between the Banach spaces X and Y, and when Y = X this is abbreviated
to [X]. The Weyl function M(·) determines the pair {A0, A1} up to unitary equiv-
alence. In particular, the resolvent set of A0 (of A1) coincides with the domain of
holomorphy of M(·) (of M−1(·)).

The Weyl function M(·) plays an important role in the spectral theory of the
selfadjoint extension A0 of S. It follows from (1.1) and (1.2) that the Weyl function
M(·) satisfies the identity

(1.3)
M(λ) − M(µ)∗

λ − µ̄
= γ(µ)∗γ(λ), λ, µ ∈ ρ(A0),

where the so-called γ-field γ(λ) is defined by γ(λ) = (Γ0|Nλ)−1. This implies that
the Weyl function belongs to the class R[H] of Nevanlinna functions (also called
Pick or Herglotz functions; see [18], [19], [21]) consisting of [H]-valued functions
M(·), holomorphic on C \ R, which satisfy the conditions M(λ) = M(λ̄)∗ and
(Im λ) (ImM(λ)) ≥ 0, λ ∈ C \ R. Every function M(·) ∈ R[H] admits the following
integral representation:

M(λ) = A + Bλ +
∫

R

(
1

t − λ
− t

t2 + 1

)
dΣ(t),

∫
R

dΣ(t)
t2 + 1

∈ [H],

where A = A∗ ∈ [H], 0 ≤ B = B∗ ∈ [H], the [H]-valued family Σ(·) is nondecreas-
ing, and the integral is uniformly convergent in the strong topology; cf. [7], [21]. In
the case when the operator S is densely defined the corresponding Weyl function
M(·) satisfies two additional conditions

B = lim
y→∞

M(iy)
iy

= 0 and lim
y→∞

yIm (M(iy)h, h) = ∞, 0 �= h ∈ H.

Example 1.3. The motivation for the introduction of Weyl functions goes back
to the theory of singular Sturm-Liouville operators. Let L = −d2/dt2 + q(t) be a
Sturm-Liouville operator in the Hilbert space L2(0,∞) with a real potential q(·),
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which is assumed to be in the limit-point case at ∞. The corresponding minimal
operator S is densely defined, closed, and symmetric; its defect numbers are (1, 1).
For y in the domain of the corresponding maximal operator S∗ one can define a
boundary triplet {C, Γ0, Γ1} for S∗ by the equalities

(1.4) Γ0y = y(0), Γ1y = y′(0).

Then the corresponding Weyl function M(·) coincides with the m-function in-
troduced originally by H. Weyl [40] and E.C. Titchmarsh [39], also called the
Titchmarsh-Weyl coefficient. Let ϕ(·, λ) and ψ(·, λ) denote the fundamental so-
lutions of the system Lu = λu on (0,∞) which satisfy the initial conditions{

ϕ(0, λ) = 1, ψ(0, λ) = 0,
ϕ′(0, λ) = 0, ψ′(0, λ) = 1.

The limit-point case at ∞ yields the fact that

(1.5) γ(t, λ) = ϕ(t, λ) + M(λ)ψ(t, λ), λ ∈ ρ(A0),

is the only solution of Lu = λu for λ ∈ C \ R which belongs to L2(0,∞) (up to
constant multiples), and it satisfies

(1.6)
M(λ) − M(λ)

λ − λ̄
=

∫ ∞

0

|γ(t, λ)|2dt, λ ∈ C \ R.

Since Γ0γ(·, λ) = γ(0, λ) = 1 and Γ1γ(·, λ) = γ′(0, λ) = M(λ), the γ-field and the
Weyl function corresponding to the boundary triplet {C, Γ0, Γ1} in (1.4) coincide
with the functions γ(·) and M(·) in (1.5), while (1.6) expresses the identity (1.3).

The condition in Definition 1.1 that the operator S is densely defined can be
relaxed: it suffices to require that S is a symmetric linear relation (multi-valued
linear operator). However, if S is nondensely defined, then the adjoint S∗ of S is a
linear relation and the mappings Γi now belong to [S∗,H], where S∗ is considered
as a subspace of H2 := H × H equipped with the graph norm. In this case the
condition (BT1) is replaced by

(1.7) (f ′, g) − (f, g′) = (Γ1f̂ , Γ0ĝ)H − (Γ0f̂ , Γ1ĝ)H,

with f̂ := {f, f ′}, ĝ := {g, g′} ∈ S∗, and the condition (BT2) requires the closed
linear mapping

Γ := {Γ0, Γ1} : S∗ → H⊕H
to be surjective. Moreover, the Weyl function defined by

Γ1f̂λ = M(λ)Γ0f̂λ, f̂λ := {fλ, λfλ} ∈ S∗,

satisfies the equality (1.3) with the definition of the γ-field γ(λ) modified accord-
ingly; cf. [16], [28]. Nondensely defined symmetric operators or relations naturally
arise in various areas, such as the moment problem, Krĕın’s string theory, and the
spectral theory of canonical systems.

Example 1.4. The spectral theory of canonical systems is concerned with systems
of differential equations of the form

(1.8) J
dx

dt
= λH(t)x, J =

(
0 −In

In 0

)
, t ∈ [0,∞),

with a locally integrable nonnegative 2n×2n Hamiltonian H(t). If H(t) is invertible
for almost all t ∈ (0,∞), then (1.8) induces a densely defined minimal symmetric
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5354 V. A. DERKACH ET AL.

operator S in the associated Hilbert space L2
H(0,∞), by means of the operator

H−1J d
dt . However, if H(t) is singular on a subset of positive Lebesgue measure

of (0,∞), then (1.8) generates a closed symmetric relation S, whose domain is not
dense in L2

H(0,∞) and which need not even be a graph of an operator; cf. [31],
[27].

Note in this connection that every scalar Nevanlinna function coincides with a
Titchmarsh-Weyl coefficient of a canonical system (1.8) with a trace normed 2 × 2
Hamiltonian H (see [6]) which can be interpreted as the Weyl function correspond-
ing to a boundary triplet for S∗.

Define the subclass Rs[H] (Ru[H]) of strict (uniformly strict) Nevanlinna func-
tions in R[H] as the set of all functions M(·) ∈ R[H] for which 0 /∈ σp(Im M(i))
(0 ∈ ρ(Im M(i))). The identity (1.3) means that M(·) is a Q-function of the pair
{S, A0} in the sense of M.G. Krĕın and H. Langer (see [25, 26]), and hence it be-
longs to the subclass Ru[H] (whether S is densely defined or not). As a Q-function
it determines the pair {S, A0} up to unitary equivalence. It was shown in [14, 16]
that for each Nevanlinna function in Ru[H] there exists a boundary triplet in the
above sense for which it is the Weyl function. In [16] the concept of boundary
triplet in Definition 1.1 has been extended to the case where the corresponding
Weyl function belongs to the subclass Rs[H] and the inverse result for this subclass
has been established.

Now the natural problem arises of whether every Nevanlinna function in the class
R[H] can be interpreted as a Weyl function of some generalized boundary triplet.
In fact, the same question can be asked for the more general notion of an arbitrary
Nevanlinna family. The class of all Nevanlinna families M(·) in H is denoted by
R̃(H); it is the set of families of linear relations M(λ) : H → H, λ ∈ C \ R, i.e.
M(λ) is a linear subspace of H×H, which satisfy
(NF1) for every λ ∈ C+(C−) the relation M(λ) is maximal dissipative (resp.

accumulative);
(NF2) M(λ)∗ = M(λ̄), λ ∈ C \ R;
(NF3) for some, and hence for all, µ ∈ C+(C−) the operator family (M(λ)+ µ)−1

(∈ [H]) is holomorphic for all λ ∈ C+(C−).

The class R̃(H) contains the class R(H) of all Nevanlinna functions whose values are
in general unbounded operators. The theory of maximal dissipative operators goes
back at least to R.S. Phillips; cf. [32], [33]. Later followed extensions to maximal
dissipative relations and λ-depending holomorphic families (in C+) of maximal
dissipative relations or, equivalently, of Nevanlinna pairs; cf. e.g. [24], [17], [26],
[3]. The following example illustrates the occurrence of Nevanlinna functions whose
values are unbounded operators and the relevance of the above question.

Example 1.5. Let L = −d2/dt2 + Q be a Sturm-Liouville operator in the Hilbert
space L2(0,∞;H) with a (constant) potential Q (≥ I) being a bounded operator
in the Hilbert space H. Let S be the minimal operator associated with L. Then
the boundary triplet is still given by (1.4) and the corresponding Weyl function is
given by

(1.9) M(λ) =
√

Q − λ, λ ∈ C \ [1,∞).

In the case when Q is unbounded, which occurs, for example, when L is the Laplace
operator in a half-plane or in a strip, the formulas (1.4) do not define a boundary
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BOUNDARY RELATIONS AND THEIR WEYL FAMILIES 5355

triplet for S∗ anymore, since the boundary values y(0) and y′(0) do not belong to
the space H for y ∈ dom S∗. Therefore the construction of a boundary triplet for
S∗ in this case is nontrivial. For this purpose a regularization procedure of the
boundary mappings has been developed in [20] resulting in a boundary triplet for
S∗. However, this regularization procedure produces a Weyl function which is a
renormalization of the function M(·) in (1.9) (see [15]), and this makes it difficult to
investigate the appropriate spectral properties determined by the given boundary
conditions.

The concept of a boundary relation introduced in the present paper does not
require surjectivity of the mappings Γ0 or Γ1, nor do these mappings have to be
defined everywhere on S∗. This makes it possible to introduce a boundary relation
for S∗ in Example 1.5 by defining the mappings Γ0 and Γ1 in (1.4) only on “smooth
vectors” from dom S∗, without any regularization procedure. The corresponding
Weyl function M(·) is still of the form (1.9), but now it is an operator-valued R-
function with unbounded values. The construction of a boundary relation for the
operator S∗ in the new sense is much simpler than the construction of a boundary
triplet for S∗. Furthermore, the corresponding generalized Weyl function M(λ) =√

Q − λ makes it possible to describe the spectrum of the operator A0 corresponding
to the Dirichlet boundary value problem for the operator S∗. Namely, starting with
M(λ) =

√
Q − λ it can be shown that for every Q (≥ I) the extension A0 has a

purely absolutely continuous spectrum.
The above problem concerning the interpretation of Nevanlinna families is also

intimately related to the Krĕın-Naimark formula. If S is a closed symmetric relation
in a Hilbert space H with equal defect numbers, then the Krĕın-Naimark formula

(1.10) PH(Ã − λ)−1� H = (A0 − λ)−1 − γ(λ)(M(λ) + τ (λ))−1γ(λ̄)∗,

with λ ∈ C \ R, expresses a one-to-one correspondence between all selfadjoint exit
space extensions Ã in a Hilbert space H̃ ⊃ H of S and the class of all Nevanlinna
families τ (·) in the Hilbert space H. Here PH is the orthogonal projection from the
exit space H̃ onto H, M(·) is the Weyl function in H and γ(·) is the γ-field map-
ping H into Nλ(S∗), corresponding to the selfadjoint extension A0 of S. The new
concepts of a boundary relation and the corresponding Weyl family introduced in
this paper make it possible to interpret the Nevanlinna family τ (·) in the resolvent
formula (1.10) as a Weyl family for the symmetric relation S2 := Ã ∩ (H̃ � H)2.
Moreover, following the ideas in [12], the exit space extension Ã can be constructed
as a coupling of the relations S and S2. This leads to a general and useful “lin-
earization method” to investigate, for instance, spectral problems involving spectral
parameters in the boundary conditions. In the special case when τ (·) ∈ Ru[H] these
constructions have been established by the authors in [12]; see also [11]. The gen-
eral case will be carried out in a forthcoming paper. Recently the coupling method
for the construction of generalized resolvents in [12] has been applied by J. Behrndt
and P. Jonas [4]. Their treatment involves a scalar function τ (·), belonging to the
class of local generalized Nevanlinna functions, which generates a selfadjoint exit
space extension in a Krĕın space. The next example illustrates the above ideas
and the occurrence of Nevanlinna families, which are not necessarily (graphs of)
operators, in connection with boundary value problems.

Example 1.6. Consider the following boundary value problem for the Sturm-
Liouville operator L = −d2/dt2 + q(t) in Example 1.3, but now in H = L2(0,∞;H)
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with H = Cn, assuming that q(·) is a selfadjoint n × n matrix potential such that
the limit point case prevails at ∞:

(1.11) Ly = λy, Φ(λ)y′(0) + Ψ(λ)y(0) = 0.

Here {Φ(·), Ψ(·)} is a Nevanlinna pair, which means that

τ (λ) = { {Φ(λ)h, Ψ(λ)h} : h ∈ H}

is a Nevanlinna family, which is not operator-valued when Φ(λ) is not invertible.
Denote by S the corresponding minimal symmetric operator which, by assumption,
has defect numbers (n, n). Let M(·) be the Weyl function of S corresponding to
the boundary triplet (1.4). The solution of the equation Ly − λy = g, subject to
the boundary conditions (1.11), admits a representation

(1.12) y(·, λ) = PH(Ã − λ)−1 g, g ∈ H,

where PH(Ã − λ)−1� H is a generalized resolvent of S as in (1.10). Following [12]
and applying the main realization result of the present paper, the extension Ã (i.e.,
a linearization of the spectral problem (1.11)) can be constructed as a coupling
of the minimal Sturm-Liouville operator S and a symmetric relation S2 with the
Weyl family τ (·), independent of the invertibility of Φ(·). It is in this way that
multi-valued families τ (·) naturally arise in the connection of boundary value prob-
lems. Using the coupling conditions for S and S2 the calculation of the compressed
resolvent in (1.12) gives the Krĕın-Naimark resolvent formula (1.10); cf. [11], [12].

In order to explain the new notions assume for the moment that S is densely
defined and rewrite Green’s identity (1.1) in the assumption (BT1) of Definition 1.1
as

(1.13) (S∗f, g) − (Γ1f, Γ0g)H = (f, S∗g) − (Γ0f, Γ1g)H, f, g ∈ dom S∗.

The interpretation of (1.13) is that the operator Ã defined by

(1.14) Ã :
(

f

Γ0f

)
�→

(
S∗f

−Γ1f

)
, f ∈ dom S∗,

is symmetric in H×H. Moreover, the assumption (BT2) of Definition 1.1 guarantees
that Ã is selfadjoint in H×H. If S is not densely defined, similar observations can be
made when (1.14) is appropriately interpreted. The precise definition of a boundary
relation will be given in Section 3, but in an equivalent form it can be reformulated
as follows. A pair {H, Γ}, where Γ : H2 → H2 is a closed linear relation (i.e. a
linear subspace of H2 × H2), is said to be a boundary relation for S∗ if dom Γ is
dense in S∗ and if the transform Ã = J (Γ) of Γ determined by

(1.15) Ã = J (Γ) :=
{{(

f

h

)
,

(
f ′

−h′

)}
:
{(

f

f ′

)
,

(
h

h′

)}
∈ Γ

}
is a selfadjoint relation in H×H. The linear relation Γ from the Krĕın space (H2, JH)
to the Krĕın space (H2, JH) turns out to be unitary in the sense of relations; cf.
[34]. In this definition S is not necessarily densely defined, and S is allowed to
have infinite and unequal defect numbers. The corresponding Weyl family is now
defined by

(1.16) M(λ) = Γ ({{f, f ′} ∈ dom Γ : f ′ = λf})
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as an extension of Definition 1.2. The given assumptions are enough to guarantee
that the Weyl family M(·) is a Nevanlinna family in the sense of Definition (NF1)–
(NF3).

The main result in this paper shows that every Nevanlinna family can be real-
ized as a Weyl family of some boundary relation which is unique, up to unitary
equivalence, when a certain minimality condition is satisfied; see Theorem 3.9.
This establishes a new general technique for investigating problems and various
applications where Nevanlinna families or their various special cases appear. The
proof of Theorem 3.9 is based on the generalized Naimark theorem and does not
use any operator model as was done in the case of a uniformly strict Nevanlinna
function (see [25], [26], [16]). Note in this connection that a simple proof of the
Naimark dilation theorem was recently presented in [29]. Observe that the defini-
tion of boundary relation allows Γ to be multi-valued in which case it may happen
that Γ is indecomposable into the orthogonal sum Γ0 ⊕ Γ1, where Γj : H2 → H,
j = 0, 1 (see (3.6)). When such a decomposition makes sense, the new concept
of the boundary relation reduces to a natural generalization of the notion of an
ordinary boundary triplet in Definition 1.1 as well as of the notion of a generalized
boundary triplet in [16]; in this case the notation “boundary triplet” will still be
kept for Γ in the present paper.

The connection (1.15) between the boundary relation Γ and the selfadjoint op-
erator or, in general, relation Ã plays a fundamental role in the sequel. The in-
terpretation of Ã is that of a selfadjoint exit space extension of S determined by
the boundary relation Γ. The given procedure can be applied, for instance, in
the linearization of boundary value problems with eigenvalue parameters in the
boundary conditions; here arbitrary (finite or infinite, and equal or unequal) defect
numbers for the underlying operators are allowed. The appearance of unbounded
Weyl functions is not excluded here either; this makes it unnecessary to find regu-
larizations for boundary mappings for treating boundary value problems involving
partial differential operators; cf. [20], [16]. Some recent physical applications can
be found, for instance, in [8], [9]. In forthcoming papers these matters will be
further investigated, including the extension of the notions of boundary relations
and the corresponding Weyl families to the case where S is defined on a space with
an indefinite inner product. The present paper establishes for the first time on a
general level the link between the abstract boundary triplets (here the mapping Γ)
and the exit space extensions Ã (via the transform J which connects Γ and Ã). In
what follows, this connection is effectively used in building up the general theory
of boundary relations and their Weyl families, and it plays a key role in proving
some of the central theorems of the present paper. Some of the main results of the
paper have been announced in [13].

In Section 2 some preparatory material is presented, including results on linear
relations in Krĕın spaces. Here the main transform J acting between two Krĕın
spaces is introduced, and its properties are investigated. In Section 3 the concepts of
a boundary relation and the corresponding Weyl family are introduced. The main
result of this section is the following inverse theorem: every Nevanlinna family can
be realized as the Weyl function of a boundary relation. In Section 4 the investiga-
tion of geometrical properties of boundary relations and the analytical properties of
the corresponding Weyl families is continued. Several known results on Q-functions
or, equivalently, Weyl functions of ordinary boundary triplets are extended to wider
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subclasses of Nevanlinna families. In particular, geometrical properties of bound-
ary relations whose Weyl families M(λ) are domain invariant are studied in detail.
In Section 5 the connection between the new concepts and the earlier concepts of
boundary triplets and the corresponding Weyl functions is investigated. Section 6
contains several examples which demonstrate the applicability of the new concepts
and sharpness of several statements in the earlier sections of the paper, as well as
some new unexpected effects.

2. Preliminaries

2.1. Linear relations in linear spaces. This paper is concerned with (graphs
of) linear operators and linear relations in linear spaces. The following notation
will be used systematically. The Cartesian product H × H′ of linear spaces H and
H′ is the set of all ordered pairs (of 1× 2 matrices) {f, f ′} with f ∈ H and f ′ ∈ H′.
Frequently it will be convenient to denote the Cartesian product H × H′ and the
elements of it (as 2 × 1 matrices) by(

f
f ′

)
∈

(
H

H′

)
, f ∈ H, f ′ ∈ H

′.

If L ⊂ H and L′ ⊂ H′ are linear subspaces, then L × L′ denotes the Cartesian
product of the subspaces; in agreement with the ordered pairs this product will
also be denoted by {L, L′}, or by L2 if L = L′.

A linear relation T from H to H′ is a linear subspace of H × H′. Systematically
a linear operator T will be identified with its graph. It is convenient to write
T : H → H′ and interpret the linear relation T as a multi-valued linear mapping
from H into H′. If H′ = H one speaks of a linear relation T in H.

If T is a linear relation from H2 = H × H to H′2 = H′ × H′, then an element
of T will be denoted by {f̂ , ĥ} with the understanding that f̂ = {f, f ′} ∈ H2 and
ĥ = {h, h′} ∈ H′2. It will also be convenient to think of such a general element as

{f̂ , ĥ} =
{(

f
f ′

)
,

(
h
h′

)}
with f̂ =

(
f
f ′

)
∈

(
H

H

)
, ĥ =

(
h
h′

)
∈

(
H′

H′

)
,

according to the interpretation explained above. This interpretation will be as-
sumed whenever needed without explicit mention.

For a linear relation T : H → H′ the symbols domT , ker T , ranT , and mul T
stand for the domain, kernel, range, and the multi-valued part, respectively. The
inverse T−1 is a relation from H′ to H defined by { {f ′, f} : {f, f ′} ∈ T }. The sum
T1 + T2 and the componentwise sum T1 +̂ T2 of two linear relations T1 and T2 are
defined by

T1 + T2 = { {f, g + h} : {f, g} ∈ T1, {f, h} ∈ T2 },
T1 +̂ T2 = { {f + h, g + k} : {f, g} ∈ T1, {h, k} ∈ T2 }.

If the componentwise sum is orthogonal it will be denoted by T1 ⊕ T2. Clearly,

(2.1) ker(T1 − T2) = dom (T1 ∩ T2), ker(T−1
1 − T−1

2 ) = ran (T1 ∩ T2).

The null spaces of T − λ, λ ∈ C, are defined by

(2.2) Nλ(T ) = ker(T − λ), N̂λ(T ) = { {f, λf} ∈ T : f ∈ Nλ(T ) }.
Moreover, ρ(T ) (ρ̂(T )) stands for the set of regular (regular type) points of T .
The closure of a linear relation T will be denoted by clos T . Note that domT ⊂
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dom (closT ) and ranT ⊂ ran (closT ), with equality when dom T or ranT are closed,
respectively.

Recall the following simple result (cf. [16, Lemma 2.1]) which will be used in the
analysis of linear relations.

Lemma 2.1 ([16]). Let X and Y be Banach spaces, let M be a closed linear subspace
of X, and let P ∈ [X, Y] be surjective. Then the range PM is closed in Y if and
only if the sum of the linear subspaces M + N is closed in X, where N := kerP .

2.2. Linear relations in Hilbert spaces. Let H1 and H2 be separable Hilbert
spaces and provide the Cartesian product H1 ×H2 with the usual inner product so
that H1 × H2 is a Hilbert space denoted by H1 ⊕ H2. Let T : H1 → H2 be a linear
relation from H1 to H2. The adjoint T ∗ is the closed linear relation from H2 to H1

defined by (see [5], [10])

(2.3) T ∗ = { {h, k} ∈ H2 ⊕ H1 : (k, f)H1 = (h, g)H2 , {f, g} ∈ T }.
Proposition 2.2. Let T be a closed linear relation from a Hilbert space H1 to a
Hilbert space H2. Then:

(i) dom T is closed if and only if dom T ∗ is closed;
(ii) ran T is closed if and only if ran T ∗ is closed.

Proof. The statement (i) is equivalent to the statement (ii) (by inversion of T ). So
it suffices to prove the last statement. Let P be the orthoprojection from H1 ⊕ H2

onto H2, so that kerP = H1 × {0}. Assume that ran T = PT is closed. Then by
Lemma 2.1 T +̂ (H1 × {0}) is also closed. By a theorem of Kato [22, Chapter 4,
Theorem 4.8] the corresponding sum of the orthogonal complements in H1 ⊕ H2,

(2.4) T⊥ +̂ ({0} × H2),

is also closed. The operator J : H1 ⊕ H2 → H2 ⊕ H1 given by J{h, h′} = {−h′, h}
is unitary, and it follows from (2.3) that T ∗ = JT⊥. Hence, (2.4) implies that

T ∗ +̂ (H2 × {0})
is also closed. In other words, T ∗ +̂ kerQ is closed. Here Q is the orthoprojection
from H2⊕H1 onto H1, so that kerQ = H2×{0}. Another application of Lemma 2.1
shows that QT ∗ = ranT ∗ is closed. �

Recall that a linear relation T in H is called symmetric (dissipative or accu-
mulative) if Im (h′, h) = 0 (≥ 0 or ≤ 0, respectively) for all {h, h′} ∈ T . These
properties remain invariant under closures. By polarization it follows that a linear
relation T in H is symmetric if and only if T ⊂ T ∗. A linear relation T in H is
called selfadjoint if T = T ∗, and it is called essentially selfadjoint if closT = T ∗.
A dissipative (accumulative) linear relation T in H is called maximal dissipative
(maximal accumulative) if it has no proper dissipative (accumulative) extensions.
Clearly, a linear relation T is selfadjoint if and only if it is both maximal dissipative
and maximal accumulative.

Assume that T is closed. If T is dissipative or accumulative, then mul T ⊂
mul T ∗. In this case the orthogonal decomposition H = (mul T )⊥ ⊕ mul T induces
an orthogonal decomposition of T as

T = Ts ⊕ T∞, T∞ = {0} × mul T, Ts = { {f, g} ∈ T : g ⊥ mul T },
where T∞ is a selfadjoint relation in mul T and Ts is an operator in H�mul T with
dom Ts = dom T = (mul T ∗)⊥, which is dissipative or accumulative. Moreover,
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if the relation T is maximal dissipative or accumulative, then mulT = mul T ∗.
In this case the orthogonal decomposition (dom T )⊥ = mul T ∗ shows that Ts is a
densely defined dissipative or accumulative operator in (mulT )⊥, which is maximal
(as an operator). In particular, if T is a selfadjoint relation, then there is such a
decomposition where Ts is a selfadjoint operator (densely defined in (mulT )⊥).

Let S be a closed symmetric linear relation in a Hilbert spaces H. Then the
adjoint relation S∗ can be decomposed via the von Neumann formula:

(2.5) S∗ = S +̂ N̂λ(S∗) +̂ N̂λ̄(S∗), λ ∈ C \ R, direct sums,

where N̂λ(S∗) is defined as in (2.2). When λ = ±i the decomposition (2.5) is
orthogonal:

(2.6) S∗ = S ⊕ N̂i(S∗) ⊕ N̂−i(S∗),

where the orthogonality is with respect to the inner product topology in S∗; cf.
[5], [10]. A symmetric linear relation S is called simple if there is no nontrivial
orthogonal decomposition of the Hilbert space H = H1 ⊕ H2 and no corresponding
orthogonal decomposition S = S1 ⊕ S2 with S1 a symmetric relation in H1 and S2

a selfadjoint relation in H2. The above decomposition S = Ss ⊕ S∞ shows that a
simple closed symmetric relation is necessarily an operator. Recall that (cf. [26]) a
closed symmetric linear relation S in a Hilbert space H is simple if and only if

H = span {Nλ(S∗) : λ ∈ C \ R }.

2.3. Linear relations in Krĕın spaces. Now let H and H be Hilbert spaces and
let jH and jH be signature operators in them. Recall that a bounded linear operator
j in a Hilbert space is a signature operator if j = j∗ = j−1. Interpret the spaces
H and H as Krĕın spaces whose inner products are determined by the fundamental
symmetries jH and jH. Then the adjoint T [∗] of a linear relation T from the Krĕın
space (H, jH) to the Krĕın space (H, jH) is given by T [∗] = jHT ∗jH. It satisfies the
following equalities familiar from the Hilbert space case:

(2.7) (domT )[⊥] = mul T [∗], (ranT )[⊥] = kerT [∗].

Here the orthogonal complements, denoted by [⊥], are with respect to the Krĕın
space structures. The inner products in (H, jH), (H, jH) will be denoted by

[ϕ, ψ]H = (jHϕ, ψ)H, [ϕ′, ψ′]H = (jHϕ′, ψ′)H, ϕ, ψ ∈ H, ϕ′, ψ′ ∈ H.

A linear relation T from the Krĕın space (H, jH) to the Krĕın space (H, jH) is called
isometric if

(2.8) [ϕ′, ϕ′]H = [ϕ, ϕ]H, {ϕ, ϕ′} ∈ T,

and contractive or expanding if equality in (2.8) is replaced by ≤ or by ≥, respec-
tively. These properties are invariant under closures. By polarization it follows
that a linear relation T is isometric if and only if T−1 ⊂ T [∗]. A linear relation T
is called unitary if T−1 = T [∗]; it is called essentially unitary if (closT )−1 = T [∗].

The first statement in the next proposition is due to Yu.L. Shmul’jan (see [34]),
who obtained it by combining [34, Theorem 3] with a result of I.M. Spitkovskĭı in
[35]. A simple and essentially different proof of this statement is presented below.
The second statement is proved in [34, Theorem 2] by using a result of R. Arens
[2].
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Proposition 2.3. Let T be a unitary relation from the Krĕın space (H, jH) to the
Krĕın space (H, jH). Then:

(i) dom T is closed if and only if ran T is closed;
(ii) the following equalities hold:

(2.9) kerT = (domT )[⊥], mul T = (ranT )[⊥].

Proof. By definition T satisfies the identity T−1 = T [∗], where the Krĕın space
adjoint T [∗] of T is connected to the Hilbert space adjoint T ∗ via T [∗] = jHT ∗jH.
It is clear that dom T [∗] (ran T [∗]) is closed if and only if domT ∗ (resp. ran T ∗)
is closed. Therefore, the equivalence dom T is closed if and only if ranT is closed
follows from Proposition 2.2.

To get the identities (2.9) it is enough to apply (2.7) and the equality T−1 =
T [∗]. �

In the present generality it is useful to give criteria for a unitary relation T :
(H, jH) → (H, jH) to be an operator (not necessarily densely defined).

Corollary 2.4. Let T be a unitary relation from the Krĕın space (H, jH) to the
Krĕın space (H, jH). Then:

(i) T is single-valued if and only if ran T = H;
(ii) T is a densely defined operator if and only if ran T = H and ker T = {0};
(iii) T is bounded and single-valued if and only if ran T = H;
(iv) T ∈ [H,H] if and only if ran T = H and ker T = {0}.

Proof. The second identity in (2.9) is mul T = (ranT )[⊥], and this gives (i). More-
over, according to Proposition 2.3 ranT is closed if and only if domT is closed, and
thus (iii) follows from the closed graph theorem. To get (ii) and (iv) it remains to
apply the first identity in (2.9) kerT = (domT )[⊥]. �

Using Krĕın space terminology, Proposition 2.3 shows that for a unitary relation
T , the isotropic part of domT is equal to ker T and the isotropic part of ranT is
equal to mul T . For an isometric relation T from the Krĕın space (H, jH) to the
Krĕın space (H, jH), the situation is different. It follows from T−1 ⊂ T [∗] and the
identities (2.7) that

(2.10) kerT ⊂ (dom T )[⊥], mul T ⊂ (ranT )[⊥],

so that kerT is contained in the isotropic part of domT and mul T is contained
in the isotropic part of ranT . It turns out that isometric relations whose domain
satisfies the additional property

(dom T )[⊥] ⊂ dom T

play a central role in the construction of boundary mappings. The following re-
sults give sufficient conditions for such an isometric relation T to be unitary. The
connection to ordinary boundary triplets becomes clear in Section 5.

Proposition 2.5. Let T be an isometric linear relation from the Krĕın space (H, jH)
to the Krĕın space (H, jH). If the conditions

(i) (domT )[⊥] ⊂ dom T ;
(ii) (ranT )[⊥] ⊂ mul T
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are satisfied, then T also satisfies

(2.11) kerT = (domT )[⊥].

Moreover, if the condition (2.11) and the condition

(2.12) domT [∗] ⊂ ran T

are satisfied, then T is a unitary relation.

Proof. Assume that f ∈ (dom T )[⊥] so that [f, h]H = 0 for all h ∈ dom T . By
assumption (i) there exists an element f ′ ∈ H so that {f, f ′} ∈ T . Hence for all
{h, h′} ∈ T

[f ′, h′]H = [f, h]H = 0,

so that f ′ ∈ (ran T )[⊥]. Hence, assumption (ii) implies that f ′ ∈ mul T . Therefore
f ∈ ker T , so that (domT )[⊥] ⊂ ker T . Hence, (2.10) implies that (2.11) is satisfied.

Now assume that (2.11) and (2.12) hold. Let {f, f ′} ∈ T [∗] so that [f ′, h]H =
[f, h′]H for all {h, h′} ∈ T . The condition (2.12) implies the existence of an element
ϕ ∈ H such that {ϕ, f} ∈ T . Since T is isometric it follows that [f, h′]H = [ϕ, h]H,
so that [f ′, h]H = [ϕ, h]H for all h ∈ dom T . This implies that f ′ = ϕ + γ with
γ ∈ (dom T )[⊥]. The condition (2.11) shows that γ ∈ kerT . Hence

{f ′, f} = {ϕ + γ, f} = {ϕ, f} + {γ, 0} ∈ T,

which implies that T [∗] ⊂ T−1. �

Corollary 2.6. Condition (ii) in Proposition 2.5 is automatically satisfied when
ran T is dense in H, in which case T is single-valued. In particular, if (i) holds and
ran T = H, then dom T is closed and T is a single-valued unitary relation, which is
bounded.

Proof. Assume that ran T is dense in H. Since (ranT )[⊥] = {0}, clearly (ii) is
satisfied. Since T is isometric it follows from the second inclusion in (2.10) that T
is single-valued.

Now assume ran T = H. Hence, ran T is dense in H, so that (ii) follows and
(2.11) automatically follows. Moreover, (2.12) is also automatically satisfied, so
that (ii) implies that T is unitary. It follows from Proposition 2.3 that domT is
closed. The boundedness of T follows from the closed graph theorem. �

Clearly, with T the inverse T−1 is also isometric. Hence, a formal inversion in
Proposition 2.5 gives the following equivalent version.

Proposition 2.7. Let T be an isometric linear relation from the Krĕın space (H, jH)
to the Krĕın space (H, jH). If the conditions

(i) (ranT )[⊥] ⊂ ran T ;
(ii) (dom T )[⊥] ⊂ kerT

are satisfied, then T also satisfies

(2.13) mul T = (ranT )[⊥].

Moreover, if the condition (2.13) and the condition

(2.14) ranT [∗] ⊂ dom T

are satisfied, then T is a unitary relation.
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Corollary 2.8. Condition (ii) in Proposition 2.7 is automatically satisfied when
dom T is dense in H, in which case T−1 is single-valued. In particular, if (i) holds
and dom T = H, then ran T is closed and T−1 is a single-valued unitary relation,
which is bounded.

Since with T the closure of T is also isometric, it is possible to replace in Propo-
sitions 2.5, 2.7, and their corollaries the relation T by its closure to conclude that
T is an essentially unitary relation.

Let T be an isometric operator from the Krĕın space (H, jH) to the Krĕın space
(H, jH) such that dom T = H and ran T = H. If either (2.12) or (2.14) holds, then
T and T−1 are single-valued unitary relations, which are in general unbounded; see
Examples 6.5, 6.6. In particular, if either dom T = H and ranT = H, or dom T = H

and ran T = H, then by Corollary 2.6 or 2.8 both T and T−1 are unitary operators,
which are bounded (cf. [3, Chapter 2, Definition 5.1 and Corollary 5.8]).

In what follows it is convenient to interpret the Hilbert space H2 = H ⊕ H

as a Krĕın space (H2, JH) whose inner product is determined by the fundamental
symmetry JH:

JH :=
(

0 −iIH

iIH 0

)
.

The adjoint T ∗ in (2.3) of a linear relation T in the Hilbert space H can be written
in terms of JH as

(2.15) T ∗ = JHT⊥ = (JHT )⊥.

The following connections between linear relations in the Hilbert space H and sub-
spaces in the Krĕın space (H2, JH) will be useful.

Proposition 2.9 ([3], [32]). Let T be a linear relation in the Hilbert space H. Then
(i) T is symmetric (selfadjoint) if and only if T is a neutral (hypermaximal

neutral) subspace of (H2, JH);
(ii) T is dissipative (maximal dissipative) if and only if T is a nonnegative

(maximal nonnegative) subspace of (H2, JH);
(iii) T is accumulative (maximal accumulative) if and only if T is a nonpositive

(maximal nonpositive) subspace of (H2, JH).

2.4. The main transform. Let H and H be Hilbert spaces and let their Cartesian
product be denoted by H̃ = H ⊕H. Define the linear mapping J from H2 ×H2 to
(H ⊕H)2 by

J :
{(

f
f ′

)
,

(
h
h′

)}
�→

{(
f
h

)
,

(
f ′

−h′

)}
, f, f ′ ∈ H, h, h′ ∈ H.

This mapping establishes a one-to-one correspondence between the (closed) linear
relations Γ : H2 → H2 and the (closed) linear relations Ã in H̃ = H ⊕H via

(2.16) Γ �→ Ã := J (Γ) =
{{(

f
h

)
,

(
f ′

−h′

)}
:

{(
f
f ′

)
,

(
h
h′

)}
∈ Γ

}
.

The mapping J plays a principal role in the whole paper, and it is referred to as the
main transform. Some basic properties of this transform are stated in the following
proposition.
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Proposition 2.10. Let the linear relation Γ from (H2, JH) to (H2, JH) and the
linear relation Ã in H ⊕H be connected by Ã = J (Γ). Then

(2.17) Ã∗ = J ((Γ[∗])−1).

Moreover, the transform J establishes a one-to-one correspondence between the
isometric (contractive, expanding, unitary) relations Γ from (H2, JH) to (H2, JH)
and the symmetric (dissipative, accumulative, selfadjoint) relations in H ⊕H.

Proof. It is straightforward to check that for all elements of the form{(
f
f ′

)
,

(
h
h′

)}
,

{(
g
g′

)
,

(
k
k′

)}
∈

(
H

H

)
×

(
H
H

)
,

the following identity is satisfied:

1
i

{((
f ′

−h′

)
,

(
g
k

))
H⊕H

−
((

f
h

)
,

(
g′

−k′

))
H⊕H

}

=
(

JH

(
f
f ′

)
,

(
g
g′

))
H2

−
(

JH

(
h
h′

)
,

(
k
k′

))
H2

.

(2.18)

This identity implies the equivalence{(
f
h

)
,

(
f ′

−h′

)}
∈ Ã∗ ⇔

{(
h
h′

)
,

(
f
f ′

)}
∈ Γ[∗],

which leads to the identity (2.17). Hence it follows that

Ã ⊂ Ã∗ ⇔ Γ−1 ⊂ Γ[∗], Ã = Ã∗ ⇔ Γ−1 = Γ[∗].

Observe that (2.18) in particular leads to the following identity:

2Im
((

f ′

−h′

)
,

(
f
h

))
H⊕H

=
(

JH

(
f
f ′

)
,

(
f
f ′

))
H2

−
(

JH

(
h
h′

)
,

(
h
h′

))
H2

.

This implies the connection between the contractive (expanding) relations Γ from
(H2, JH) to (H2, JH) and the dissipative (accumulative) relations Ã in H ⊕H. �

Remark 2.11. Let C be a Cayley transform of Ã:

C : Ã �→ U =
{
{u′ + iu, u′ − iu} : {u, u′} ∈ Ã

}
.

Then the transform C ◦J is a kind of Potapov-Ginzburg transform (see [34]) which
establishes a one-to-one correspondence between isometric (contractive, expanding,
unitary) relations from (H2, JH) to (H2, JH) and isometric (contractive, expanding,
unitary) operators in H ⊕H.

With the Hilbert spaces H and H the Cartesian product H̃ = H ⊕ H has been
defined. The following identifications will be used:

(2.19) H1 =
(

H

0

)
, H2 =

(
0
H

)
, H̃ = H1 ⊕ H2 =

(
H

H

)
.

Let Pj be the orthogonal projection from H̃ onto Hj , j = 1, 2.
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Proposition 2.12. Let the linear relations Γ and Ã be related by (2.16), i.e. Ã =
J (Γ). Then the linear relations

(2.20) S1 = kerΓ, −S2 = mul Γ, T1 = dom Γ, −T2 = ran Γ,

are given by

(2.21) Sj = Ã ∩ H
2
j , Tj =

{
{Pjϕ, Pjϕ

′} : {ϕ, ϕ′} ∈ Ã
}

.

Moreover, if Ã is a symmetric linear relation in H̃, then Tj ⊂ S∗
j and in particular

Sj is a symmetric linear relation in Hj, j = 1, 2. If, in addition, Ã is selfadjoint,
then

(2.22) clos Tj = S∗
j j = 1, 2.

Proof. The equalities (2.21) are immediate from (2.16). The inclusions Tj ⊂ S∗
j

with Ã symmetric (Γ isometric) and the equalities (2.22) with Ã selfadjoint (Γ
unitary) are implied by Proposition 2.3 in view of (2.20) and (2.15). �

If for j = 1 or j = 2, the relation Sj is densely defined, then it follows from
(2.22) that closTj = S∗

j is an operator, and (2.21) shows that Pj mul Ã = {0}.
The next result gives some mapping properties of isometric relations in product

spaces.

Proposition 2.13. Let Γ be an isometric relation from (H2, JH) to (H2, JH) and
let A ⊂ dom Γ be a linear relation in H2. Then:

(i) A is symmetric (dissipative, accumulative) in H2 if and only if Γ(A) is
symmetric (dissipative, accumulative) in H2;

(ii) if A∗ ⊂ dom Γ, then Γ(A∗) ⊂ Γ(A)∗;
(iii) if A∗ ⊂ dom Γ and Γ(A) is essentially selfadjoint in H2, then A is essen-

tially selfadjoint in H2.

Proof. (i) By definition Γ(A) = { ĥ : {f̂ , ĥ} ∈ Γ for some f̂ ∈ A }, and the state-
ment follows from

2Im (f ′, f) =
(

JH

(
f
f ′

)
,

(
f
f ′

))
H2

=
(

JH

(
h
h′

)
,

(
h
h′

))
H2

= 2Im (h′, h).

(ii) Let ĝ ∈ A∗ and let {ĝ, k̂} ∈ Γ. Then for every ĥ ∈ Γ(A) one obtains

0 =
(

JH

(
g
g′

)
,

(
f
f ′

))
H2

=
(

JH

(
k
k′

)
,

(
h
h′

))
H2

,

since here f̂ ∈ A. This means that k̂ ∈ Γ(A)∗ and hence Γ(A∗) ⊂ Γ(A)∗.
(iii) If Γ(A) is essentially selfadjoint, then by part (i) A is symmetric. Now part

(ii) shows that Γ(A) ⊂ Γ(A∗) ⊂ Γ(A)∗. Hence, clos Γ(A) = clos Γ(A∗) and Γ(A∗)
is essentially selfadjoint. Therefore, A∗ must be symmetric by part (i), and hence
A∗ = A∗∗ = closA. �
2.5. Orthogonal couplings. Let H1 and H2 be arbitrary Hilbert spaces (not nec-
essarily the same as in (2.19)) and let Ã be a selfadjoint linear relation in the
orthogonal sum H̃ = H1 ⊕ H2. Then the formula (2.21) defines closed symmetric
linear relations S1 and S2, and not necessarily closed linear relations T1 and T2, in
H1 and H2, respectively. The relation Ã can be interpreted as a selfadjoint exten-
sion of the orthogonal sum S1 ⊕ S2. It is called the orthogonal coupling of S1 and
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T2 (or of T1 and S2); see [38]. The selfadjoint relation Ã is said to be minimal with
respect to the Hilbert space Hj (j is fixed, j = 1, 2) if

(2.23) H1 ⊕ H2 = span
{

Hj + (Ã − λ)−1
Hj : λ ∈ ρ(Ã)

}
.

The null spaces of Tj − λ as in (2.2) are said to be “defect spaces” of the linear
relations Tj , i.e.,

(2.24) Nλ(Tj) = ker(Tj − λ), N̂λ(Tj) = { {f, λf} ∈ Tj : f ∈ Nλ(Tj) }.
For notational convenience the usual defect spaces of Sj are denoted here by Nλ(S∗

j )
and N̂λ(S∗

j ).

Lemma 2.14. Let Ã be a selfadjoint linear relation in H̃ = H1 ⊕ H2, and let the
linear relations Sj and Tj, j = 1, 2, be defined by (2.21). Then:

(i) Nλ(T1) = P1(Ã − λ)−1 H2, Nλ(T2) = P2(Ã − λ)−1 H1;
(ii) Nλ(Tj) is dense in Nλ(S∗

j ) for all λ ∈ C \ R, j = 1, 2;
(iii) the defect numbers of S1 and −S2 coincide: n±(S1) = n∓(S2);
(iv) Ã is minimal with respect to H1 (resp. H2) if and only if S2 (resp. S1) is

simple.

Proof. First observe that

(2.25) (Ã − λ)−1

(
f ′ − λf
−h′ − λh

)
=

(
f
h

)
,

{(
f
h

)
,

(
f ′

−h′

)}
∈ Ã.

(i) Note in (2.25) that f ∈ Nλ(T1) if and only if f ′ = λf . This gives the first
assertion. The proof of the second assertion is similar.

(ii) Using ran (S1 − λ) = { f ′ − λf : f ∈ dom S1} one obtains from (2.25) the
identities

(2.26) ker P2(Ã − λ)−1�H1 = ran (S1 − λ), ker P1(Ã − λ)−1� H2 = ran (S2 − λ).

Note that ran X∗ = (kerX)⊥ for any bounded linear operator X. Thus the identi-
ties in (2.26) imply that the ranges of

P1(Ã − λ)−1� H2 =
(
P2(Ã − λ̄)−1� H1

)∗
,

P2(Ã − λ)−1� H1 =
(
P1(Ã − λ̄)−1� H2

)∗

are dense subsets of Nλ(S∗
1 ) and Nλ(S∗

2) for all λ ∈ C+ ∪ C−, respectively.
(iii) In view of (2.26) the statements (i) and (ii) can be rewritten in the form

clos P1(Ã − λ)−1
Nλ̄(S∗

2) = Nλ(S∗
1), clos P2(Ã − λ)−1

Nλ̄(S∗
1) = Nλ(S∗

2),

respectively. These identities imply the equality of the defect numbers.
(iv) If Ã is minimal with respect to H1, then it follows from (i), (ii), and (2.23)

that

H2 = span {P2(Ã − λ)−1
H1 : λ ∈ ρ(Ã) } = span {Nλ(S∗

2 ) : λ ∈ ρ(Ã) },
so that S2 is simple. Conversely, if S2 is simple, then clearly (2.23) is satisfied and
Ã is minimal with respect to H1. �

Proposition 2.15. Let Ã be a selfadjoint relation in H̃ = H1 ⊕ H2 and let the
linear relations T1 and T2 be given by (2.21). Then T1 is closed if and only if T2 is
closed.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY RELATIONS AND THEIR WEYL FAMILIES 5367

Proof. Let Γ be defined by Ã = J (Γ), so that Γ is a unitary relation. By definition
T1 = dom Γ and T2 = ranΓ. Hence, the statement follows from Proposition 2.3. �

2.6. Nevanlinna families. A family of linear relations M(λ), λ ∈ C \ R, in a
Hilbert space H is called a Nevanlinna family if:

(i) for every λ ∈ C+(C−) the relation M(λ) is maximal dissipative (resp.
accumulative);

(ii) M(λ)∗ = M(λ̄), λ ∈ C \ R;
(iii) for some, and hence for all, µ ∈ C+(C−) the operator family (M(λ)+ µ)−1

(∈ [H]) is holomorphic for all λ ∈ C+(C−).

By the maximality condition, each relation M(λ), λ ∈ C \ R, is necessarily closed.
The class of all Nevanlinna families in a Hilbert space is denoted by R̃(H). Nevan-
linna families were considered in [24], [17], and [26]. The following orthogonal
decomposition is useful.

Proposition 2.16. If M(·) ∈ R̃(H), then the multi-valued part mul M(λ) is inde-
pendent of λ ∈ C \ R, so that

(2.27) M(λ) = Ms(λ) ⊕ M∞, M∞ = {0} × mul M(λ), λ ∈ C \ R,

where Ms(λ) is a Nevanlinna family of densely defined operators in H�mul M(λ).

Clearly, if M(·) ∈ R̃(H), then M∞ ⊂ M(λ) ∩ M(λ)∗ for all λ ∈ C \ R. The
following subclasses of the class R̃(H) will be useful:

R(H) is the set of all M(·) ∈ R̃(H) for which mulM(λ) = {0};
Rs(H) is the set of all M(·) ∈ R̃(H) for which M(λ) ∩M(λ)∗ = {0} for all
λ ∈ C \ R;
Ru(H) is the set of all M(·) ∈ R̃(H) for which M(λ) +̂ M(λ)∗ = H2 for all
λ ∈ C \ R.

Hence, M(·) ∈ Rs(H) or M(·) ∈ Ru(H), if M(λ) and M(λ)∗ are disjoint or transver-
sal, respectively, for every λ ∈ C \ R. With the classes R̃(H), R(H), Rs(H), and
Ru(H) correspond the classes R̃inv(H), Rinv(H), Rs

inv(H), and Ru
inv(H) of Nevan-

linna families M(·) whose domain dom M(λ) does not depend on λ ∈ C \ R. Fur-
thermore, the following subclasses of R̃(H) will be important:

R̃[H] is the set of all M(·) ∈ R̃(H) for which domM(λ) is closed for all
λ ∈ C \ R;
R[H] is the set of all M(·) ∈ R̃[H] for which domM(λ) = H for all λ ∈
C \ R;
Rs[H] is the set of all M(·) ∈ R[H] for which ker ImM(λ) = {0} for all
λ ∈ C \ R;
Ru[H] is the set of all M(·) ∈ Rs[H] for which 0 ∈ ρ(ImM(λ)) for all
λ ∈ C \ R.

Remark 2.17. In Section 4 it will be shown that various properties which were
used above to define the different subclasses of Nevanlinna families do not depend
on λ ∈ C \ R. This means that the corresponding subclasses of R̃(H) can be
equivalently defined by assuming the corresponding property of M(λ) only at a
single point λ ∈ C \ R.
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For each M(·) in R̃[H] (or in its subclasses) the operator Ms(λ) is necessarily
bounded. In what follows, the Nevanlinna functions in Rs[H] and Ru[H] will be
called strict and uniformly strict, respectively.

Proposition 2.18. Let M(·) ∈ R̃(H). Then the following statements are equiva-
lent:

(i) M(·) ∈ Ru(H);
(ii) M(λ) ∈ [H] and 0 ∈ ρ(ImM(λ)) for some, and hence for all, λ ∈ C \ R.

The result in Proposition 2.18 is a consequence of Propositions 4.5 and 5.3; see
also Theorem 4.13 and Remark 4.23.

The definitions and Proposition 2.18 give rise to the inclusions and the equalities
in the following array:

(2.28)

Ru(H) ⊂ Rs(H) ⊂ R(H) ⊂ R̃(H)
‖ ∪ ∪ ∪

Ru
inv(H) ⊂ Rs

inv(H) ⊂ Rinv(H) ⊂ R̃inv(H)
‖ ∪ ∪ ∪

Ru[H] ⊂ Rs[H] ⊂ R[H] ⊂ R̃[H]

In the infinite-dimensional situation each of the inclusions is strict. However, in the
finite-dimensional situation the vertical inclusions in (2.28) reduce to equalities

Rs(H) = Rs
inv(H) = Rs[H], R(H) = Rinv(H) = R[H], R̃(H) = R̃inv(H) = R̃[H].

If M(·) ∈ R[H], then it admits the following integral representation:

(2.29) M(λ) = A + Bλ +
∫

R

(
1

t − λ
− t

t2 + 1

)
dΣ(t),

∫
R

dΣ(t)
t2 + 1

∈ [H],

where A = A∗ ∈ [H], 0 ≤ B = B∗ ∈ [H], the [H]-valued family Σ(·) is nonde-
creasing, and the integral is uniformly convergent in the strong topology; cf. [7],
[21].

3. Boundary relations and Weyl families

3.1. Definition of a boundary relation and its Weyl family. Let S be a
closed symmetric linear relation in the Hilbert space H. It is not assumed that the
defect numbers of S are equal or finite. A boundary relation for S∗ is defined as
follows.

Definition 3.1. Let S be a closed symmetric linear relation in a Hilbert space H

and let H be an auxiliary Hilbert space. A linear relation Γ : H2 �→ H2 is called a
boundary relation for S∗, if:

(G1) dom Γ is dense in S∗, and the identity

(3.1) (f ′, g)H − (f, g′)H = (h′, k)H − (h, k′)H

holds for every {f̂ , ĥ}, {ĝ, k̂} ∈ Γ;
(G2) Γ is maximal in the sense that if {ĝ, k̂} ∈ H2 ×H2 satisfies (3.1) for every

{f̂ , ĥ} ∈ Γ, then {ĝ, k̂} ∈ Γ.

Here f̂ = {f, f ′}, ĝ = {g, g′} ∈ dom Γ(⊂ H2), and ĥ = {h, h′}, k̂ = {k, k′} ∈
ran Γ(⊂ H2)).
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The condition (3.1) in (G1) can be interpreted as an abstract Green’s identity.
Using the terminology of Krĕın spaces (3.1) means that Γ is an isometric relation
from the Krĕın space (H2, JH) to the Krĕın space (H2, JH), since

(3.2) (JHf̂ , ĝ)H2 = (JHĥ, k̂)H2 , {f̂ , ĥ}, {ĝ, k̂} ∈ Γ.

The maximality condition (G2) and Proposition 2.3 now imply the following result.

Proposition 3.2. Let Γ : H2 �→ H2 be a boundary relation for S∗. Then Γ is a uni-
tary relation from the Krĕın space (H2, JH) to the Krĕın space (H2, JH). Moreover,
S = ker Γ.

Proof. In view of (3.2) Γ is isometric, i.e., Γ−1 ⊂ Γ[∗]. Now assume that {k̂, ĝ} ∈
Γ[∗]. Then

(JHĝ, f̂ )H2 − (JHk̂, ĥ )H2 = 0

holds for every {f̂ , ĥ} ∈ Γ and hence (3.1) is satisfied. By assumption (G2) one
concludes that {ĝ, k̂} ∈ Γ, or equivalently, that {k̂, ĝ} ∈ Γ−1. This proves the
reverse inclusion Γ[∗] ⊂ Γ−1.

Since dom Γ = S∗, the identity S = ker Γ is implied by Proposition 2.3 and (2.15):

ker Γ = (dom Γ)[⊥] = (S∗)[⊥] = S.

This completes the proof. �

Note that the boundary relation Γ is automatically closed and linear, since it
is a unitary relation from the Krĕın space (H2, JH) to the Krĕın space (H2, JH).
However, it can be multi-valued, nondensely defined, or unbounded.

Let Γ be a boundary relation for S∗ and let T = dom Γ. According to Proposi-
tion 2.12 (see (2.22)) the linear relation T in H satisfies

(3.3) S ⊂ T ⊂ S∗, clos T = S∗.

The defect spaces Nλ(T ) and N̂λ(T ) for T are defined as in (2.24). For all elements
{f̂λ, ĥ}, {ĝµ, k̂} ∈ Γ with f̂λ ∈ N̂λ(T ) and ĝµ ∈ N̂µ(T ), one has

(3.4) (λ − µ̄)(fλ, gµ)H = (h′, k)H − (h, k′)H, λ, µ ∈ C \ R,

which follows from the identity (3.1). Hence, the subspace N̂λ(T ) is positive in the
Krĕın space (H2, JH) for λ ∈ C+ and negative for λ ∈ C−.

Definition 3.3. The Weyl family M(·) of S corresponding to the boundary relation
Γ : H2 �→ H2 is defined by M(λ) := Γ(N̂λ(T )), i.e.,

(3.5) M(λ) :=
{

ĥ ∈ H2 : {f̂λ, ĥ} ∈ Γ for some f̂λ = {f, λf} ∈ H
2
}

,

where λ ∈ C \ R. In the case where M(·) is operator-valued it is called the Weyl
function of S corresponding to the boundary relation Γ.

It will be shown that each Weyl family is a Nevanlinna family, and conversely,
that each Nevanlinna family can be realized as the Weyl family of a minimal bound-
ary relation.

Definition 3.4. The boundary relation Γ : H2 �→ H2 is called minimal if

H = Hmin := span {Nλ(T ) : λ ∈ C+ ∪ C− }.
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Since Nλ(T ) is dense in Nλ(S∗) (cf. Lemma 2.14) the boundary relation Γ :
H2 �→ H2 is minimal if and only if S is simple. In general, if Smin is the simple
part of S, the restriction Γmin : H2

min �→ H2 of the linear relation Γ to Hmin is a
boundary relation for S∗

min. Clearly, the Weyl families corresponding to the linear
relations Γ and Γmin coincide.

Associate with Γ the following linear relations which are not necessarily closed:

Γ0 =
{
{f̂ , h} : {f̂ , ĥ} ∈ Γ, ĥ = {h, h′}

}
,

Γ1 =
{
{f̂ , h′} : {f̂ , ĥ} ∈ Γ, ĥ = {h, h′}

}
.

(3.6)

It is clear that

dom M(λ) = Γ0(N̂λ(T )) ⊂ ran Γ0, ran M(λ) = Γ1(N̂λ(T )) ⊂ ran Γ1.

If the boundary relation Γ is single-valued, the triplet {H, Γ0, Γ1} will be called
a boundary triplet associated with the boundary relation Γ : H2 �→ H2. In this
case the Weyl family corresponding to the boundary triplet {H, Γ0, Γ1} can also be
defined via the equality

(3.7) Γ1({fλ, λfλ}) = M(λ)Γ0({fλ, λfλ}), {fλ, λfλ} ∈ T.

The following fact is also useful. Let Γ : H2 �→ H2 be a boundary relation for
S∗. Then

Γ� =
(

0 1
−1 0

)
Γ

is a unitary relation from H2 to H2. Clearly, Γ� is also a boundary relation for S∗

(so that, in particular, ker Γ� = S). Consequently, if M(·) is the Weyl family for
Γ, then −M(·)−1 is the Weyl family for Γ�.

3.2. Orthogonal coupling associated with a boundary relation. In this sub-
section the linear transform J introduced in Subsection 2.4 will be used to obtain
some criteria for a linear relation Γ : H2 �→ H2 to be a boundary relation. For a
boundary relation Γ from H2 to H2 the relation Ã = J (Γ) is defined by (2.16). In
the following proposition some results of Subsection 2.4 are reformulated in terms
of boundary relations.

Proposition 3.5. Let Γ be a subspace in H2 ×H2 and let S = kerΓ. Then Γ is a
boundary relation for S∗ if and only if Ã = J (Γ) is a selfadjoint linear relation in
H ⊕H. In this case the boundary relation Γ is minimal if and only if Ã = J (Γ) is
a minimal selfadjoint extension of S2 = mul Γ.

Proof. The first statement is immediate from Propositions 2.10, 2.12, and Defini-
tion 3.1. By Definition 3.4 the minimality of Γ is equivalent to the simplicity of
S which, in turn, is equivalent to the minimality of Ã = J (Γ) as a selfadjoint
extension of S2 by Lemma 2.14. �
Proposition 3.6. The linear relation Γ : H2 �→ H2 is a boundary relation for S∗

if and only if the following conditions hold:
(i) dom Γ is dense in S∗;
(ii) Γ is closed and isometric from the Krĕın space (H2, JH) to the Krĕın space

(H2, JH);
(iii) ran (Γ(N̂λ(T )) + λ) = H for some (and, hence, for all) λ ∈ C+ and for

some (and, hence, for all) λ ∈ C−.
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Proof. Let Γ be a boundary relation for S∗. Then (i) is satisfied by definition.
Furthermore, by Proposition 3.2, Γ is a unitary relation from the Krĕın space
(H2, JH) to the Krĕın space (H2, JH). Hence, (ii) is also satisfied. The transform
Ã = J (Γ) is selfadjoint, which implies that ran (Ã − λ) = H ⊕H for all λ ∈ C \ R.
In particular,

(3.8) H2 :=
(

0
H

)
⊂ ran (Ã − λ).

It follows from (2.16) that

(3.9) Ã − λ =
{{(

f
h

)
,

(
f ′ − λf
−h′ − λh

)}
:

{(
f
f ′

)
,

(
h
h′

)}
∈ Γ

}
,

which together with (3.5) and (3.8) gives (iii).
Conversely, assume that the linear relation Γ satisfies (i), (ii), and (iii). By (ii)

and Proposition 2.10 it follows that Ã = J (Γ) is closed and symmetric. In order
to prove that Ã is selfadjoint it suffices to show that ran (Ã − λ) is dense for some
λ ∈ C+ and for some λ ∈ C−. It follows from (iii) and (3.9) that H2 ⊂ ran (Ã− λ).
To complete the argument, assume that ϕ ∈ H1 is orthogonal to ran (Ã − λ). This
implies that {ϕ, λ̄ϕ} ∈ T ∗, where T = dom Γ. By (i) T is dense in S∗ and hence
S = T ∗ and {ϕ, λ̄ϕ} ∈ S. Since S is symmetric this yields ϕ = 0. �

Next it will be shown that for every closed symmetric linear relation S there
exists a boundary relation for S∗; in the case of equal defect numbers this fact is
well known.

Proposition 3.7. Let S be any closed symmetric linear relation with arbitrary
defect numbers in a Hilbert space H. Then there exists a boundary relation Γ :
H2 �→ H2 for S∗.

Proof. Let Ã be any selfadjoint exit space extension of S with the property Ã∩H2 =
S. Then by Proposition 2.12 the transform Γ = J−1(Ã) of Ã satisfies ker Γ = S
and hence by Proposition 3.5 Γ defines a boundary relation for S∗. A particular
construction of such an extension Ã can be given as follows.

In the orthogonal sum H⊕H the relation S⊕ (−S) is closed and symmetric with
equal defect numbers. Define the relation Ã in H ⊕ H by

(3.10) Ã =
{

f̂ =
{(

f1

f2

)
,

(
f ′
1

−f ′
2

)}
: f̂1, f̂2 ∈ S∗, PNf̂1 = PNf̂2

}
,

where f̂1 = {f1, f
′
1}, f̂2 = {f2, f

′
2}, and PN is the orthogonal projection from S∗

onto N = N̂i(S∗) ⊕ N̂−i(S∗); cf. (2.6). The elements f̂j ∈ S∗, j = 1, 2, in (3.10)
have the representations

{fj , f
′
j} = {hj , h

′
j} +̂ {ϕi, iϕi} +̂ {ϕ−i,−iϕ−i},

where {hj , h
′
j} ∈ S, {ϕi, iϕi} ∈ S∗, {ϕ−i,−iϕ−i} ∈ S∗. With this notation a

typical element of the Cayley transform U of Ã,

U = { {u′ − iu, u′ + iu} : {u, u′} ∈ Ã },
is of the form {(

h′
1 − ih1 − 2iϕ−i

−(h′
2 + ih2) − 2iϕi

)
,

(
h′

1 + ih1 + 2iϕi

−(h′
2 − ih2) + 2iϕ−i

)}
.
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This shows immediately that U is isometric and that dom U = ranU = H ⊕ H,
so that U is unitary. Hence Ã is a selfadjoint relation which extends S ⊕ (−S).
Moreover, clearly S ⊂ Ã∩H2. In order to prove the reverse inclusion, assume that

f̂ =
{(

f1

f2

)
,

(
f ′
1

−f ′
2

)}
∈ Ã ∩ H

2.

Then f2 = f ′
2 = 0, and by the definition (3.10) of the relation Ã, it follows that

PNf̂1 = 0, so that {f1, f
′
1} ∈ S. Hence Ã ∩ H2 ⊂ S, and consequently, Ã ∩ H2 =

S. �

Remark 3.8. One can simplify the construction of the extension Ã in the previous
proposition when S is a closed symmetric relation with equal defect numbers. Let
V be an isometric mapping from N−i(S∗) onto Ni(S∗) and let H = Ni(S∗). Define
the linear relation Ã by

Ã =
{{(

f
ϕi + V ϕ−i

)
,

(
f ′

−iϕi + iV ϕ−i

)}
: f̂ = {f, f ′} ∈ S∗, ϕ±i = P±if̂

}
,

where P±i are the orthoprojections onto N±i(S∗) in the decomposition (2.6). Then
Ã is a selfadjoint extention of S such that Ã ∩ H2 = S.

The transform Γ = J−1(Ã) defines a boundary relation for S∗ with the addi-
tional property ran Γ = H2 (so that dom Γ = S∗, mul Γ = {0, 0}, which imply that
Γ is a bounded linear operator); cf. Corollary 2.6. It corresponds to an ordinary
boundary triplet {H, Γ0, Γ1} with the boundary operators Γ0, Γ1 given by

(3.11) Γ0f̂ = Pif̂ + V P−if̂ , Γ1f̂ = iPif̂ − iV P−if̂ ;

cf. [28]. For a densely defined operator S with equal defect numbers, the state-
ment of Proposition 3.7 and the formulas (3.11) go back to V.M. Bruck and
A.N. Kochubĕı (see [20]).

3.3. A characterization of Weyl families: The main realization theorem.
It was shown in [16] that for every Nevanlinna function M(·) ∈ Ru[H] there exist
a symmetric operator S in a Hilbert space H and an ordinary boundary triplet
{H, Γ0, Γ1} such that the corresponding Weyl function is M(·). Since such a Weyl
function is also a Q-function of the pair {S, A0} (see [16]), this gives a realization
for every uniformly strict Nevanlinna function as a Q-function of the pair {S, A0}.
The latter problem has been originally solved by M.G. Krĕın and H. Langer in [25]
for the case dom S = H and extended to the case dom S �= H in [26]. In [16] it was
shown that every function M(·) from Rs[H] can be realized as the Weyl function
of an appropriate generalized boundary triplet. In this subsection this realization
theorem is extended to the class R̃(H) of all Nevanlinna families and arbitrary
boundary relations. The present approach is based on the generalized Naimark
theorem and hence it differs from those used in [25], [26], [16].

Two boundary relations Γ(j) : (H(j))2 → H2, j = 1, 2, are said to be unitarily
equivalent if there is a unitary operator U : H(1) → H(2) such that

(3.12) Γ(2) =
{{(

Uf
Uf ′

)
,

(
h
h′

)}
:
{(

f
f ′

)
,

(
h
h′

)}
∈ Γ(1)

}
.

If the boundary relations Γ(1) and Γ(2) satisfy (3.12) and Sj = kerΓ(j), Tj =
dom Γ(j), j = 1, 2, then S2 = US1U

−1 and T2 = UT1U
−1.
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Theorem 3.9. Let Γ : H2 → H2 be a boundary relation for S∗. Then the corre-
sponding Weyl family M(·) belongs to the class R̃(H).

Conversely, if M(·) belongs to the class R̃(H), then there exists (up to unitary
equivalence) a unique minimal boundary relation whose Weyl function coincides
with M(·).

Proof. Necessity. If Γ : H2 → H2 is a boundary relation, so that Ã is selfadjoint, it
follows from the (2.16), (3.9) that

(Ã − λ)−1

(
f ′ − λf
−h′ − λh

)
=

(
f
h

)
,

{(
f
f ′

)
,

(
h
h′

)}
∈ Γ,

which implies

(3.13) R(λ) := PH(Ã − λ)−1�H = −(M(λ) + λ)−1, λ ∈ C \ R.

The latter equality can be rewritten as

M(λ) = { {R(λ)h,−(I + λR(λ))h} : h ∈ H}.
Since the kernel

K(λ, µ) =
R(λ) − R(µ)∗

λ − µ̄
− R(µ)∗R(λ) = PH(Ã − µ̄)−1(I − PH)(Ã − λ)−1|H

is nonnegative (see [36]), it follows that M(·) is a Nevanlinna family. Indeed, for
every

{f, f ′} = {R(λ)h,−(I + λR(λ))h} ∈ M(λ), h ∈ H,

one obtains
(f ′, f) − (f, f ′)

λ − λ̄
= (K(λ, λ)h, h) ≥ 0.

Sufficiency. Assume that M(·) belongs to R̃(H). Then M1(λ) := −(M(λ)+λ)−1

belongs to R[H], and therefore it admits an integral representation of the form
(2.29). The estimate ‖M1(iy)‖ ≤ 1/y and the monotonicity of yIm M1(iy) show
that the strong limit s− limy→∞ yIm M1(iy) exists and defines a bounded operator
in H such that

0 ≤ s − lim
y→∞

yIm M1(iy) ≤ IH.

Moreover, s − limy→∞ M1(iy) = 0. Hence, the integral representation of M1(λ)
takes the form

(3.14) M1(λ) =
∫

R

dΣ(t)
t − λ

, 0 ≤
∫

R

dΣ(t) = s − lim
y→∞

yIm M1(iy) ≤ IH.

Without loss of generality one may assume that Σ(−∞) = 0, in which case 0 ≤
Σ(+∞) := s− limt→∞ Σ(t) ≤ IH. It follows from the generalized Naimark theorem
(cf. [1, 30, 36]) that there is an orthogonal dilation E(t) of Σ(t) (i.e. a spectral
family of a selfadjoint linear relation Ã in some Hilbert space H̃ ⊃ H with Σ(t) =
PHE(t)�H for all t ∈ R). Note that E(∞) is an orthogonal projection in H̃, which
is equal to IH̃ if and only if Ã is an operator. The linear relation Ã can be chosen
minimal in the sense that

(3.15) H̃ = span {H, E(t)H : t ∈ R },
which, of course, is equivalent to the minimality of the selfadjoint extension Ã with
respect to H. Observe, that if Ã is minimal, then Ã is an operator if and only if
Σ(+∞) = IH.
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It follows from (3.14) that M1(λ) takes the form

(3.16) M1(λ) = PH(Ã − λ)−1�H, λ ∈ C \ R,

where Ã is a minimal selfadjoint relation with the above properties. Let H = H̃�H.
Decompose the graph of Ã as in (2.16) according to the decomposition H̃ = H⊕H
and let Γ = J−1(Ã). Due to Proposition 3.5 Γ defines a boundary relation for S∗

where S := ker Γ = Ã ∩ (H̃�H)2. By Lemma 2.14 Γ is minimal by the minimality
of the selfadjoint extension Ã with respect to H; see (3.15). Now the first part of
the present proof shows that the Weyl family associated with Γ satisfies (3.13) with
the compressed resolvent of Ã in H given by (3.16). Therefore, the Weyl family
associated with Γ coincides with the given family M(·) ∈ R̃(H).

Uniqueness. Assume that Γ(j) : (H(j))2 → H2, j = 1, 2, are two minimal bound-
ary relations with the same Weyl family M(λ). Then Ã(j) = J (Γ(j)), j = 1, 2, are
two selfadjoint linear relations in Hilbert spaces H̃(j)(⊃ H) minimal with respect
to H and such that

PH(Ã(j) − λ)−1�H = −(M(λ) + λ)−1, λ ∈ C \ R.

Then the corresponding resolutions of identities E(j)(t) also have the minimality
properties

H̃
(j) = closL(j), L(j) = span {H, E(j)(t)H : t ∈ R },

and by the Stieltjes inversion formula they satisfy the equality PHE(1)(t)�H =
PHE(2)(t)�H for all t ∈ R. Define the mapping U0 : L(1) → L(2) by the equalities

(3.17) U0h = h, U0E
(1)(t)h = E(2)(t)h, h ∈ H, t ∈ R.

It follows from

‖E(1)(t)h‖2
H̃(1) =

∫
(−∞,t]

d(E(1)(s)h, h)
H̃(1)

=
∫

(−∞,t]

d(E(2)(s)h, h)
H̃(2) = ‖E(2)(t)h‖2

H̃(2) , h ∈ H,

that U0 is a well-defined isometric mapping from L(1) onto L(2). Its closure Ũ

is a unitary operator from H̃(1) onto H̃(2), and according to the decompositions
H̃(j) = H(j) ⊕ H it can be represented as Ũ = U ⊕ IH, where U : H(1) → H(2) is
unitary. It follows from (3.17) that ŨE1(t) = E2(t)Ũ for all t ∈ R and, therefore,
the selfadjoint linear relations Ã(j) are unitary equivalent:

Ã(2) =
{{(

Uf
h

)
,

(
Uf ′

−h′

)}
:
{(

f
h

)
,

(
f ′

−h′

)}
∈ Ã(1)

}
.

This leads to the unitary equivalence (3.12) of the boundary relations Γ(1) and
Γ(2). �

4. Weyl families of symmetric operators

4.1. Subclasses of Weyl families. The main theorem in the previous section
gives a one-to-one correspondence between Nevanlinna families and boundary re-
lations. In this subsection geometric characterizations of subclasses of Nevanlinna
families or functions are given in terms of the boundary relation. The following
preliminary result is important.
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Lemma 4.1. Let Γ : H2 → H2 be a boundary relation for S∗ with the Weyl family
M(λ) = Γ(N̂λ(T )). Then the following equalities hold for every λ ∈ C \ R:

(i) M(λ) ∩ M(λ)∗ = mul Γ and clos (M(λ) +̂ M(λ)∗) = ran Γ;
(ii) kerM(λ)×{0} = mul Γ∩(H×{0}) and {0}×mul M(λ) = mul Γ∩({0}×H);
(iii) ker(M(λ) − M(λ)∗) = mul Γ0 and ker(M(λ)−1 − M(λ)−∗) = mul Γ1.

Proof. (i) Let {0, ĥ} ∈ Γ, ĥ = {h, h′}. Then (3.1) and (3.4) show that for every
λ ∈ C \ R and {k, k′} ∈ Γ(N̂λ(T )) the identity (h′, k) − (h, k′) = 0 holds. Hence,
ĥ ∈ M(λ)∗ for all λ ∈ C \ R, which proves that mul Γ ⊂ M(λ)∩M(λ)∗, λ ∈ C \ R.
Conversely, if ĥ ∈ M(λ)∩M(λ)∗, λ ∈ C \ R, then {f̂λ, ĥ} ∈ Γ for some f̂λ ∈ N̂λ(T )
and, moreover, according to (3.4) (λ− λ̄)‖fλ‖2 = 0, which implies that f̂λ = {0, 0}.
Therefore, {0, ĥ} ∈ Γ, and this proves the reverse inclusion M(λ)∩M(λ)∗ ⊂ mul Γ,
λ ∈ C \ R. Hence, the first statement of (i) has been shown. The second statement
in (i) follows from the first one by taking adjoints and applying Proposition 2.12.

(ii) Let ĥ = {h, 0} ∈ mul Γ, h ∈ H. Then ĥ ∈ M(λ) for all λ ∈ C \ R, so that
h ∈ kerM(λ), λ ∈ C \ R. Conversely, let h ∈ kerM(λ), so that ĥ = {h, 0} ∈ M(λ)
for some λ ∈ C \ R. Then {f̂λ, ĥ} ∈ Γ for some f̂λ = {fλ, λfλ} ∈ N̂λ(T ) and (3.4)
gives (λ − λ̄)‖fλ‖2 = (0, h) − (h, 0) = 0. Hence, fλ = 0 and f̂λ = 0, which shows
that ĥ ∈ mul Γ ∩ (H× {0}). This proves the first equality in (i). The proof of the
second equality is similar.

(iii) These identities follow immediately from (i) and (2.1), and the definition in
(3.6). �

Remark 4.2. Lemma 4.1 combined with the realization theorem proved in the pre-
vious section (see Theorem 3.9) yields immediately the following invariance results
for an arbitrary Nevanlinna family M(·) ∈ R̃(H):

M(λ) ∩ M(λ)∗,

ker M(λ), mul M(λ),

ker(M(λ) − M(λ)∗), ker(M(λ)−1 − M(λ)−∗)

(4.1)

do not depend on λ ∈ C \ R.
This indicates that via Theorem 3.9 boundary relations in fact offer a new

method for studying function and spectral theoretical properties of Nevanlinna
families by means of geometric properties of boundary relations, and vice versa.
Observe that direct function theoretical proofs for the invariance properties of
Nevanlinna families formulated in (4.1) may be based e.g. on an application of
the maximality principle.

Lemma 4.1 gives also the following result.

Corollary 4.3. Let Γ : H2 → H2 be a boundary relation for S∗ with the Weyl
family M(λ) = Γ(N̂λ(T )). Then the following equalities hold for every λ ∈ C \ R:

(4.2) dom M(λ) = ran Γ0, ran M(λ) = ran Γ1.

Proof. The definition of the Weyl family M(λ), the symmetry property M(λ)∗ =
M(λ̄), and part (i) of Lemma 4.1 imply that

(4.3) M(λ) +̂ M(λ̄) ⊂ ran Γ ⊂ clos (M(λ) +̂ M(λ̄)), λ ∈ C \ R.
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Since mul M(λ) is independent from λ ∈ C \ R, the equality dom M(λ) = dom M(λ̄)
holds. Now the identities (4.2) follow from (4.3). �

In general, the first inclusion in (4.3) need not be an equality; see Examples 6.5
and 6.6. However, sufficient conditions for the equality to hold can be found in the
next lemma.

Lemma 4.4. Let Γ : H2 → H2 be a boundary relation for S∗ with the Weyl family
M(λ) = Γ(N̂λ(T )). Then the following statements are equivalent:

(i) ran Γ is closed;
(ii) M(λ) +̂ M(λ)∗ is closed for some (or, equivalently, for every) λ ∈ C \ R;
(iii) T = S∗.

If any one of these conditions is satisfied, then

(4.4) M(λ) +̂ M(λ)∗ = ran Γ, λ ∈ C \ R.

Proof. (i) ⇔ (iii) This is clear from Proposition 2.3 since T = dom Γ dense in S∗.
(ii) ⇒ (i) If (ii) holds for some λ ∈ C \ R, then part (i) of Lemma 4.1 and (4.3)

yield
ran Γ ⊂ ran Γ = M(λ) +̂ M(λ)∗ ⊂ ran Γ.

(iii) ⇒ (ii) Von Neumann’s formula (2.5) implies that for every λ ∈ C \ R

Γ(N̂λ(T )) +̂ Γ(N̂λ̄(T )) = ran Γ,

which is closed since ran Γ is closed by the equivalence of (i) and (iii).
If one of the conditions (i), (ii), or (iii) is satisfied, then the identity (4.4) is clear

from the above arguments. �

Proposition 4.5. Let Γ : H2 → H2 be a boundary relation for S∗ with the Weyl
family M(λ) = Γ(N̂λ(T )). Then:

(i) M(·) ∈ R(H) if and only if mul Γ ∩ ({0} ×H) = {0};
(ii) M(·) ∈ Rs(H) if and only if ran Γ is dense in H2;
(iii) M(·) ∈ Ru(H) if and only if ran Γ = H2.

Proof. (i) Observe that M(·) ∈ R(H) if and only if mul M(λ) = {0}. Hence, the
statement follows from part (ii) of Lemma 4.1.

(ii) By definition M(·) ∈ Rs(H) if and only if M(λ) ∩ M(λ)∗ = {0}. The
statement now follows from part (i) of Lemma 4.1 and Proposition 2.3.

(iii) By definition M(·) ∈ Ru(H) if and only if M(λ) +̂ M(λ)∗ = H2. Hence,
if M(·) ∈ Ru(H), then clearly ran Γ = H2; cf. the inclusion (4.3). Conversely, if
ran Γ = H2, then ran Γ is closed, so that by Lemmas 4.1 and 4.4, M(λ) +̂ M(λ)∗ =
ran Γ = H2, and thus M(·) ∈ Ru(H). �

The class R̃inv(H) is the set of all M(·) ∈ R̃(H) such that Γ0(N̂λ(T )) = H0 for
some linear subspace H0 ⊂ H with closH0 = (mul M(λ))⊥.

Corollary 4.6. The invariant subclasses Rinv(H) and Rs
inv(H) are characterized

by:
(i) M(·) ∈ Rinv(H) if and only if mul Γ∩({0}×H) = {0} and Γ0(N̂λ(T )) = H0

for some dense linear subspace H0 ⊂ H;
(ii) M(·) ∈ Rs

inv(H) if and only if mul Γ = {0} and Γ0(N̂λ(T )) = H0 for some
dense linear subspace H0 ⊂ H.
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Proposition 4.7. Let Γ : H2 → H2 be a boundary relation for S∗ with the Weyl
family M(λ) = Γ(N̂λ(T )). Then:

(i) M(·) ∈ R̃[H] if and only if Γ0(N̂λ(T )) = H0, λ ∈ C \ R, where H0 ⊂ H is
a closed linear subspace;

(ii) M(·) ∈ R[H] if and only if Γ0(N̂λ(T )) = H, λ ∈ C \ R;
(iii) M(·) ∈ Rs[H] if and only if mul Γ0 = {0} and Γ0(N̂λ(T )) = H, λ ∈ C \ R.

Proof. For any M(·) ∈ R̃(H) the following orthogonal decomposition holds:

H = dom M(λ) ⊕ mul M(λ),

and here mul M(λ) does not depend on λ ∈ C \ R. Define H0 = H � mul M(λ).
Since Γ0(N̂λ(T )) = domM(λ), parts (i) and (ii) follow from the definitions of R̃[H]
and R[H].

For (iii) observe that M(·) ∈ Rs[H] if and only if M(·) ∈ R[H] and ker ImM(λ) =
{0}. Hence, the assertion follows from Lemma 4.1. �

4.2. Boundary relations and their γ-fields. The identity (3.4) shows that

ker(Γ0� N̂λ(T )) = {0}, ker(Γ1� N̂λ(T )) = {0}, ker(Γ� N̂λ(T )) = {0},

for all λ ∈ C \ R. In particular, the inverse of Γ0� N̂λ(T ) is a single-valued lin-
ear mapping from Γ0(N̂λ(T )) = domM(λ) onto N̂λ(T ); it is denoted by γ̂(λ) :=
(Γ0� N̂λ(T ))−1. The γ-field γ(·) associated with the boundary relation Γ : H2 → H2

is defined by

(4.5) γ(λ) = { {h, fλ} : {f̂λ, ĥ} ∈ Γ, f̂λ = {fλ, λfλ} ∈ T, ĥ = {h, h′} ∈ H2 },
for λ ∈ C \ R, so that γ(λ) corresponds to the first component of the mapping γ̂(λ).
It maps Γ0(N̂λ(T )) onto Nλ(T ) and satisfies γ(λ)Γ0f̂λ = fλ for all f̂λ ∈ N̂λ(T ).
With γ(λ) the relation Γ� N̂λ(T ) can be rewritten as follows:

(4.6) Γ� N̂λ(T ) := { {{γ(λ)h, λγ(λ)h}, {h, h′}} : {h, h′} ∈ M(λ) } , λ ∈ C \ R.

In the case that Γ is single-valued one can decompose Γ = Γ0 ⊕ Γ1. Then by part
(ii) of Lemma 4.1 the corresponding Weyl family M(·) is operator-valued. In this
case the identity (4.6) takes the form

Γ0γ̂(λ)h = h, Γ1γ̂(λ)h = M(λ)h, h ∈ dom M(λ), λ ∈ C \ R.

These formulas are typically used in the case of ordinary boundary triplets for
defining the corresponding Weyl function.

Proposition 4.8. Let Γ : H2 → H2 be a boundary relation for S∗ with the Weyl
family M(λ) = Γ(N̂λ(T )) and let Ã = J (Γ) be as in (2.16). Then the corresponding
γ-field γ(·) in (4.5) and the Weyl family M(·) are connected by

(4.7) (Ã − λ)−1

(
0
ϕ

)
= −

(
γ(λ)(M(λ) + λ)−1ϕ

(M(λ) + λ)−1ϕ

)
, ϕ ∈ H, λ ∈ C \ R.

Furthermore, the γ-field γ(·) satisfies with h ∈ dom M(λ), k ∈ dom M(µ), and
λ, µ ∈ C \ R the identity

(4.8)
(Ms(λ)h, k)H − (h, Ms(µ)k)H

λ − µ̄
= (γ(λ)h, γ(µ)k)H,
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and, in particular,

(4.9) ker γ(λ) = mul Γ0 = ker(M(λ) − M(λ)∗).

Proof. It follows from (2.16) and (4.5) that

(Ã − λ)−1

(
0

−h′ − λh

)
=

(
γ(λ)h

h

)
, h ∈ Γ0(N̂λ(T )),

which gives (4.7) immediately. The identity (4.8) follows from (3.4) and the de-
scription (4.6). Finally, the identities in (4.9) are obtained from the definition (4.5)
and Lemma 4.1. �

The identity (4.7) shows the sense in which the mapping γ(λ) : Γ0(N̂λ(T )) →
Nλ(T ) can be seen to be holomorphic. In general, the closure of the mapping γ(λ)
is not single-valued; cf. Example 6.7. However, there is a useful sufficient condition
for γ(λ) to have a single-valued closure.

Proposition 4.9. Assume that for some λ ∈ C \ R the inclusion

(4.10) Γ0(N̂λ(T )) ⊂ Γ0(N̂λ̄(T ))

is satisfied. Then γ(λ) admits a single-valued closure.

Proof. It follows from (4.8) that for all h ∈ dom M(λ)

(λ − λ̄)(γ(λ)h, γ(λ)h)H = (Ms(λ)h, h)H − (h, Ms(λ)h)H,

and the assumption dom M(λ) ⊂ dom M(λ)∗ then implies that

(4.11) (γ(λ)h, γ(λ)h)H =
(

Ms(λ) − Ms(λ)∗

λ − λ̄
h, h

)
H

.

Now, for each λ ∈ C \ R, the operator

N(λ) :=
Ms(λ) − Ms(λ)∗

λ − λ̄

is a nonnegative densely defined operator in H � mul M(λ). Therefore, both qua-
dratic forms in (4.11) are closable (see [22]). Hence, γ(λ) admits a single-valued
closure. �

It follows from the identity (N(λ)h, h) = (γ(λ)h, γ(λ)h), h ∈ dom M(λ), that
the operator N(λ) is nonnegative. Hence, it has a Friedrichs extension NF (λ). Ac-
cording to the Second Representation Theorem (see [22]) the single-valued closure
of γ(λ), denoted by γ∗∗(λ), satisfies dom γ∗∗(λ) = dom NF (λ)1/2. Observe that
the original mapping is onto Nλ(T ) and its closure is into Nλ(S∗). In general the
closure does not map onto Nλ(S∗); cf. Example 6.8. If (4.10) is not satisfied the
closure of γ(λ) can be multi-valued; see Example 6.7.

4.3. Characterization of domain invariance. The boundary relation for S∗

and the associated mappings Γ0 and Γ1 in (3.6) induce two linear relations:

A0 = ker Γ0, A1 = ker Γ1,

in the Hilbert space H. Clearly, these relations are symmetric and satisfy

S ⊂ A0 ⊂ T, S ⊂ A1 ⊂ T.

The relations A0 and A1 need not be closed, and their defect numbers may be
unequal; cf. Example 6.3. The following lemma is useful in the further study of
these relations.
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Lemma 4.10. Let Γ : H2 → H2 be a boundary relation for S∗. Then for j = 1, 2:
(i) Γj(N̂λ(T )) ⊂ ran Γj ⊂ clos (Γj(N̂λ(T ))) for all λ ∈ C \ R;
(ii) ran Γ[∗]

j = ker Γj, where Γj is understood as a linear subspace of H2 ×H2;
(iii) if ran Γj is closed, then Aj is closed.

The condition in (iii) is satisfied if Γj(N̂λ(T )) is closed for some λ ∈ C \ R.

Proof. (i) The first inclusion is obvious. Since by definition Γ0(N̂λ(T )) = dom M(λ)
and Γ1(N̂λ(T )) = ranM(λ), the second inclusion is immediate from Corollary 4.3.

(ii) Identifying Γ0 as a linear subspace of Γ ⊂ H2 ×H2, it takes the form

Γ0 = { {f̂ , {h, 0}} : {f̂ , {h, h′}} ∈ Γ }.

Assume that ĝ ∈ ran Γ[∗]
0 , i.e. {k̂, ĝ} ∈ Γ[∗]

0 for some k̂ = {k, k′}. Then for all
{f̂ , {h, 0}} ∈ Γ0,

0 =
(
JHĝ, f̂

)
H2

− (JH{k, k′}, {h, 0})H2 =
(
JHĝ, f̂

)
H2

− (JH{0, k′}, {h, h′})H2 .

This means that {{0, k′}, ĝ} ∈ Γ[∗] = Γ−1 or equivalently that {ĝ, {0, k′}} ∈ Γ, i.e.,
ĝ ∈ A0 = kerΓ0. Therefore, ran Γ[∗]

0 = kerΓ0. Similarly one proves the identity
ran Γ[∗]

1 = kerΓ1.
(iii) Let ran Γj be closed, so that also ran Γ∗∗

j is closed. By Proposition 2.2, or,

more precisely, by its Krĕın space version, it follows that ran Γ[∗]
j is closed. The

equalities in (ii) now imply that Aj is closed.
The last statement is clear from the inclusions in (i). �
The condition in (iii) is sufficient, but not necessary. In fact, in Example 6.6

ran Γ0 is not closed, while A0 is selfadjoint.

Proposition 4.11. The following statements are equivalent:
(i) H0 := Γ0(N̂λ(T )) is independent from λ ∈ C+ (resp. from λ ∈ C−);
(ii) Nµ(T ) ⊂ ran (A0 − λ) for all λ, µ ∈ C+ (resp. for all λ, µ ∈ C−), λ �= µ.

If one of these conditions is satisfied, then the γ-field γ(·) satisfies

(4.12) γ(λ) = [I + (λ − µ)(A0 − λ)−1]γ(µ), λ, µ ∈ C+(C−).

Proof. (i) ⇒ (ii) Let H0 = Γ0(N̂λ(T )) for all λ ∈ C+. It follows from (4.6) that for
every h ∈ H0 there exist h′, h′′ ∈ H such that

{{γ(λ)h, λγ(λ)h}, {h, h′}} ∈ Γ� N̂λ(T ) ⊂ Γ,

{{γ(µ)h, µγ(µ)h}, {h, h′′}} ∈ Γ� N̂µ(T ) ⊂ Γ.

Hence,
{{(γ(λ) − γ(µ))h, (λγ(λ)− µγ(µ))h}, {0, h′ − h′′}} ∈ Γ,

and therefore

(4.13) {(γ(λ) − γ(µ))h, (λγ(λ)− µγ(µ))h} ∈ A0.

It follows from (4.13) that

{(γ(λ) − γ(µ))h, (λ− µ)γ(µ)h} ∈ A0 − λ,

so that γ(µ)h ∈ ran (A0 − λ) for every h ∈ H0. Therefore (ii) follows.
(ii) ⇒ (i) Let h ∈ Γ0(N̂µ(T )). By definition there is an element h′ ∈ H so that

(4.14) { {γ(µ)h, µγ(µ)h}, {h, h′} } ∈ Γ.
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The assumption in (ii) shows that γ(µ)h ∈ ran (A0−λ), so that there is an element
k ∈ H such that {k, γ(µ)h + λk} ∈ A0. Hence, there exists ϕ ∈ H such that

(4.15) { {(λ − µ)k, (λ − µ)γ(µ)h + λ(λ − µ)k}, {0, ϕ} } ∈ Γ.

It follows from (4.14) and (4.15) that

{ {γ(µ)h + (λ − µ)k, λ(γ(µ)h + (λ − µ)k)}, {h, h′ + ϕ} } ∈ Γ.

In other words, h ∈ Γ0(N̂λ(T )). Hence Γ0(N̂µ(T )) ⊂ Γ0(N̂λ(T )), and equality
follows by symmetry.

Now assume that one of the equivalent conditions (i) or (ii) is satisfied. The
assumption (i) implies the identity (4.13), which may be rewritten as

{γ(µ)h, γ(λ)h} ∈ I + (λ − µ)(A − λ)−1,

where (A0 −λ)−1 is bounded on ran (A0 −λ), since A0 is symmetric. Hence, (4.12)
holds. �

Corollary 4.12. If (i) or, equivalently, (ii) in Proposition 4.11 holds for all λ, µ ∈
C \ R, then A0 is essentially selfadjoint and (4.12) holds for all λ, µ ∈ C \ R.

Proof. Assume that S is simple. Then part (ii) of Proposition 4.11 implies that
ran (A0 − λ) = H, λ ∈ C \ R, so that A0 is essentially selfadjoint.

If S is not simple, decompose S = S′⊕S′′, where S′′ is selfadjoint. The symmetric
extension A0 of S decomposes accordingly: A0 = A′

0 ⊕ S′′. Hence, the earlier
argument shows that A′

0 is essentially selfadjoint, so that A0 itself is also essentially
selfadjoint. �

Now, the case of equality in the first inclusion of (i) in Lemma 4.10 is character-
ized.

Theorem 4.13. For every fixed λ ∈ C+(C−) the following statements are equiva-
lent:

(i) ran (A0 − λ) = H (i.e. A0 is maximal symmetric);
(ii) T = A0 +̂ N̂λ(T );
(iii) Γ0(N̂λ(T )) = ran Γ0.

If (i), (ii), or (iii) holds for some λ ∈ C+(C−), then (i), (ii), and (iii) hold for
every λ ∈ C+(C−) and, moreover, S satisfies

(4.16) S = { {f, g} ∈ A∗
0 : (g − λ̄f, γ(λ)h)H = 0, h ∈ H0 := Γ0(N̂λ(T )) },

where λ ∈ C+(C−).

Proof. (i) ⇒ (ii) If ran (A0 − λ) = H for λ ∈ C+, it follows that

S∗ = A0 +̂ N̂λ(S∗).

Now observe that T ⊂ S∗, A0 ⊂ T , and T ∩ N̂λ(S∗) = N̂λ(T ), which gives (ii).
(ii) ⇒ (i) The identity in (ii) shows that

ran (T − λ) = ran (A0 − λ), λ ∈ C+.

Since Ã is selfadjoint, it follows from (2.16) and (2.21) that ran (T − λ) = H for
every λ ∈ C \ R. Hence, in particular ran (A0 −λ) = H for λ ∈ C+, which gives (i).
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(ii) ⇒ (iii) Let h ∈ ran Γ0, so that {f̂ , {h, h′}} ∈ Γ for some h′ ∈ H, f̂ ∈ T .
Decompose f̂ = f̂0 + f̂λ, where {f̂0, {0, k}} ∈ Γ and {f̂λ, {h, h′−k}} ∈ N̂λ(T ). This
shows that h ∈ Γ0(N̂λ(T )), and (iii) follows.

(iii) ⇒ (ii) Since clearly A0 +̂ N̂λ(T ) ⊂ T , it suffices to prove the reverse inclu-
sion. Let f̂ ∈ T , so that {f̂ , {h, h′}} ∈ Γ for some h, h′ ∈ H. According to (iii) there
exists f̂λ ∈ N̂λ(T ), such that {f̂λ, h} ∈ Γ0, i.e., {f̂λ, {h, h′′}} ∈ Γ for some h′′ ∈ H.
This implies that {f̂ − f̂λ, {0, h′−h′′}} ∈ Γ, and therefore f̂0 := f̂ − f̂λ ∈ A0, which
shows that f̂ = f̂0 + f̂λ ∈ A0 +̂ N̂λ(T ). Hence, (ii) follows.

If any of the equivalent statements (i), (ii), or (iii) holds for some λ ∈ C+(C−),
then symmetry of A0 forces that these statements hold for every λ ∈ C+(C−).
Moreover, it follows from (ii) that

T ∗ = A∗
0 ∩

(
N̂λ(T )

)∗
,

which leads to the identity (4.16). �
As a consequence of Theorem 4.13 one obtains criteria for A0 to be selfadjoint.

Corollary 4.14. The relation A0 is selfadjoint if and only if one (and hence all)
of the statements (i), (ii), or (iii) in Theorem 4.13 holds for some λ ∈ C+ and for
some λ ∈ C−. Moreover, in this case

S = { {f, g} ∈ A0 : (g − λ̄f, γ(λ)h)H = 0, h ∈ H0 := Γ0(N̂λ(T )) }, λ ∈ C \ R.

Next, the case of equality in the second inclusion of (i) in Lemma 4.10 is char-
acterized.

Proposition 4.15. For every fixed λ ∈ C+(C−) the following statements are equiv-
alent:

(i) Γ0(N̂λ(T )) is closed;
(ii) ran (A0 − λ) = H, and ran Γ0 is closed.

In this case A0 is closed and ran (A0 − λ) = H for every λ ∈ C+(C−), so that A0

is maximal symmetric.

Proof. (i) ⇒ (ii) Let Γ0(N̂λ(T )) be closed for some λ ∈ C+(C−). Then it follows
from Lemma 4.10 that ran Γ0 is closed, and Theorem 4.13 implies that ran (A0−λ) =
H for λ ∈ C+(C−).

(ii) ⇒ (i) If ran Γ0 is closed, then A0 is closed by Lemma 4.10. Therefore the
assumption ran (A0 − λ) = H for λ ∈ C+(C−) leads to ran (A0 − λ) = H, λ ∈
C+(C−). Then by Theorem 4.13 ran Γ0 = Γ0(N̂λ(T )), and this subspace is closed
by the assumptions in (ii).

The last statement follows from Lemma 4.10. �
As a consequence of Proposition 4.15 one obtains some further invariance results

known for an arbitrary Nevanlinna family M(·) ∈ R̃(H). This in turn leads to a
more precise statement concerning A0 in the previous proposition.

Proposition 4.16. Let the Nevanlinna family M(·) ∈ R̃(H) be the Weyl family
associated to the boundary relation Γ : H2 → H2 via Theorem 3.9. Then:

(i) if dom M(λ0) (ranM(λ0)) is closed for some λ0 ∈ C \ R, then ran Γ0 (resp.
ran Γ1) is closed, and the operator part of M(λ) (of M(λ)−1) is bounded
for every λ ∈ C \ R;
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(ii) if ran Γ0 (ran Γ1) is not closed, then dom M(λ) (resp. ran M(λ)) is not
closed, and the operator part of M(λ) (of M(λ)−1) is unbounded for every
λ ∈ C \ R.

Proof. It is sufficient to prove (i). Since M(λ0)∗ = M(λ̄0), it follows from Propo-
sition 2.2 that dom M(λ0) is closed if and only if domM(λ̄0) is closed. In this
case dom M(λ0) = domM(λ̄0) = ran Γ0 by Corollary 4.3. Now it is clear that the
properties in part (ii) of Proposition 4.15 are satisfied for every λ ∈ C \ R. Hence
dom M(λ) = Γ0(N̂λ(T )) is closed for every λ ∈ C \ R. By the closed graph theo-
rem this means that the operator part of M(λ), λ ∈ C \ R, is bounded (see (2.27)).
Similarly one proves the assertion for ranM(λ). �
Corollary 4.17. If one of the equivalent statements (i) or (ii) in Proposition 4.15
holds at a single point λ0 ∈ C \ R, then A0 is selfadjoint.

Proof. The equalities dom M(λ0) = domM(λ̄0) = ran Γ0 were shown in the proof
of Proposition 4.16, and consequently the equality ran (A0 − λ) = H holds in fact
for every λ ∈ C \ R. �

Further invariance results concerning the spectra of an arbitrary Nevanlinna
family M(·) ∈ R̃(H) are now easily established.

Proposition 4.18. Let M(·) ∈ R̃(H) be a Nevanlinna family, let α ∈ R, and let
λ0 ∈ C \ R. Then:

(i) if M(λ0) ∈ [H], then M(λ) ∈ [H] for all λ ∈ C \ R;
(ii) if α ∈ ρ(M(λ0)), then α ∈ ρ(M(λ)) for all λ ∈ C \ R;
(iii) if α ∈ σp(M(λ0)), then α ∈ σp(M(λ)) for all λ ∈ C \ R;
(iv) if α ∈ σc(M(λ0)), then α ∈ σc(M(λ)) for all λ ∈ C \ R.

Proof. To prove the statements let M(·) ∈ R̃(H) be the Weyl family associated to
the boundary relation Γ : H2 → H2 via Theorem 3.9.

(i) By Lemma 4.1 dom M(λ) = (mul M(λ))⊥ does not depend on λ ∈ C \ R, and
hence the statement follows from part (i) of Proposition 4.16.

(ii) The condition α ∈ ρ(M(λ)) means that (M(λ) − αIH)−1 ∈ [H]. Since
−(M(λ) − αIH)−1 ∈ R̃(H), the assertion is obtained immediately from (i).

(iii) For every α ∈ R is clear that M(λ)−αIH ∈ R̃(H). Therefore, by Lemma 4.1
ker(M(λ) − αIH) does not depend on λ ∈ C \ R.

(iv) Observe that σ(M(λ)) = σp(M(λ))∪σc(M(λ)). Hence the statement follows
by combining (ii) and (iii). �
Remark 4.19. It follows from the proof of Proposition 4.18 that the eigenspaces
ker(M(λ) − αIH), α ∈ R, actually do not depend on λ ∈ C \ R.

According to Corollary 4.14 the assumption that A0 is selfadjoint is equivalent
to the decomposition T = A0 +̂ N̂λ(T ), λ ∈ C \ R. Clearly, this decomposition is
direct: N̂λ(T ) ∩ A0 = {0, 0}. In this case the intersection Nλ(T ) ∩ dom A0 can be
described as follows.

Proposition 4.20. Assume that A0 is selfadjoint. Then for λ ∈ C \ R,

(4.17) Nλ(T ) ∩ dom A0 = (A0 − λ)−1(mul T ).

Moreover, h ∈ Γ0{0,−ω}, ω ∈ mul T , if and only if γ(λ)h = (A0 − λ)−1ω for
λ ∈ C \ R.
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Proof. The identity in (4.17) is equivalent to

{ {f, λf} ∈ T : f ∈ dom A0 }
= { {(A0 − λ)−1ω, λ(A0 − λ)−1ω} : ω ∈ mul T }.

(4.18)

Let {f, λf} ∈ T have the property that f ∈ dom A0. Then there is an element
ω ∈ H for which f = (A0 − λ)−1ω. Hence

(4.19) {f, λf} − {(A0 − λ)−1ω, (I + λ(A0 − λ)−1)ω} = {0,−ω}.
Since the elements in the left-hand side belong to T , it follows that ω ∈ mul T .
Hence the left-hand side of (4.18) is contained in the right-hand side.

Conversely, observe that for ω ∈ H

{(A0 − λ)−1ω, λ(A0 − λ)−1ω} = {(A0 − λ)−1ω, (I + λ(A0 − λ)−1)ω} +̂ {0,−ω}.
Thus, if ω ∈ mul T , then the elements in the right-hand side belong to the relation
A0 +̂ ({0} × mul T ) ⊂ T . Hence the right-hand side of (4.18) is contained in the
left-hand side.

It follows from (4.19) that h ∈ Γ0{0,−ω} if and only if h ∈ Γ0{f, λf}, and, by
definition of γ(λ), this is equivalent to f = γ(λ)h. �

Remark 4.21. The assumption that A0 is selfadjoint is essential for the inclusion
mul T ⊂ ran (A0 −λ). If A0 is not selfadjoint, the identity (4.17) need not be valid;
cf. Example 6.5.

The next result is a strengthening of Lemma 4.10.

Proposition 4.22. Let Γ be a boundary relation for S∗ and let ranΓ0 be closed.
Then:

(i) Γ(A0) is essentially selfadjoint in H, and the defect numbers of S are equal;
(ii) if A∗

0 ⊂ dom Γ, then A0 = kerΓ0 is selfadjoint and the linear relation Γ0 is
closed;

(iii) if ran Γ is closed, and in particular if the defect numbers of S are finite,
then A0 = ker Γ0 is selfadjoint and the linear relation Γ0 is closed.

Proof. (i) By assumption domT2 = ran Γ0 is closed. Then also dom (clos T2) =
dom S∗

2 is closed, and hence by Proposition 2.2 domS2 is closed. Decompose S2 =
S0⊕({0}×mul S2), where S0 is the operator part of S2 in H�(mul S2) = dom S∗

2 =
dom T2 (⊃ dom S2) and {0} × mul S2 is a selfadjoint relation in mul S2. Since
dom S0 = dom S2 is closed, S0 is a bounded symmetric operator in dom T2. It is well
known that S0 has bounded selfadjoint extensions in domT2; cf. e.g. [1]. Let B0 be
a bounded selfadjoint extension of S0 in domT2. Then S∗

0 = B0 +̂ ({0} × mul S∗
0 ),

since clearly (B0 +̂ ({0} × mul S∗
0))∗ = S0 and, moreover, B0 +̂ ({0} × mul S∗

0 ) is
closed, which follows from the fact that B0 is a closed bounded operator in domT2.
Consequently,

(4.20) closT2 = S∗
2 = S∗

0 ⊕ ({0} × mul S2) = B0 +̂ ({0} × mul S∗
2 ).

To prove essential selfadjointness of Γ(A0) first observe that

Γ(A0) = mul Γ +̂ ({0} × mul T2) = S2 +̂ ({0} × mul T2).

Since A0 is symmetric, Γ(A0) is symmetric by Proposition 2.13. Moreover, mul T
is dense in mul S∗

2 , which follows from (4.20) and the boundedness of B0. Since
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dom S2 = dom S0 is closed, this together with (4.20) implies that

Γ(A0)∗ = S∗
2 ∩ ((mul T2)⊥ ×H) = S∗

2 ∩ (dom S2 ×H)

= S0 +̂ ({0} × mul S∗
2 ) ⊂ clos Γ(A0) ⊂ Γ(A0)∗.

Hence, Γ(A0) is essentially selfadjoint, and the defect numbers of S2 and S = S1

are equal.
(ii) By Proposition 2.13 A0 is essentially selfadjoint, and by Lemma 4.10 it is

closed. Thus, A0 is selfadjoint. The closedness of Γ0 follows from the general
implication

A0 = A∗
0, ran Γ0 is closed ⇒ Γ0 is closed.

(iii) If ranΓ is closed, then equivalently T = dom Γ is closed, i.e., T = S∗.
Consequently, A∗

0 ⊂ dom Γ and the statement is obtained from part (ii). Observe
that if the defect numbers of S are finite, then T is closed as a finite-dimensional
extension of S. �
Remark 4.23. Proposition 4.22 gives rise to the following observations:

(i) mul M(λ) = mul S2, and the operator part Ms(λ) of M(λ) acts on dom T2;
(ii) if ran Γ0 is closed, then Γ(A0) is selfadjoint if and only if mul T2 is closed;
(iii) if ran Γ1 is closed, then Γ(A1) is selfadjoint if and only if kerT2 is closed;
(iv) if ran Γ0 and ran Γ1 both are closed and Γ(A0) or Γ(A1) is selfadjoint, then

A0 and A1 both are selfadjoint. Moreover, A0 +̂ A1 = T , so that A0 and
A1 are disjoint with respect to S;

(v) part (iii) of Proposition 4.22 applies in particular to the case ran Γ = H2.
This implies for instance the equality Ru(H) = Ru[H]; cf. Theorem 4.13.

4.4. Domain invariance and operator representations of Weyl families.
A Weyl family M(·) ∈ R̃(H) belongs to the subclass R̃inv(H) when there exists a
linear (not necessarily closed) subspace H0 ⊂ H such that

(4.21) domM(λ) = Γ0(N̂λ(T )) = H0, λ ∈ C \ R.

In this case Proposition 4.9 may be applied to show that the closure of the γ-field
γ(·) is single-valued. Note that in this proposition the notations [H0, Nλ(T )] and
[H0] refer to the bounded linear operators in the respective spaces, even when H0

is not complete.

Proposition 4.24. Let Γ : H2 → H2 be a boundary relation with the Weyl family
M(·) ∈ R̃(H). Assume that Γ0(N̂λ(T )) = H0 holds for all λ ∈ C \ R. Then:

(i) γ(λ) admits a single-valued closure for all λ ∈ C \ R;
(ii) H0 ⊂ dom γ(λ)∗∗ = dom γ(µ)∗∗ ⊂ closH0, λ, µ ∈ C \ R;
(iii) H0 ⊂ dom γ(λ)∗γ(µ), λ, µ ∈ C \ R;
(iv) γ(λ) ∈ [H0, Nλ(T )] if and only if Im Ms(λ) ∈ [H0].

Proof. (i) This is a direct consequence of Proposition 4.9.
(ii) It follows from (4.12) that there exists c > 0, such that

1
c
‖γ(µ)‖H ≤ ‖γ(λ)‖H ≤ c‖γ(µ)‖H,

which shows that the topology induced on H0 by the form (γ(λ)h, γ(λ)k)H does
not depend on λ ∈ C \ R. Therefore, the domain of the closure of this form is also
independent of λ ∈ C \ R, and clearly the closure is given by (γ(λ)∗∗h, γ(λ)∗∗k)H,
h, k ∈ dom γ(λ)∗∗, where γ(λ)∗∗ : H → H is the closure of γ(λ), λ ∈ C \ R.
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(iii) It follows from (4.8) that for all h, k ∈ H0

(λ − µ̄)(γ(λ)h, γ(µ)k)H = (h, (Ms(λ)∗ − Ms(µ))k)H.

Hence, for k ∈ dom γ(µ) = H0 and λ �= µ̄,

sup
h∈H0

|(γ(λ)h, γ(µ)k)H|
‖h‖ = sup

h∈H0

|(h, (Ms(λ)∗ − Ms(µ))k)H|
|λ − µ̄| ‖h‖

≤ ‖(Ms(λ)∗ − Ms(µ))k‖H
|λ − µ̄| < ∞,

which means that γ(µ)k ∈ dom γ(λ)∗. Hence, H0 ⊂ dom γ(λ)∗γ(µ).
(iv) This follows immediately from the identity

(Im Ms(λ)h, h)H

Im λ
=

(Ms(λ)h, h)H − (Ms(λ)∗h, h)H
λ − λ̄

= (γ(λ)h, γ(λ)h)H,
(4.22)

which is valid for all h ∈ H0. �
Proposition 4.25. Assume that the Weyl family M(·) belongs to the subclass
R̃inv(H), so that (4.21) holds with a linear subspace H0 ⊂ H. Then the opera-
tor part of the Weyl family M(λ) = Ms(λ) ⊕ M∞ has the operator representation

(4.23) Ms(λ) = Ms(µ)∗+(λ− µ̄)γ(µ)∗[I +(λ−µ)(A0−λ)−1]γ(µ), λ, µ ∈ C \ R,

where γ(µ)∗ : H → closH0.

Proof. This follows immediately from the identity
(Ms(λ)h, k)H − (Ms(µ)∗h, k)H

λ − µ̄
= (γ(λ)h, γ(µ)k)H, h, k ∈ H0,

the identity (4.12), and part (iii) of Proposition 4.24. �
Under the assumption of domain invariance the symmetric relation A0 = ker Γ0

is essentially selfadjoint (cf. Corollary 4.12), so that its closure A∗∗
0 = A∗

0 is a
selfadjoint extension of S. Recall that under these circumstances the identity (4.12)
now holds for all λ, µ ∈ C \ R:

(4.24) γ(λ)h = [I + (λ − µ)(A0 − λ)−1]γ(µ)h, h ∈ Γ0(N̂λ(T )), λ, µ ∈ C \ R.

Denote by As the (orthogonal) operator part of A∗∗
0 , so that A∗∗

0 admits the de-
composition

A∗∗
0 = As ⊕ A∞, A∞ = {0} × mul A∗∗

0 .

Let P be the orthogonal projection onto Hs = dom A∗∗
0 , so that I − P is the

orthogonal projection onto mul A∗∗
0 . Let E(t) be the spectral family (of orthogonal

projections) of A∗∗
0 , so that in particular kerE(∞) = ran (I−P ). Then the operator

As in Hs satisfies

(4.25) IHs
+ (λ − µ)(As − λ)−1 =

∫
R

t − µ

t − λ
dE(t).

In view of (4.25) the identity (4.24) may now be rewritten as follows (with λ, µ ∈
C \ R):

(4.26) γ(λ)h = (I−P )γ(µ)h+[IHs
+(λ−µ)(As−λ)−1]Pγ(µ)h, h ∈ Γ0(N̂λ(T )),

which is an orthogonal decomposition.
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The next result is an extension of the integral representation (2.29) from the
subclass R[H] to the subclass R̃inv(H) of Nevanlinna families.

Proposition 4.26. Assume that the Weyl family M(·) belongs to the subclass
R̃inv(H), so that (4.21) holds with a linear subspace H0 ⊂ H. Then the opera-
tor part of the Weyl family M(λ) = Ms(λ) ⊕ M∞ has the integral representation

(4.27) (Ms(λ)h, h)H = ah + bhλ +
∫

R

(
1

t − λ
− t

t2 + 1

)
dσh(t), h ∈ H0,

where ah = (Re Ms(i)h, h)H, dσh(t) = (t2 + 1)d(E(t)Pγ(i)h, Pγ(i)h)H,

(4.28) bh = ‖(I − P )γ(i)h‖2
H,

P is the orthogonal projection onto dom A∗∗
0 , and E(t) is the spectral family of A∗∗

0 .

Proof. It follows from (4.23), (4.25), and (4.26) that for all h ∈ H0 = dom M(λ)
and µ = i,

(Ms(λ)h, h)H = (Ms(i)∗h, h)H + (λ + i)‖(I − P )γ(i)h‖2
H

+ (λ + i)([I + (λ − i)(As − λ)−1]Pγ(i)h, γ(i)h)H

= (Ms(i)∗h, h)H + (λ + i)
(

bh +
∫

R

t − i

t − λ
d(E(t)Pγ(i)h, Pγ(i)h)H

)
.

Since

Im (Ms(i)h, h)H = bh +
∫

R

d(E(t)Pγ(i)h, Pγ(i)h)H = bh +
∫

R

dσh(t)
t2 + 1

,

one obtains (4.27). �
The coefficient (4.28) of the linear term in the integral representation (4.27) may

be obtained by a limiting procedure.

Proposition 4.27. Assume that the Weyl family M(·) belongs to the subclass
R̃inv(H), so that (4.21) holds with a linear subspace H0 ⊂ H. Then for all µ ∈ C\R

and h ∈ H0,

(4.29) lim
y→∞

(Ms(iy)h, h)H
iy

= ‖(I − P )γ(i)h‖2
H = ‖(I − P )γ(µ)h‖2

H.

In particular, with h ∈ H0,

(4.30) lim
y→∞

(Ms(iy)h, h)H
iy

= 0 if and only if γ(µ)h ∈ dom A∗∗
0 .

Proof. The first equality in (4.29) is implied by (4.27) and (4.28). To obtain the
second equality in (4.29) observe that as a consequence of (4.26) the following
limiting result holds:

lim
y→∞

(γ(iy)h, γ(µ)h)H = ‖(I − P )γ(µ)h‖2
H.

Now the statement is implied by (4.23). The statement (4.30) is an immediate
consequence of (4.29). �

Corollary 4.28. Assume that the Weyl family M(·) belongs to the subclass R̃inv(H)
and let S be an operator, i.e., mul S = {0}. Then A∗∗

0 is an operator if and only if

(4.31) lim
y→∞

(Ms(iy)h, h)H
iy

= 0 for every h ∈ H0.
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Proof. Let A∗∗
0 be an operator. Then it follows from Proposition 4.27 that (4.31)

holds.
Conversely, assume that (4.31) holds. If S is simple, Proposition 4.27 implies

that Nλ(T ), λ ∈ C \ R, are orthogonal to mulA∗∗
0 . Since

H = span {Nλ(T ) : λ ∈ C \ R },
this implies that mul A∗∗

0 = {0}. In the general case, when S is not necessarily
simple, decompose the operator S as an orthogonal sum S0 ⊕ S1 with a simple
symmetric operator S0 and a selfadjoint operator S1. Then the result follows from
the fact that M(·) is the Weyl family of the simple part S1 of S. �

As a direct consequence of (4.25) and (4.26) one obtains

(4.32) ‖γ(λ)h‖2
H = ‖(I − P )γ(µ)h‖2

H +
∫

R

∣∣∣∣ t − µ

t − λ

∣∣∣∣2 ‖dE(t)Pγ(µ)h‖2
H.

It also follows from (4.26) that if γ(λ)h ∈ dom A∗∗
0 for some λ ∈ C \ R, then the

same is true for all λ ∈ C \ R.

Proposition 4.29. Assume that the Weyl family M(·) belongs to the subclass
R̃inv(H) and let h ∈ H0 = Γ0(N̂λ(T )), λ ∈ C \ R. Then

(4.33) sup
y>0

y
(
Im Ms(iy)h, h

)
H < ∞ ⇔ γ(µ)h ∈ dom A∗∗

0 , µ ∈ C \ R.

Proof. It follows from (4.8) that

(4.34) y

(
Ms(iy) − Ms(iy)∗

2i
h, h

)
H

= y2‖γ(iy)h‖2
H.

Combining (4.34) with (4.32) leads to

(4.35) yIm
(
Ms(iy)h, h

)
H = y2‖(I − P )γ(i)h‖2

H + y2

∫
R

t2 + 1
t2 + y2

d‖EtPγ(i)h‖2
H.

An application of Lebesgue’s monotone convergence theorem gives

(4.36) sup
y>0

y2

∫
R

t2 + 1
t2 + y2

d‖EtPγ(i)h‖2
H =

∫
R

(t2 + 1) d‖EtPγ(i)h‖2
H.

Now (4.35) and (4.36) show that the left-hand side of (4.35) is uniformly bounded
for y > 0 if and only if (I − P )γ(i)h = 0 and Pγ(i)h ∈ dom A∗∗

0 . �

Define the subclass R̃s
inv(H) as the set of all Nevanlinna families M(·) ∈ R̃inv(H)

for which ker(ImMs(λ)) = {0} for all λ ∈ C \ R.

Corollary 4.30. Let the Weyl family M(·) belong to the subclass R̃s
inv(H). More-

over, assume that A0 is selfadjoint and mul S = {0}. Then mul T = {0} if and
only if for every h ∈ H \ {0}

(4.37) lim
y→∞

(Ms(iy)h, h)H
iy

= 0 and lim
y→∞

y(Im Ms(iy)h, h)H = ∞.

Proof. If (4.37) holds, then A0 is an operator and Nλ(T )∩domA0 = {0}, λ ∈ C \ R.
Now Proposition 4.20 shows that mulT = {0}.

Conversely, assume that mul T = {0}. Then by Proposition 4.20 Nλ(T ) ∩
dom A0 = {0} for every λ ∈ C \ R, and this implies (4.37), since γ(λ) is injec-
tive (see (4.22)). �
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Remark 4.31. The results in this subsection are generalizations of similar statements
which are well known for Q-functions of symmetric operators and Weyl functions
of ordinary boundary triplets, i.e., for the subclass Ru[H] of Nevanlinna functions;
see e.g. [26], [28].

4.5. Forbidden lineals. The concept of a forbidden (isometric) operator V in
the framework of von Neumann’s theory was originally introduced by M.A. Kras-
nosel’skĭı in [23]. The connection between the operator V and limit values of the
characteristic function was discovered by A.V. Štraus [37]. In the case of ordinary
boundary triplets the so-called forbidden lineal has been introduced and studied in
[28]; cf. also [16].

Definition 4.32. Let Γ : H2 → H2 be a boundary linear relation and let T =
dom Γ. The forbidden lineal of Γ is defined by

FΓ = Γ({0} × mul T ).

In this subsection the forbidden lineal of Γ will be characterized by using the
asymptotic properties of the Weyl family M(·), under the assumptions that A0 is
selfadjoint, and the operator part Ms(·) of M(·) has a bounded imaginary part for
λ ∈ C \ R. The approach given below is rather straightforward, and the proof of
the main statement in Proposition 4.34 is essentially simpler than the one used
earlier in the case of ordinary boundary triplets.

Proposition 4.33. Let A0 = A∗
0 and let P be the orthogonal projection onto

dom A0. Let h ∈ Γ0{0,−ω} for some ω ∈ mul T and let Im Ms(λ), λ ∈ C \ R,
be bounded. Then:

(i) γ(λ)h → 0 strongly in H as λ = iy → ∞;
(ii) λγ(λ)h → −Pω strongly in H as λ = iy → ∞;
(iii) the following strong limit exists:

(4.38) Ms(i∞)h := lim
y→∞

Ms(iy)h = Ms(µ̄)h − γ(µ)∗Pω.

Proof. It follows from Proposition 4.20 that h ∈ dom γ(λ) and

(4.39) γ(λ)h = (A0 − λ)−1ω, λ ∈ C \ R.

The statements (i) and (ii) are immediate from the representation (4.39). Moreover,
(iii) is implied by (4.23), since γ(µ)∗ is bounded due to Proposition 4.24. �

Proposition 4.34. Let Γ : H2 → H2 be a boundary linear relation such that
A0 = A∗

0 and Im Ms(λ) is a bounded operator for λ ∈ C \ R. Then

(4.40) domFΓ = {h ∈ H : sup
y>0

y(Im Ms(iy)h, h) < ∞},

and the forbidden lineal FΓ admits the representation

(4.41) FΓ = {{h, Ms(i∞)h} : h ∈ domFΓ} +̂ Γ({0} × mul A0).

Proof. The following characterization concerning domFΓ is implied by Proposi-
tion 4.20:

(4.42) h ∈ domFΓ if and only if γ(λ)h ∈ dom A0.

Combining (4.42) with Proposition 4.29 gives the description of domF in (4.40).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY RELATIONS AND THEIR WEYL FAMILIES 5389

Next assume that {h, h′} ∈ Γ{0,−ω}, where ω ∈ mul T . Then

(4.43)
{(

0
h

)
,

(
−ω
−h′

)}
∈ Ã.

Also consider the elements

(4.44)
{(

γ(λ)h
h

)
,

(
λγ(λ)h

−Ms(λ)h

)}
∈ Ã, λ ∈ C \ R.

It follows from Proposition 4.33 that with λ = iy → ∞ these elements converge to

(4.45)
{(

0
h

)
,

(
−Pω

−Ms(i∞)h

)}
∈ Ã.

Now subtract from this element the element in (4.43), so that{(
0
h

)
,

(
−Pω

−Ms(i∞)h

)}
−

{(
0
h

)
,

(
−ω
−h′

)}
=

{(
0
0

)
,

(
(I − P )ω

h′ − Ms(i∞)h

)}
∈ Ã.

This shows that {0, h′ − Ms(i∞)h} ∈ Γ({0} × mul A0). Hence,

{h, h′} = {h, Ms(i∞)h} +̂ {0, h′ − Ms(i∞)h},

proving one inclusion in (4.41). The reverse inclusion is obvious from (4.40) and
(4.45). �

Corollary 4.35. Let Γ : H2 → H2 be a boundary relation, which is single-valued
and satisfies the assumptions of Proposition 4.34. Then

mulFΓ = Γ({0} × mul A0).

5. Special boundary relations and their Weyl families

5.1. Ordinary boundary triplets. A combination of Definition 1.1 of an ordi-
nary boundary triplet for the case of a densely defined symmetric operator from [20]
(see also [15], [28]) and the adaptation for the case of a nondensely defined sym-
metric operator leads to the following definition. Note that now the adjoint S∗ of
a symmetric operator S in H is a closed linear relation in H; it can be considered
as a Hilbert space with the graph norm.

Definition 5.1 ([20]). Let S be a closed symmetric operator in a Hilbert space H

with equal defect numbers. A triplet Π = {H, Γ0, Γ1}, where H is a Hilbert space
with dimH = n±(S) and Γi ∈ [S∗,H], is said to be an ordinary boundary triplet
for S∗, if:

(A1) the abstract Green’s identity (1.7) holds;
(A2) the mapping Γ := {Γ0, Γ1} : S∗ → H2 is surjective.

Lemma 5.2. Let Γ : (H2, JH) → (H2, JH) be isometric and let T = dom Γ satisfy
S ⊂ T ⊂ S∗. If T is dense in S∗ and ran Γ = H2, then S = ker Γ has equal defect
numbers, T = S∗, and Γ is a bounded single-valued unitary relation.

Proof. By assumptions (domΓ)[⊥] = T ∗ = S ⊂ dom Γ. Hence, Corollary 2.6 shows
that Γ is a unitary single-valued relation which is bounded with T = dom Γ = S∗.
In particular, ker Γ = T ∗ = S. Since mul Γ = {0}, the defect numbers of S are
equal by Lemma 2.14. �
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Proposition 5.3. A triplet {H, Γ0, Γ1} is an ordinary boundary triplet for S∗ if
and only if Γ = {Γ0, Γ1} : H2 �→ H2 is a boundary relation for S∗ such that

(5.1) ran Γ = H2.

Proof. Let {H, Γ0, Γ1} be an ordinary boundary triplet for S∗. Note that (A1) and
(A2) mean that Γ : H2 �→ H2 is an isometric operator from the Krĕın space (H2, JH)
into the Krĕın space (H2, JH) with dom Γ = S∗ and ran Γ = H2. By Lemma 5.2 Γ
is unitary and (G1) and (G2) are satisfied.

Conversely, if Γ : H2 → H2 is a boundary relation for S∗ with ran Γ = H2, then
Γ is unitary and dom Γ = S∗. The assumptions in Definition 5.1 are now obtained
from Lemma 5.2. �

The kernels Ai := ker Γi, i = 0, 1, define two selfadjoint extensions of S. Associ-
ated with Π are two functions which are holomorphic on ρ(A0).

Definition 5.4 ([15], [16]). Let Π = {H, Γ0, Γ1} be an ordinary boundary triplet
for S∗. Then the γ-field γ(·) and the Weyl function M(·) corresponding to Π are
defined by

(5.2) γ̂(λ) := (Γ0� N̂λ)−1, γ(λ) := π1(Γ0� N̂λ)−1, M(λ) = Γ1γ̂(λ),

with λ ∈ ρ(A0). Here N̂λ := N̂λ(S∗) and π1 stands for the projection onto the first
component of H⊕H.

In this case the corresponding Weyl function M(·) belongs to the class Ru[H].
In fact, M(·) determines the pair {S, A0} up to unitary equivalence (cf. [26]), and,
conversely, for every such function M(·) ∈ Ru[H] there exist a symmetric operator
S and an ordinary boundary triplet for S∗ whose Weyl function is equal to M(·).

It was shown in [15], [28] that γ(·) and M(·) satisfy (4.12) and the following
identity:

(5.3) M(λ) − M(µ)∗ = (λ − µ̄)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0).

This means that the γ-field γ(·) of S in Definition 5.4 is generated by A0 and that
M(·) is a Q-function of the pair {S, A0}.

5.2. Generalized boundary triplets. A more general definition of a boundary
triplet for a symmetric operator S with equal defect numbers appears in [16]. This
motivates the next lemma.

Lemma 5.5. Let Γ be an isometric relation from (H2, JH) to (H2, JH) with the
properties

(i) ran Γ0 = H;
(ii) A0 := ker Γ0 is essentially selfadjoint in H,

where Γ0 is as defined in (3.6). Then Γ is a unitary relation from (H2, JH) to
(H2, JH).

Proof. Let {k̂, ĝ} ∈ Γ[∗] with k̂ = {k, k′} and ĝ = {g, g′}. By assumption (i)
{ŝ, {k, t′}} ∈ Γ for some ŝ = {s, s′} ∈ H2 and t′ ∈ H. Since Γ−1 ⊂ Γ[∗], one
concludes that

(5.4) {{0, k′ − t′}, ĝ − ŝ} = {k̂, ĝ } − {{k, t′}, ŝ} ∈ Γ[∗].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY RELATIONS AND THEIR WEYL FAMILIES 5391

Moreover, the assumption (i) and Lemma 4.10 imply that A0 is closed. Thus, by
the assumption (ii) A0 is a selfadjoint relation in H. The condition f̂ ∈ A0 means
that {f̂ , {0, h′}} ∈ Γ for some h′ ∈ H. Now it follows from (5.4) that for all f̂ ∈ A0,

(JHf̂ , ĝ − ŝ )H2 = (JH{0, h′}, {0, k′ − t′})H2 = 0.

Therefore, ĝ− ŝ ∈ A∗
0 = A0 by assumption (ii). Hence, {ĝ− ŝ, {0, v′}} ∈ Γ for some

v′ ∈ H, and (5.4) implies that {{0, k′ − t′ − v′}, {0, 0}} ∈ Γ[∗]. This means that for
all {f̂ , ĥ} ∈ Γ,

0 = (JHf̂ , {0, 0})H2 = (JHĥ, {0, k′ − t′ − v′})H2 = i(h, k′ − t′ − v′)H,

and now (i) yields k′ − t′ − v′ = 0. Hence {ĝ, k̂} = {ĝ− ŝ, {0, v′}}+ {ŝ, {k, t′}} ∈ Γ,
and therefore Γ[∗] ⊂ Γ−1. �

Now recall the definition of a generalized boundary triplet as given in [16].

Definition 5.6 ([16]). Let S be a closed symmetric operator in a Hilbert space
H with equal defect numbers and let T be a linear relation in H such that S ⊂
T ⊂ clos T = S∗. Then the triplet {H, Γ0, Γ1}, where H is a Hilbert space and
Γ = {Γ0, Γ1} is a single-valued linear mapping from T to H2, is said to be a
generalized boundary triplet for S∗, if:

(S1) the abstract Green’s identity (1.7) holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ T ;
(S2) ran Γ0 = H;
(S3) A0 := ker Γ0 is a selfadjoint linear relation in H.

By definition A0 ⊂ dom Γ = T , so that A0 is a selfadjoint extension of S.

Proposition 5.7. A triplet {H, Γ0, Γ1} is a generalized boundary triplet for S∗ if
and only if Γ = {Γ0, Γ1} : H2 �→ H2 is a boundary relation for S∗ such that

(5.5) mul Γ = {0}, Γ0(N̂λ(T )) = H, λ ∈ C \ R.

In this case the corresponding Weyl family M(λ) belongs to the class Rs[H]. Con-
versely, every Rs[H]-function is the Weyl function of some generalized boundary
triplet {H, Γ0, Γ1}.

Proof. Let {H, Γ0, Γ1} be a generalized boundary triplet for S∗. Then Γ = {Γ0, Γ1}
is unitary by Lemma 5.5, and hence it is a boundary relation for S∗ with mul Γ =
{0}. It follows from the assumption (S3) that S∗ = A0 +̂ N̂λ(S∗), λ ∈ C \ R, and
since A0 ⊂ T , the equality

(5.6) T = A0 +̂ N̂λ(T ), λ ∈ C \ R,

also holds. This together with (S2) gives

Γ0(N̂λ(T )) = Γ0(T ) = H, λ ∈ C \ R.

The statement M(λ) ∈ Rs[H] is obtained from Proposition 4.7.
Conversely, let Γ be a boundary relation for S∗ with the properties (5.5). Then

H = Γ0(N̂λ(T )) ⊂ ran Γ0, so that ran Γ0 = H, i.e., (S2) is satisfied. Also the
property (S3) is obtained from Γ0(Nλ(T )) = H by using Proposition 4.15; cf.
Corollary 4.17. The remaining conditions for generalized boundary triplets are
clearly satisfied.

It follows from Theorem 3.9 and Propositions 4.5, 4.7 that every Rs[H]-function
is the Weyl function of some generalized boundary triplet. �
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The converse part of Proposition 5.7 was first proved in [16]. The next result
collects some further properties of generalized boundary triplets.

Proposition 5.8 ([16]). Let {H, Γ0, Γ1} be a generalized boundary triplet for S∗.
Then:

(i) T = A0 +̂ N̂λ(T ) for every λ ∈ C \ R;
(ii) clos Γ1(A0) = H and ran Γ = H2;
(iii) the restriction Γ0 : N̂λ(T ) → H is a closed mapping for every λ ∈ C \ R;
(iv) the equalities (5.2) define an [H, N̂λ]-valued function γ̂(·), an [H, Nλ]-valued

function γ(·), and an [H]-valued function M(·), which are holomorphic on
C \ R and satisfy the identities (4.12) and (5.3).

Proof. (i) This was shown in the proof of Proposition 5.7; cf. (5.6).
(ii) By Proposition 2.3 ran Γ is dense in H2. Now assume that h ⊥ Γ1(A0). Then

{k, h} ⊥ Γ(A0) in H2 for every k ∈ H. Since {−M(λ)∗h, h} ⊥ Γ(N̂λ) in H2, it
follows from (i) that {−M(λ)∗h, h} ⊥ ranΓ and, therefore, h = 0.

(iii) By Proposition 4.9 the mapping Γ0 : N̂λ(T ) → H, λ ∈ C \ R, is closable.
Moreover, it is closed since Γ0(N̂λ(T )) = H.

(iv) The operators γ̂(λ), λ ∈ C \ R, are bounded by the closed graph theorem
and thus also the operators γ(λ), λ ∈ C \ R, are bounded. The corresponding
statement for M(λ) was shown in Proposition 5.9. The remaining statements are
immediate from Proposition 4.11 and the operator representation (4.23). �
5.3. Boundary relations with Weyl functions in R[H]. In this subsection
the class of boundary relations whose Weyl functions belong to the class R[H] is
considered.

Proposition 5.9. Let H and H be Hilbert spaces and let Γ : H2 → H2 be a (possibly
multi-valued) linear relation such that:

(B1) Green’s identity (3.1) holds;
(B2) ran Γ0 = H;
(B3) A0 := ker Γ0 is a selfadjoint linear relation in H.

Then Γ : H2 → H2 is a boundary relation for S∗ := (ker Γ)∗ such that

(5.7) Γ0(N̂λ(T )) = H, λ ∈ C \ R.

Conversely, every boundary relation Γ : H2 → H2 satisfying (5.7) also satisfies
the conditions (B1)–(B3). In this case the corresponding Weyl function belongs to
the class R[H], and moreover, every R[H]-function is the Weyl function of some
boundary relation Γ : H2 → H2 with the properties (B1)–(B3).

Proof. The proof is completely analogous to that of Proposition 5.7 and will be
omitted. �
Proposition 5.10. Let Γ : H2 → H2 be a boundary relation satisfying the condi-
tions (B1)–(B3). Then:

(i) T = A0 +̂ N̂λ(T ) for every λ ∈ C \ R;
(ii) (Γ0� N̂λ(T ))−1 : H → N̂λ(T ) is closed bounded and single-valued for every

λ ∈ C \ R;
(iii) the equalities (5.2) define [H, N̂λ]-valued, [H, Nλ]-valued, and [H]-valued

functions γ̂(·), γ(·), and M(·), respectively, which are holomorphic on C \ R

and satisfy the identities (4.12) and (5.3).
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Proof. The proof is analogous to that of Proposition 5.8. The main difference is
that the mapping Γ0� N̂λ(T )) : N̂λ(T ) → H may be multi-valued, but it still has
a trivial kernel and its inverse is a closed bounded single-valued mapping for every
λ ∈ C \ R by Proposition 4.9. The identity (5.3) is implied by (4.23). �

6. Examples

In this section a number of illustrative examples are presented. Each example
by itself shows some characteristic behaviour of boundary relations.

Example 6.1. Let A be a selfadjoint relation in a Hilbert space H and let B be a
selfadjoint relation in a Hilbert space H. Define the linear relation Ã in H ⊕H by
Ã = A ⊕ (−B), i.e.,

Ã =
{{(

f

h

)
,

(
f ′

−h′

)}
: {f, f ′} ∈ A, {h, h′} ∈ B

}
.

It is clear that Ã is selfadjoint. The transform

Γ = J−1(Ã) =
{{(

f

f ′

)
,

(
h

h′

)}
: {f, f ′} ∈ A, {h, h′} ∈ B

}
defines a boundary relation Γ : H2 → H2 for S∗ = A with

T = dom Γ = A, S = kerΓ = A, ran Γ = B, mul Γ = B.

In particular, this implies that A0 = A1 = S = S∗ are selfadjoint. The correspond-
ing Weyl family M(λ) = Γ(N̂λ(T )) is given by M(λ) ≡ B. Since ran Γ0 = domB,
M(λ) ∈ R̃[H] if and only if domB is closed (in which case B is the orthogonal sum
of a bounded selfadjoint operator and a closed multi-valued part). Furthermore,
Nλ(S∗) = Nλ(A) = {0, 0}, so that the γ-field satisfies γ(λ)h = 0 for all h ∈ dom B
and hence its closure is single-valued.

Example 6.1 gives a realization for a constant Nevanlinna family M(λ) ≡ B
as a Weyl family of a boundary relation Γ. Observe that the symmetry property
M(λ)∗ = M(λ̄) forces that B = B∗. In Example 6.1 the boundary relation Γ is not
minimal. The following result expresses this situation more explicitly.

Corollary 6.2. Let Γ : H2 → H2 be an arbitrary boundary relation whose Weyl
function satisfies M(λ) = B, λ ∈ C \ R. If Γ is minimal, then H = {0}, and in
particular S = T = S∗.

Proof. Consider {f̂λ, ĥ} ∈ Γ with λ ∈ C \ R. The identity (3.4) with λ = µ shows
that

(λ − λ̄)‖fλ‖2 = (h′, h) − (h, h′) = 0,

since B is selfadjoint. This implies that f̂λ = {0, 0}. Now the assumption that
Γ : H2 → H2 is minimal yields H = span {Nλ(T ) : λ ∈ C \ R } = {0}. In this case
S = T = S∗ = {0, 0}. �

In Proposition 3.7 a boundary relation for an arbitrary closed symmetric relation
S in a Hilbert space H is constructed. In the next example some further properties
of the corresponding boundary relation are considered.
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Example 6.3. Let Ã be the linear relation in H ⊕ H given by (3.10) and let
Γ = J−1(Ã) be the corresponding boundary relation for S∗. Then Γ satisfies the
following equalities:

ker Γ = mul Γ = S, dom Γ = ran Γ = S∗.

Moreover, the corresponding Weyl family M(λ) is given by

(6.1) M(λ) = S +̂ N̂λ(S∗), λ ∈ C \ R.

To see this assume {f2, f
′
2} ∈ M(λ). Then it follows from (3.5) that

{ {fλ, λfλ}, {f2, f
′
2} } ∈ Γ for some {fλ, λfλ} ∈ S∗.

By (3.10) this shows PN({f2, f
′
2} − {fλ, λfλ}) = 0, which implies that

{f2, f
′
2} − {fλ, λfλ} ∈ S,

so that {f2, f
′
2} ∈ S +̂ N̂λ(S∗). Hence M(λ) ⊂ S +̂ N̂λ(S∗), and the reverse

inclusion can be seen immediately. Furthermore,

(6.2) mul M(λ) = mul S, λ ∈ C \ R.

To see this, consider an arbitrary element in M(λ) with λ ∈ C \ R:

{h, h′} +̂ {fλ, λfλ} ∈ M(λ) with {h, h′} ∈ S, {fλ, λfλ} ∈ N̂λ(S∗),

so that (h′, fλ) = λ̄(h, fλ). If h + fλ = 0, then {−fλ, h′} ∈ S and (h′, fλ) ∈ R.
Hence fλ = 0, and consequently, h = 0. Thus mul M(λ) ⊂ mul S and the reverse
inclusion is obvious.

In this example M(·) ∈ R̃(H). According to Proposition 3.5 the boundary re-
lation Γ is minimal if and only if the selfadjoint relation Ã = J (Γ) in H ⊕ H is
minimal with respect to H, which is equivalent to S being simple. Hence, if S is
simple, in which case S is an operator, this model provides a minimal realization
for the Weyl family M(λ) in (6.1). Moreover, its multi-valued part is trivial due to
(6.2). Therefore, if S is simple, M(·) ∈ R(H).

Note that ran Γ0 = domS∗ and ran Γ1 = ranS∗. Moreover,

A0 = ker Γ0 = { {f1, f
′
1} ∈ S∗ : PNf̂1 = PN{0, f ′

2}, {0, f ′
2} ∈ S∗ },

A1 = ker Γ1 = { {f1, f
′
1} ∈ S∗ : PNf̂1 = PN{f2, 0}, {f2, 0} ∈ S∗ }.

This implies, in a similar way as above, that

(6.3) A0 = S +̂ {0, mul S∗}, A1 = S +̂ {ker S∗, 0}.
The extension A0 of S is symmetric and, in general, not selfadjoint. The defect
numbers of A0 are called semi-defect numbers of S; see [23].

Remark 6.4. If in Example 6.3 S is a densely defined symmetric operator, then (6.3)
shows that A0 = ker Γ0 coincides with S. Therefore, A0 need not be selfadjoint
and, in general, it can have arbitrary (equal or unequal) defect numbers.

The next example gives a boundary relation whose Weyl function belongs to
Rinv(H)\R[H].

Example 6.5. Let B be a closed densely defined linear operator in H and let Ã
be the operator determined by the block form

Ã =
(

0 B
B∗ 0

)
.
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By definition Ã is a selfadjoint operator in H ⊕ H whose graph is given by

Ã =
{{(

f

h

)
,

(
Bh

B∗f

)}
: h ∈ dom B, f ∈ dom B∗

}
.

The transform

Γ = J−1(Ã) =
{ {(

f

Bh

)
,

(
h

−B∗f

)}
: h ∈ dom B, f ∈ dom B∗

}
defines a boundary relation for S∗ = H ⊕ ranB in H ⊕ H with

T = dom Γ = domB∗ × ran B, S = ker Γ = ker B∗ × {0},
ran Γ = domB × ran B∗, mul Γ = kerB × {0}.

Hence, Γ is single-valued if and only if kerB = {0} and, since mul Γ∩{0, H} = {0},
the corresponding Weyl family M(λ) is operator-valued. Clearly, {f, λf} ∈ T if
and only if

f =
1
λ

Bh, h ∈ dom B∗B.

Hence,
Γ0(N̂λ(T )) = dom B∗B, Γ1(N̂λ(T )) = ranB∗B,

and the corresponding γ-field and the Weyl family are given by

γ(λ) =
1
λ

B, M(λ) = − 1
λ

B∗B

on domB∗B. In particular, Γ0(N̂λ(T )) and Γ1(N̂λ(T )) are independent of λ ∈
C \ R. In general they do not coincide with ran Γ0 and ran Γ1, since

ran Γ0 = domB, ran Γ1 = ranB∗.

In this example A0 and A1 are essentially selfadjoint in H, since

A0 = ker Γ0 = dom B∗ × {0}, A1 = kerΓ1 = kerB∗ × ran B.

Furthermore, the equality M(λ) − M(µ)∗ = (λ − µ̄)γ(µ)∗γ(λ) is satisfied.

The next example gives a boundary relation whose Weyl function M(·) typically
appears in the case of bounded perturbations of a selfadjoint operator. Observe
that in this example −M(·)−1 need not belong to the class R̃inv(H).

Example 6.6. Let B be bounded and let D and E be selfadjoint operators in H.
Define Ã by the block form

Ã =
(

D B
B∗ −E

)
.

Then Ã is a selfadjoint operator in H ⊕ H whose graph is given by

Ã =
{{(

f

h

)
,

(
Df + Bh

B∗f − Eh

)}
: f ∈ dom D, h ∈ dom E

}
.

The transform

Γ = J −1(Ã) =
{{(

f

Df + Bh

)
,

(
h

Eh − B∗f

)}
: f ∈ dom D, h ∈ dom E

}
defines a boundary relation in H ⊕ H with

T = dom Γ = D +̂ ({0} × B(dom E)) , S = ker Γ = D� kerB∗,

ran Γ = E +̂ ({0} × B∗(dom D)) , mul Γ = E� ker B,
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so that S∗ = clos (D +̂ ({0} × ran B)). Since mul Γ∩{0, H} = {0}, the correspond-
ing Weyl family M(λ) is operator-valued. Moreover,

ran Γ0 = domE, ran Γ1 = B∗(dom D) + ranE.

Observe, that {f, λf} ∈ T if and only if

f = −(D − λ)−1Bh.

Hence,

Γ0(N̂λ(T )) = domE, Γ1(N̂λ(T )) = ran
(
B∗(D − λ)−1B + E

)
,

and the corresponding γ-field and the Weyl family are given by

γ(λ) = −(D − λ)−1B, M(λ) = B∗(D − λ)−1B + E,

on domM(λ). In particular, Γ0(N̂λ(T )) = ran Γ0 for every λ ∈ C \ R, while
Γ1(N̂λ(T )) in general depends on λ ∈ C \ R and need not coincide with ran Γ1.
The formulas

A0 = ker Γ0 = D,

A1 = ker Γ1 = { {f, Df + Bh} : f ∈ dom D, h ∈ dom E, B∗f = Eh },
show that A0 is selfadjoint, while A1 need not be essentially selfadjoint in H.

However, if for instance E = 0, then A1 takes the form

A1 = { {f, f ′} ∈ T : B∗f = 0 } = S +̂ ({0} × ran B) .

By Theorem 4.13 the equality Γ1(N̂λ(T )) = ran Γ1 holds for every λ ∈ C \ R if
and only if A1 is selfadjoint: this holds if, for instance, E = 0 and ranB is finite-
dimensional, in which case A1 is in fact the generalized Friedrichs extension of S.
Since A0 is a selfadjoint extension of S, S has equal defect numbers. Observe that
A0 = S if and only if B = 0, so that when B �= 0, S is not selfadjoint.

On the other hand, A1 = S if and only if the following implication holds:

B∗f = Eh, f ∈ dom D ⇒ h = 0 and B∗f = 0,

or equivalently,

(6.4) B∗(dom D) ∩ ran E = {0} and kerE = 0.

In this case A1 cannot be essentially selfadjoint (unless B = 0) and thus Γ1(N̂λ(T ))
must depend on λ ∈ C \ R. Observe that there exist bounded selfadjoint operators
B = B∗ and E = E∗ with the properties

ran B ∩ ran E = {0}, kerE = kerB = {0},
so that also the conditions in (6.4) can be satisfied.

In the next example the Weyl function takes a constant value in the lower half-
plane which is a symmetric operator with defect numbers (1, 0). In fact, this ex-
ample can be seen as a special case of Example 6.3. It involves some first-order
differential operators on the halflines.

Example 6.7. Let S+ and S− be the minimal differential operator generated in
H = L2(0,∞) and H = L2(−∞, 0), respectively, by the expression iD. Let Ã be
the selfadjoint operator in H ⊕H given by{{(

y+

y−

)
,

(
−iy′

+

−iy′
−

)}
: y+ ∈ W 1

2 (0,∞), y− ∈ W 1
2 (−∞, 0), y+(0+) = y−(0−)

}
.
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Clearly, the operator Ã is minimal with respect to the space H in the sense of (2.23)
since the symmetric operator S+ is simple; see Lemma 2.14. Then the linear relation
Γ = J −1(Ã) : H2 → H2 is a minimal boundary relation with

dom Γ = −S∗
+, ker Γ = −S+, ran Γ = S∗

−, mul Γ = S−.

The symmetric extensions A0 = ker Γ0 and A1 = kerΓ1 are equal and coincide with
S = kerΓ = −S+, which is a maximal symmetric operator. Furthermore, observe
that

ran Γ0 = dom S∗
−, ran Γ1 = ranS∗

−.

The defect subspaces Nλ(S∗) are given by

Nλ(S∗) = span {eiλx}, λ ∈ C+, Nλ(S∗) = {0}, λ ∈ C−,

and the corresponding Weyl family M(λ) = Γ(N̂λ(S∗)) has the form

M(λ) = S∗
−, λ ∈ C+, M(λ) = S−, λ ∈ C−.

Clearly, M(λ) belongs to the class R(H) and has the domain invariance property
in each halfplane, but not on C \ R; cf. Proposition 4.11. In fact, each halfplane
gives different behaviour. For λ ∈ C+ the corresponding γ-field is given by

γ(λ)h = h(0) eiλx, h ∈ dom S∗
−,

so that

‖γ(λ)h‖2 =
|h(0)|2
2Im λ

=
(S∗

−h, h) − (h, S∗
−h)

λ − λ̄
, h ∈ dom S∗

−.

Clearly (4.10) is not satisfied for λ ∈ C+, since S∗
− �⊂ S−. In fact, the closure of

the γ-field γ(λ) is not single-valued for λ ∈ C+. To see this, define a sequence of
smooth functions hn ∈ H such that hn(0) = 1 and hn → 0 in H = L2(−∞, 0), in
which case γ(λ)hn = eiλx �= 0. For λ ∈ C− the corresponding γ-field is given by

γ(λ)h = 0, h ∈ dom S−,

and

‖γ(λ)h‖2 =
(S−h, h) − (h, S−h)

λ − λ̄
, h ∈ dom S−.

Clearly (4.10) is satisfied for λ ∈ C−, since S− ⊂ S∗
−. Therefore, the closure of γ(λ)

is single-valued for λ ∈ C− and, in fact, γ(λ)h = 0 for all h ∈ H.

The last example demonstrates the applicability of boundary relations (as de-
fined in the present paper) for treating boundary value problems involving partial
differential operators.

Example 6.8. Let A = A∗(≥ I) be a semibounded operator in a Hilbert space H
and let S be a minimal symmetric operator in H = L2((0,∞),H) associated with
the differential expression

(6.5) l[y] = −y′′ + A2y.

Define the operator T as a restriction of S∗ to the domain

dom T = { y ∈ dom S∗ : y(0), y′(0) ∈ H}
and the mapping Γ : dom T → H2 by

Γy =
(

Γ0y

Γ1y

)
=

(
y(0)
y′(0)

)
, y ∈ dom T.
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It will be proved that Γ is a boundary relation for S∗ in the sense as defined in
the present paper. Simple calculations show that

(Ty, z) − (y, Tz) = (Γ1y, Γ0z)H − (Γ0y, Γ1z)H, y, z ∈ dom T,

that is, the condition (G1) of Definition 3.1 (the Green’s identity) is satisfied. Next,
observe that the defect subspace Nλ(T ) consists of the vectors

yλ := e−
√

A2−λ th, h ∈ dom A.

Since Γ0yλ = h and Γ0yλ = −
√

A2 − λh, the γ-field and the Weyl function corre-
sponding to {H, Γ0, Γ1} are given by

(6.6) γ(λ)h = yλ, M(λ)h = −
√

A2 − λh, h ∈ dom A.

Indeed, the operator M(λ) is maximal dissipative for all λ ∈ C+ due to A = A∗.
To see that the linear relation Γ is closed, let yn ∈ dom T and yn → y, Tyn → z in
H and yn(0) → h, y′

n(0) → g in H as n → ∞. Then y ∈ dom S∗, since S∗ is a closed
operator. It is shown in [20] that y(0) ∈ H−1/2(A) and y′(0) ∈ H−3/2(A), where
Hα(A) = domAα if α ≥ 0, and it is the completion of H with respect to the norm
‖h‖α = ‖Aαh‖ if α < 0. Moreover, Nλ(S∗) = {e−

√
A2−λt h : h ∈ H−1/2(A)}. Since

yn(0) converges to y(0) in H−1/2(A) and y′
n(0) converges to y′(0) in H−3/2(A), one

concludes that y(0) = h ∈ H, y′(0) = g ∈ H and, therefore, y ∈ dom T . Finally,
the graph of T is dense in S∗. This follows from von Neumann’s formula, since the
defect subspace Nλ(T ) = {e−

√
A2−λth : h ∈ dom A} is dense in Nλ(S∗). Therefore,

by Proposition 3.6 Γ is a boundary relation for S∗ and M(λ) is the corresponding
Weyl function.

Clearly, M ∈ Rinv(H) \ R[H], since the function −
√

s2 − λ is unbounded on
[1,∞) for every λ ∈ C \ [1,∞) and dom M(λ) = H1(A) for all λ ∈ C \ R.

Note that the proof of the fact that Γ is a boundary relation for S∗ is rather
simple. At the same time a construction of an ordinary boundary triplet for S∗ is a
nontrivial problem, since, in general, boundary values y(0) and y′(0) of y ∈ dom S∗

do not belong to H. M.L. Gorbachuk has shown (cf. [20]) that an ordinary boundary
triplet {H, Γ̃0, Γ̃1} for S∗ can be chosen in the form

Γ̃0y = Â−1/2y(0), Γ̃1y = A1/2(y′(0) + Ây(0)),

where Â denotes the continuation of the operator A acting from Hα(A) to Hα+1(A).
In this case the corresponding Weyl function is M(λ) = (A−

√
A2 − λ)A; see [15].

In a forthcoming paper the usefulness of the concept of Weyl functions with un-
bounded values is demonstrated for the spectral analysis of selfadjoint extensions
in Example 6.8. In particular, starting with the representation (6.6) of the Weyl
function, it will be shown that for any A (≥ I) the Friedrichs extension SF cor-
responding to the Dirichlet boundary value problem for the operator (6.5) has a
purely absolutely continuous spectrum.
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